Partner: A. Gładki

Institute of Electronic Materials Technology (PL)

Recent publications
1.Strojny-Nędza A., Pietrzak K., Gładki A., Nosewicz S., Jarząbek D.M., Chmielewski M., The effect of ceramic type reinforcement on structure and properties of Cu-Al2O3 composites, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/124271, Vol.66, No.4, pp.553-560, 2018
Abstract:

The purpose of this paper is to elaborate on mechanical alloy
ing conditions for a composite powder consisting of copper a
nd brittle aluminium oxides. Detailed analysis of the Cu-Al2O3
powder mixture structure obtained in the mechanical alloyi
ng process allows for the
study of the homogenization phenomena and for obtaining gra
ins (in composite form) with a high degree of uniformity. The
Cu-5 vol.%Al2O3
composites were obtained by means of the spark plasma sinter
ing technique. The results presented herein were studied an
d discussed in
terms of the impact of using a different form of aluminium oxid
e powder and a different shape of copper powder on composite pr
operties.
Research methodology included microstructure analysis as
well as its relation to the strength of Cu-Al2O3
interfaces. It transpires from the
results presented below that the application of electrocor
undum as a reinforcement phase in composites decreases poro
sity in the ceramic
phase, thus improving thermal properties and interfacial s
trength.

Keywords:

metal matrix composites, spark plasma sintering, thermal conductivity, interfacial strength

Affiliations:
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-other affiliation
Gładki A.-Institute of Electronic Materials Technology (PL)
Nosewicz S.-IPPT PAN
Jarząbek D.M.-IPPT PAN
Chmielewski M.-Institute of Electronic Materials Technology (PL)
2.Pietrzak K., Strojny-Nędza A., Olesińska W., Bańkowska A., Gładki A., Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation, APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2016.11.155, Vol.421, pp.228-233, 2017
Abstract:

On the basis of a specially designed experiment, this paper presents a model, which is an attempt to explain the mechanism of formatting and creating oxidation resistance of Cu-rGO subsurface layers. Practically zero chemical affinity of copper to carbon is a fundamental difficulty in creating composite structures of Cu-C, properties which are theoretically possible to estimate. In order to bind the thermally reduced graphene oxide with copper surface, the effect of structural rebuilding of the copper oxide, in the process of annealing in a nitrogen atmosphere, have been used. On intentionally oxidized and anoxic copper substrates the dispersed graphene oxide (GO) and thermally reduced graphene oxide (rGO) were loaded. Annealing processes after the binding effects of both graphene oxide forms to Cu substrates were tested. The methods for high-resolution electron microscopy were found subsurface rGO-Cu layer having a substantially greater resistance to oxidation than pure copper. The mechanism for the effective resistance to oxidation of the Cu-rGO has been presented in a hypothetical form

Keywords:

Metal matrix composite, Copper, Graphene, Oxidation

Affiliations:
Pietrzak K.-other affiliation
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Olesińska W.-Institute of Electronic Materials Technology (PL)
Bańkowska A.-Institute of Electronic Materials Technology (PL)
Gładki A.-Institute of Electronic Materials Technology (PL)
3.Pietrzak K., Gładki A., Frydman K., Wójcik-Grzybek D., Strojny-Nędza A., Wejrzanowski T., Copper-carbon nanoforms composites – processing, microstructure and thermal properties, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0198, Vol.62, No.2B, pp.1307-1310, 2017
Abstract:

The main current of publication is focused around the issues and problems associated with the formation of composite materials with Cu matrix and reinforcing phases in the various carbon nanoforms. The core of the research has been focused on thermal conductivity of these composites types. This parameter globally reflects the state of the structure, quality of raw materials and the technology used during the formation of composite materials. Vanishingly low affinity of copper for carbon, multilayered forms of graphene, the existence of critical values of graphene volume in the composite are not conducive to the classic procedures of composites designing. As a result, the expected, significant increase in thermal conductivity of composites is not greater than for pure copper matrix. Present paper especially includes: (i) data of obtaining procedure of copper/graphene mixtures, (ii) data of sintering process, (iii) the results of structure investigations and of thermal properties. Structural analysis revealed the homogenous distribution of graphene in copper matrix, the thermal analysis indicate the existence of carbon phase critical concentration, where improvement of thermal diffusivity to pure copper can occur

Keywords:

metal matrix composite, sintering, copper, graphene, thermal diffusivity

Affiliations:
Pietrzak K.-other affiliation
Gładki A.-Institute of Electronic Materials Technology (PL)
Frydman K.-other affiliation
Wójcik-Grzybek D.-other affiliation
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Wejrzanowski T.-Warsaw University of Technology (PL)

Conference abstracts
1.Strojny-Nędza A., Pietrzak K., Jarząbek D.M., Gładki A., Correlation between preparing conditions, starting materials morphology and the interface structure of the Cu-Al2O3 composites, EUROMAT 2015, European Congress and Exhibition on Advanced Materials and Processes, 2015-09-20/09-24, Warszawa (PL), pp.1, 2015
Abstract:

Copper/alumina composites with different volume content are used where high thermal conductivity, high absorption and dissipation of heat, high resistance to thermal fatigue and good frictional wear resistance are required. The properties of these composites depend on the content, shape and distribution of the ceramic phase in metal matrix. All these conditions have influence on said properties and, in consequence, on the future applications of the final material. In the technology of thruster and components in aircraft engines composite materials powder preparation process becomes very important. It should assure the uniform distribution of reinforcement in the matrix and eliminate of any agglomerates which cause the formation o f porosity in the final product . The aim of this paper is elaboration of the mechanical alloying conditions for composite powder consists of copper as a plastic matrix and brittle aluminium oxides as a reinforcement phase. The materials by compositions Cu - 5 vol. %Al 2 O 3 and Cu -15 vol. %Al 2 O 3 were obtained by hot pressing technique. The research methodology includes a microstructure analysis of composites structures, its con nection with the strength of Cu/ Al 2 O 3 interfaces . The results also were analyzed and discussed in terms of the effects of different form of aluminium oxide powder (α -Al 2 O 3 and electrocorundum ) on the composites properties

Affiliations:
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-other affiliation
Jarząbek D.M.-IPPT PAN
Gładki A.-Institute of Electronic Materials Technology (PL)