Partner: Agata Strojny-Nędza

Institute of Electronic Materials Technology (PL)

Recent publications
1.Chmielewski M., Pietrzak K., Teodorczyk M., Nosewicz S., Jarząbek D., Zybała R., Bazarnik P., Lewandowska M., Strojny-Nędza A., Effect of metallic coating on the properties of copper-silicon carbide composites, APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2016.12.130, Vol.421, pp.159-169, 2017
Abstract:

In the presented paper a coating of SiC particles with a metallic layer were used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950C was provided. The almost fully dense materials were obtained (> 97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

Keywords:

metal matrix composites, silicon carbide, metallic layers deposition, thermal conductovity, interface strength

Affiliations:
Chmielewski M.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-other affiliation
Teodorczyk M.-other affiliation
Nosewicz S.-IPPT PAN
Jarząbek D.-IPPT PAN
Zybała R.-Warsaw University of Technology (PL)
Bazarnik P.-Warsaw University of Technology (PL)
Lewandowska M.-other affiliation
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
2.Chmielewski M., Pietrzak K., Strojny-Nędza A., Jarząbek D., Nosewicz S., Investigations of interface properties in copper-silicon carbide composites, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0200, Vol.62, No.2B, pp.1315-1318, 2017
Abstract:

This paper analyses the technological aspects of the interface formation in the copper-silicon carbide composite and its effect on the material’s microstructure and properties. Cu-SiC composites with two different volume content of ceramic reinforcement were fabricated by hot pressing (HP) and spark plasma sintering (SPS) technique. In order to protect SiC surface from its decomposition, the powder was coated with a thin tungsten layer using plasma vapour deposition (PVD) method. Microstructural analyses provided by scanning electron microscopy revealed the significant differences at metal-ceramic interface. Adhesion force and fracture strength of the interface between SiC particles and copper matrix were measured. Thermal conductivity of composites was determined using laser flash method. The obtained results are discussed with reference to changes in the area of metal-ceramic boundary.

Keywords:

copper matrix composites, silicon carbide, interface, thermal conductivity, adhesion

Affiliations:
Chmielewski M.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-IPPT PAN
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Jarząbek D.-IPPT PAN
Nosewicz S.-IPPT PAN
3.Strojny-Nędza A., Pietrzak K., Teodorczyk M., Basista M., Węglewski W., Chmielewski M., Influence of Material Ccating on the heat Transfer in a layered Cu-SiC-Cu Systems, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0199, Vol.62, No.2B, pp.1311-1314, 2017
Abstract:

This paper describes the process of obtaining Cu-SiC-Cu systems by way of spark plasma sintering. A monocrystalline form of silicon carbide (6H-SiC type) was applied in the experiment. Additionally, silicon carbide samples were covered with a layer of tungsten and molybdenum using chemical vapour deposition (CVD) technique. Microstructural examinations and thermal properties measurements were performed. A special attention was put to the metal-ceramic interface. During annealing at a high temperature, copper reacts with silicon carbide. To prevent the decomposition of silicon carbide two types of coating (tungsten and molybdenum) were applied. The effect of covering SiC with the aforementioned elements on the composite’s thermal conductivity was analyzed. Results were compared with the numerical modelling of heat transfer in Cu-SiC-Cu systems. Certain possible reasons behind differences in measurements and modelling results were discussed.

Keywords:

copper matrix composites, silicon carbide, interface, thermal conductivity, modelling

Affiliations:
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-IPPT PAN
Teodorczyk M.-other affiliation
Basista M.-IPPT PAN
Węglewski W.-IPPT PAN
Chmielewski M.-Institute of Electronic Materials Technology (PL)
4.Chmielewski M., Pietrzak K., Strojny-Nędza A., Kaszyca K., Zybala R., Bazarnik P., Lewandowska M., Nosewicz S., Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique, SCIENCE OF SINTERING, ISSN: 0350-820X, DOI: 10.2298/SOS1701011C, Vol.49, pp.11-22, 2017
Abstract:

The presented paper investigates the relationship between the microstructure and thermal properties of copper–silicon carbide composites obtained through hot pressing (HP) and spark plasma sintering (SPS) techniques. The microstructural analysis showed a better densification in the case of composites sintered in the SPS process. TEM investigations revealed the presence of silicon in the area of metallic matrix in the region close to metal ceramic boundary. It is the product of silicon dissolving process in copper occurring at an elevated temperature. The Cu-SiC interface is significantly defected in composites obtained through the hot pressing method, which has a major influence on the thermal conductivity of materials.

Keywords:

Metal matrix composites; Silicon carbide; Interface; Spark plasma sintering; Thermal conductivity.

Affiliations:
Chmielewski M.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-IPPT PAN
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Kaszyca K.-other affiliation
Zybala R.-Warsaw University of Technology (PL)
Bazarnik P.-Warsaw University of Technology (PL)
Lewandowska M.-other affiliation
Nosewicz S.-IPPT PAN
5.Wejrzanowski T., Grybczuk M., Chmielewski M., Pietrzak K., Kurzydłowski K.J., Strojny-Nędza A., Thermal conductivity of metal-graphene composites, MATERIALS AND DESIGN, ISSN: 0261-3069, DOI: 10.1016/j.matdes.2016.03.069, Vol.99, pp.163-173, 2016
Abstract:

In this paper the results of numerical simulations and experimental studies are presented which describe potential and limitation of applications of single-layer (SLG) and multi-layer (MLG) graphene for thermal conductivity enhancement (TCE) of copper. A series of composite structures were studied which are representative of most widely used systems. The influence of structural parameters on the macroscopic thermal conductivity was analyzed, both experimentally and by numerical simulations. Analytical and Finite Element Method modeling were carried out to investigate a wide range of phenomena, including the effect of copper-MLG interface, copper grain size, volume fraction, thickness and orientation of MLG platelets as well as spatial distribution of MLG defined by percolation factor. Both modeling and the experimental results show that the volume fraction of MLG regions, their size, orientation and spatial distribution may significantly affect the thermal conductivity of metal matrix composites. TCE can be obtained for the laminate-like structure or particulate composites with highly aligned MLG regions. The thermal conductivity of such composites is strongly anisotropic and enhanced in the direction perpendicular to the layers. The results obtained in this study predict that SLG will have a negative effect on the thermal conductivity of copper matrix composites.

Keywords:

Thermal conductivity, Composites, Graphene, Finite element method

Affiliations:
Wejrzanowski T.-other affiliation
Grybczuk M.-other affiliation
Chmielewski M.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-other affiliation
Kurzydłowski K.J.-Warsaw University of Technology (PL)
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
6.Pietrzak K., Sobczak N., Chmielewski M., Homa M., Gazda A., Zybała R., Strojny-Nędza A., Effects of Carbon Allotropic Forms on Microstructure and Thermal Properties of Cu-C Composites Produced by SPS, Journal of Materials Engineering and Performance, ISSN: 1059-9495, DOI: 10.1007/s11665-015-1851-0, Vol.25, No.8, pp.3077-3083, 2016
Abstract:

Combination of extreme service conditions and complex thermomechanical loadings, e.g., in electronics or power industry, requires using advanced materials with unique properties. Dissipation of heat generated during the operation of high-power electronic elements is crucial from the point of view of their efficiency. Good cooling conditions can be guaranteed, for instance, with materials of very high thermal conductivity and low thermal expansion coefficient, and by designing the heat dissipation system in an accurate manner. Conventional materials such as silver, copper, or their alloys, often fail to meet such severe requirements. This paper discusses the results of investigations connected with Cu-C (multiwall carbon nanotubes (MWNTs), graphene nanopowder (GNP), or thermally reduced graphene oxide (RGO)) composites, produced using the spark plasma sintering technique. The obtained composites are characterized by uniform distribution of a carbon phase and high relative density. Compared with pure copper, developed materials are characterized by similar thermal conductivity and much lower values of thermal expansion coefficient. The most promising materials to use as heat dissipation elements seems to be copper-based composites reinforced by carbon nanotubes (CNTs) and GNP.

Keywords:

copper matrix composites, graphene, spark plasma sintering, thermal properties

Affiliations:
Pietrzak K.-other affiliation
Sobczak N.-other affiliation
Chmielewski M.-Institute of Electronic Materials Technology (PL)
Homa M.-Foundry Research Institute (PL)
Gazda A.-Foundry Research Institute (PL)
Zybała R.-Warsaw University of Technology (PL)
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
7.Jarząbek D.M., Chmielewski M., Dulnik J., Strojny-Nędza A., The Influence of the Particle Size on the Adhesion Between Ceramic Particles and Metal Matrix in MMC Composites, Journal of Materials Engineering and Performance, ISSN: 1059-9495, DOI: 10.1007/s11665-016-2107-3, Vol.25, No.8, pp.3139-3145, 2016
Abstract:

This study investigated the influence of the particle size on the adhesion force between ceramic particles and metal matrix in ceramic-reinforced metal matrix composites. The Cu-Al2O3 composites with 5 vol.% of ceramic phase were prepared by a powder metallurgy process. Alumina oxide powder as an electrocorundum (Al2O3) powder with different particle sizes, i.e., fine powder <3 µm and coarse powder of 180 µm was used as a reinforcement. Microstructural investigations included analyses using scanning electron microscopy with an integrated EDS microanalysis system and transmission microscopy. In order to measure the adhesion force (interface strength), we prepared the microwires made of the investigated materials and carried out the experiments with the use of the self-made tensile tester. We have observed that the interface strength is higher for the sample with coarse particles and is equal to 74 ± 4 MPa and it is equal to 68 ± 3 MPa for the sample with fine ceramic particles.

Keywords:

adhesion, interface strength, metal matrix composites, nanocomposites, tensile test

Affiliations:
Jarząbek D.M.-IPPT PAN
Chmielewski M.-Institute of Electronic Materials Technology (PL)
Dulnik J.-IPPT PAN
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
8.Strojny-Nędza A., Pietrzak K., Węglewski W., The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM), Journal of Materials Engineering and Performance, ISSN: 1059-9495, DOI: 10.1007/s11665-016-2204-3, Vol.25, No.8, pp.3173-3184, 2016
Abstract:

In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

Keywords:

functionally gradient material, shot pressing, metal matrix composites, microstructure, spark plasma sintering, thermal conductivity

Affiliations:
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-other affiliation
Węglewski W.-IPPT PAN
9.Strojny-Nędza A., Pietrzak K., Węglewski W., The Influence of Electrocorundum Granulation on the Properties of Sintered Cu/Electrocorundum Composites, SCIENCE OF SINTERING, ISSN: 0350-820X, DOI: 10.2298/SOS1503249S, Vol.47, pp.249-258, 2015
Abstract:

Copper/alumina composites are extensively used in automotive and aerospace industry for products that are subjected to severe thermal and mechanical loadings, such as rocket thrusters and components of aircraft engines. These materials are well-known for their good frictional wear resistance, good resistance to thermal fatigue, high thermal conductivity and high specific heat. In this paper, the sintering process of copper/electrocorundum composites reinforced by electrocorundum particles with diameters of 3 or 180 μm and 1, 3, 5 vol.% content is presented. The effects of different particle sizes of the ceramic reinforcement on the microstructure, physical, mechanical, tribological and thermal properties of the fabricated composites are discussed.

Keywords:

copper/alumina composites, sintering, modeling of thermal properties, microstructure, mechanical properties

Affiliations:
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-other affiliation
Węglewski W.-IPPT PAN
10.Chmielewski M., Pietrzak K., Strojny-Nędza A., Dubiel B., Czyrska-Filemonowicz A., Effect of rhenium addition on the strengthening of chromium-alumina composite materials, INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, ISSN: 1862-5282, DOI: 10.3139/146.111002, Vol.105, No.2, pp.200-207, 2014
Abstract:

Chromium–alumina composites are well known for their good mechanical properties in comparison to pure ceramics or metals. These composites are characterized by high hardness and high mechanical strength. The aim of the present work was to improve the properties of chromium–alumina composites even more and expand the range of their possible applications by addition of rhenium. To achieve this goal, chromium–alumina composites containing 2 and 5 vol.% of rhenium were produced via powder metallurgy. The microstructural characterization of the processed material was performed using light microscopy, scanning and transmission electron microscopy as well as X-ray diffraction analysis. Measurement of selected properties such as Young's modulus, bend strength and hardness revealed an advantageous influence of rhenium additions. The results are discussed in terms of the influence of rhenium volume content on the microstructure and on the physical and mechanical properties of the chromium–alumina composites. The solid solution is only partially formed. The properties strongly depend on the amount and distribution of both aluminium oxide and rhenium content.

Affiliations:
Chmielewski M.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-other affiliation
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Dubiel B.-AGH University of Science and Technology (PL)
Czyrska-Filemonowicz A.-AGH University of Science and Technology (PL)
11.Chmielewski M., Nosewicz S., Pietrzak K., Rojek J., Strojny-Nędza A., Mackiewicz S., Dutkiewicz J., Sintering Behavior and Mechanical Properties of NiAl, Al2O3, and NiAl-Al2O3 Composites, Journal of Materials Engineering and Performance, ISSN: 1059-9495, DOI: 10.1007/s11665-014-1189-z, Vol.23, No.11, pp.3875-3886, 2014
Abstract:

It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite’s stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

Keywords:

ceramics, composites, electron, intermetallic, metallic matrix, microscopy, powder metallurgy, sintering, structural

Affiliations:
Chmielewski M.-Institute of Electronic Materials Technology (PL)
Nosewicz S.-IPPT PAN
Pietrzak K.-other affiliation
Rojek J.-IPPT PAN
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Mackiewicz S.-IPPT PAN
Dutkiewicz J.-Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PL)
12.Jach K., Pietrzak K., Wajler A., Strojny-Nędza A., Fabrication of an alumina-copper composite using a ceramic preform, Powder Metallurgy and Metal Ceramics, ISSN: 1068-1302, DOI: 10.1007/s11106-014-9577-3, Vol.52, No.11-12, pp.680-685, 2014
Abstract:

In this work alumina preforms with an open porosity of 85 and 90% were produced by the replication method. The obtained preforms were used for the fabrication of Cu–Al2O3 composites. We analyzed the effect of applying pressure during a hot-pressing process on the microstructure and mechanical and thermal properties of the obtained materials. It was found that application of higher pressure (10 MPa) during sintering led to the destruction of the ceramic preforms. It facilitated filling of the remaining pores with copper, which resulted in a more homogeneous material with better mechanical and thermal properties.

Keywords:

Cu–Al2O3 composites, hot-pressing process, ceramic reforms, microstructure, mechanical properties

Affiliations:
Jach K.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-other affiliation
Wajler A.-Institute of Electronic Materials Technology (PL)
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
13.Chmielewski M., Pietrzak K., Kaliński D., Strojny A., Processing and thermal properties of Cu-AlN composites, Advances in Science and Technology, ISSN: 1662-0356, DOI: 10.4028/www.scientific.net/AST.65.100, Vol.65, pp.100-105, 2010
Abstract:

Heat transfer by conduction is involved in the use of heat sinks dissipitating heat from electronic devices. Effective transfer of heat requires using materials of high thermal conductivity. In addition, it requires appropriate values of thermal expansion, matched to the semiconductor materials, high purity of materials used and good contact between bonded elements across which heat transfer occurs. The conventional materials are not able to fulfil still raising and complex requirements. The solutions of this problem could be using the composites materials, where the combinations of different properties is possible to use. This study presents the technological tests and the analysis of correlation between processing parameters and the properties of copperaluminium nitride composites. Composite materials were obtained by mixing in planetary ball mill and then densified using the sintering under pressure or hot pressing method. The microstructure of obtained composite materials using optical microscopy and scanning electron microscopy were analyzed. Coefficient of thermal expansion (CTE) and thermal conductivity (TC) were investigated depending on the process conditions

Keywords:

Composite Material, Hot-Pressing, Sintering, Thermal Conductivity (TC), Thermal Diffusivity, Thermal Expansion Coefficient

Affiliations:
Chmielewski M.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-IPPT PAN
Kaliński D.-other affiliation
Strojny A.-Institute of Electronic Materials Technology (PL)

Conference abstracts
1.Chmielewski M., Pietrzak K., Strojny-Nędza A., Kaszyca K., Nosewicz S., Jarząbek D., The effect of nickel coating on the properties of Cu-SiC composites, EUROMAT 2017, European Congress and Exhibition on Advanced Materials and Processes, 2017-09-17/09-22, Thessaloniki (GR), pp.1, 2017
2.Strojny-Nędza A., Pietrzak K., Jarząbek D.M., Gładki A., Correlation between preparing conditions, starting materials morphology and the interface structure of the Cu-Al2O3 composites, EUROMAT 2015, European Congress and Exhibition on Advanced Materials and Processes, 2015-09-20/09-24, Warszawa (PL), pp.1, 2015
Abstract:

Copper/alumina composites with different volume content are used where high thermal conductivity, high absorption and dissipation of heat, high resistance to thermal fatigue and good frictional wear resistance are required. The properties of these composites depend on the content, shape and distribution of the ceramic phase in metal matrix. All these conditions have influence on said properties and, in consequence, on the future applications of the final material. In the technology of thruster and components in aircraft engines composite materials powder preparation process becomes very important. It should assure the uniform distribution of reinforcement in the matrix and eliminate of any agglomerates which cause the formation o f porosity in the final product . The aim of this paper is elaboration of the mechanical alloying conditions for composite powder consists of copper as a plastic matrix and brittle aluminium oxides as a reinforcement phase. The materials by compositions Cu - 5 vol. %Al 2 O 3 and Cu -15 vol. %Al 2 O 3 were obtained by hot pressing technique. The research methodology includes a microstructure analysis of composites structures, its con nection with the strength of Cu/ Al 2 O 3 interfaces . The results also were analyzed and discussed in terms of the effects of different form of aluminium oxide powder (α -Al 2 O 3 and electrocorundum ) on the composites properties

Affiliations:
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-other affiliation
Jarząbek D.M.-IPPT PAN
Gładki A.-other affiliation