Partner: K. Kaszyca

Recent publications
1.Chmielewski M., Pietrzak K., Strojny-Nędza A., Kaszyca K., Zybala R., Bazarnik P., Lewandowska M., Nosewicz S., Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique, SCIENCE OF SINTERING, ISSN: 0350-820X, DOI: 10.2298/SOS1701011C, Vol.49, pp.11-22, 2017

The presented paper investigates the relationship between the microstructure and thermal properties of copper–silicon carbide composites obtained through hot pressing (HP) and spark plasma sintering (SPS) techniques. The microstructural analysis showed a better densification in the case of composites sintered in the SPS process. TEM investigations revealed the presence of silicon in the area of metallic matrix in the region close to metal ceramic boundary. It is the product of silicon dissolving process in copper occurring at an elevated temperature. The Cu-SiC interface is significantly defected in composites obtained through the hot pressing method, which has a major influence on the thermal conductivity of materials.


Metal matrix composites; Silicon carbide; Interface; Spark plasma sintering; Thermal conductivity.

Chmielewski M.-Institute of Electronic Materials Technology (PL)
Pietrzak K.-IPPT PAN
Strojny-Nędza A.-Institute of Electronic Materials Technology (PL)
Kaszyca K.-other affiliation
Zybala R.-Warsaw University of Technology (PL)
Bazarnik P.-Warsaw University of Technology (PL)
Lewandowska M.-other affiliation
Nosewicz S.-IPPT PAN
2.Zybała R., Schmidt M., Kaszyca K., Ciupiński Ł., Kruszewski M.J., Pietrzak K., Method and Apparatus for Determining Operational Parameters of Thermoelectric Modules, Journal of Electronic Materials, ISSN: 0361-5235, DOI: 10.1007/s11664-016-4712-1, Vol.45, No.10, pp.5223-5231, 2016

The main aim of this work was to construct and test an apparatus for characterization of high temperature thermoelectric modules to be used in thermoelectric generator (TEGs) applications. The idea of this apparatus is based on very precise measurements of heat fluxes passing through the thermoelectric (TE) module, at both its hot and cold sides. The electrical properties of the module, under different temperature and load conditions, were used to estimate efficiency of energy conversion based on electrical and thermal energy conservation analysis. The temperature of the cold side, Tc, was stabilized by a precise circulating thermostat (≤0.1°C) in a temperature range from 5°C to 90°C. The amount of heat absorbed by a coolant flowing through the heat sink was measured by the calibrated and certified heat flow meter with an accuracy better than 1%. The temperature of the hot side, Th, was forced to assumed temperature (Tmax = 450°C) by an electric heater with known power (Ph = 0–600 W) with ample thermal insulation. The electrical power was used in calculations. The TE module, heaters and cooling plate were placed in an adiabatic vacuum chamber. The load characteristics of the module were evaluated using an electronically controlled current source as a load. The apparatus may be used to determine the essential parameters of TE modules (open circuit voltage, Uoc, short circuit current, Isc, internal electrical resistance, Rint, thermal resistance, Rth, power density, and efficiency, η, as a function of Tc and Th). Several commercially available TE modules based on Bi2Te3 and Sb2Te3 alloys were tested. The measurements confirmed that the constructed apparatus was highly accurate, stable and yielded reproducible results; therefore, it is a reliable tool for the development of thermoelectric generators.


energy conversion efficiency, power generation, thermoelectric modules, performance characterization, heat recovery, renewable energy

Zybała R.-Warsaw University of Technology (PL)
Schmidt M.-Institute of Electronic Materials Technology (PL)
Kaszyca K.-other affiliation
Ciupiński Ł.-Warsaw University of Technology (PL)
Kruszewski M.J.-other affiliation
Pietrzak K.-other affiliation

Conference abstracts
1.Chmielewski M., Pietrzak K., Strojny-Nędza A., Kaszyca K., Nosewicz S., Jarząbek D., The effect of nickel coating on the properties of Cu-SiC composites, EUROMAT 2017 , European Congress and Exhibition on Advanced Materials and Processes, 2017-09-17/09-22, Thessaloniki (GR), pp.1, 2017