Partner: Katarzyna Roszkowska-Purska


Recent publications
1.Piotrzkowska-Wróblewska H., Dobruch-Sobczak K., Klimonda Z., Karwat P., Roszkowska-Purska K., Gumowska M., Litniewski J., Monitoring breast cancer response to neoadjuvant chemotherapy with ultrasound signal statistics and integrated backscatter , PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0213749, Vol.14, No.3, pp.1-15, 2019
Abstract:

Background Neoadjuvant chemotherapy (NAC) is used in patients with breast cancer to reduce tumor focus, metastatic risk, and patient mortality. Monitoring NAC effects is necessary to capture resistant patients and stop or change treatment. The existing methods for evaluating NAC results have some limitations. The aim of this study was to assess the tumor response at an early stage, after the first doses of the NAC, based on the variability of the backscattered ultrasound energy, and backscatter statistics. The backscatter statistics has not previously been used to monitor NAC effects. Methods The B-mode ultrasound images and raw radio frequency data from breast tumors were obtained using an ultrasound scanner before chemotherapy and 1 week after each NAC cycle. The study included twenty-four malignant breast cancers diagnosed in sixteen patients and qualified for neoadjuvant treatment before surgery. The shape parameter of the homodyned K distribution and integrated backscatter, along with the tumor size in the longest dimension, were determined based on ultrasound data and used as markers for NAC response. Cancer tumors were assigned to responding and non-responding groups, according to histopathological evaluation, which was a reference in assessing the utility of markers. Statistical analysis was performed to rate the ability of markers to predict the final NAC response based on data obtained after subsequent therapeutic doses. Results Statistically significant differences (p<0.05) between groups were obtained after 2, 3, 4, and 5 doses of NAC for quantitative ultrasound markers and after 5 doses for the assessment based on maximum tumor dimension. Statistical analysis showed that, after the second and third NAC courses the classification based on integrated backscatter marker was characterized by an AUC of 0.69 and 0.82, respectively. The introduction of the second quantitative marker describing the statistical properties of scattering increased the corresponding AUC values to 0.82 and 0.91. Conclusions Quantitative ultrasound information can characterize the tumor's pathological response better and at an earlier stage of therapy than the assessment of the reduction of its dimensions. The introduction of statistical parameters of ultrasonic backscatter to monitor the effects of chemotherapy can increase the effectiveness of monitoring and contribute to a better personalization of NAC therapy.

Affiliations:
Piotrzkowska-Wróblewska H.-IPPT PAN
Dobruch-Sobczak K.-IPPT PAN
Klimonda Z.-IPPT PAN
Karwat P.-IPPT PAN
Roszkowska-Purska K.-other affiliation
Gumowska M.-other affiliation
Litniewski J.-IPPT PAN
2.Dobruch-Sobczak K., Piotrzkowska-Wróblewska H., Klimonda Z., Roszkowska-Purska K., Litniewski J., Ultrasound echogenicity reveals the response of breast cancer to chemotherapy, Clinical Imaging , ISSN: 0899-7071, DOI: 10.1016/j.clinimag.2019.01.021, Vol.55, pp.41-46, 2019
Abstract:

Purpose: To evaluate the ultrasound (US) response in patients with breast cancer (BC) during neoadjuvant chemotherapy (NAC). Methods: Prospective US analysis was performed on 19 malignant tumors prior to NAC treatment and 7days after each first four courses of NAC in 13 patients (median age=57years). Echogenicity, size, vascularity, and sonoelastography were measured and compared with posttreatment scores of residual cancers burden. Results: Changes in the echogenicity of tumors after 3 courses of NAC had the most statistically strong correlation with the percentage of residual malignant cells used in histopathology to assess the response to treatment (odds ratio=60, p < 0.05). Changes in lesion size and elasticity were also significant (p < 0.05). Conclusions: There is a statistically significant relationship between breast tumors' echogenicity in US, neoplasm size, and stiffness and the response to NAC. In particular, our results show that the change in tumor echogenicity could predict a pathological response with satisfactory accuracy and may be considered in NAC monitoring.

Keywords:

Breast ultrasonography, Neoadjuvant chemotherapy, Clinical response, Breast cancer, Sonoelastography

Affiliations:
Dobruch-Sobczak K.-IPPT PAN
Piotrzkowska-Wróblewska H.-IPPT PAN
Klimonda Z.-IPPT PAN
Roszkowska-Purska K.-other affiliation
Litniewski J.-IPPT PAN
3.Dobruch-Sobczak K., Piotrzkowska-Wróblewska H., Klimoda Z., Secomski W., Karwat P., Markiewicz-Grodzicka E., Kolasińska-Ćwikła A., Roszkowska-Purska K., Litniewski J., Monitoring the response to neoadjuvant chemotherapy in patients with breast cancer using ultrasound scattering coefficient: A preliminary report , Journal of Ultrasonography, ISSN: 2084-8404, DOI: 10.15557/JoU.2019.0013, Vol.19, No.77, pp.89-97, 2019
Abstract:

Objective: Neoadjuvant chemotherapy was initially used in locally advanced breast cancer, and currently it is recommended for patients with Stage 3 and with early-stage disease with human epidermal growth factor receptors positive or triple-negative breast cancer. Ultrasound imaging in combination with a quantitative ultrasound method is a novel diagnostic approach. Aim of study: The aim of this study was to analyze the variability of the integrated backscatter coefficient, and to evaluate their use to predict the effectiveness of treatment and compare to ultrasound examination results. Material and method: Ten patients (mean age 52.9) with 13 breast tumors (mean dimension 41 mm) were selected for neoadjuvant chemotherapy. Ultrasound was performed before the treatment and one week after each course of neoadjuvant chemotherapy. The dimensions were assessed adopting the RECIST criteria. Tissue responses were classified as pathological response into the following categories: not responded to the treatment (G1, cell reduction by ≤9%) and responded to the treatment partially: G2, G3, G4, cell reduction by 10–29% (G2), 30–90% (G3), >90% (G4), respectively, and completely. Results: In B-mode examination partial response was observed in 9/13 cases (completely, G1, G3, G4), and stable disease was demonstrated in 3/13 cases (completely, G1, G4). Complete response was found in 1/13 cases. As for backscatter coefficient, 10/13 tumors (completely, and G2, G3, and G4) were characterized by an increased mean value of 153%. Three tumors 3/13 (G1) displayed a decreased mean value of 31%. Conclusion: The variability of backscatter coefficient, could be associated with alterations in the structure of the tumor tissue during neoadjuvant chemotherapy. There were unequivocal differences between responded and non-responded patients. The backscatter coefficient analysis correlated better with the results of histopathological verification than with the B-mode RECIST criteria.

Keywords:

integrated backscatter coefficient (IBSCs), neoadjuvant chemotherapy (NAC), breast cancer, ultrasound

Affiliations:
Dobruch-Sobczak K.-IPPT PAN
Piotrzkowska-Wróblewska H.-IPPT PAN
Klimoda Z.-IPPT PAN
Secomski W.-IPPT PAN
Karwat P.-IPPT PAN
Markiewicz-Grodzicka E.-Oncology Institute (PL)
Kolasińska-Ćwikła A.-Institute of Oncology (PL)
Roszkowska-Purska K.-other affiliation
Litniewski J.-IPPT PAN
4.Dobruch-Sobczak K., Piotrzkowska-Wróblewska H., Roszkowska-Purska K., Nowicki A., Jakubowski W., Usefulness of combined BI-RADS analysis and Nakagami statistics of ultrasound echoes in the diagnosis of breast lesions, Clinical Radiology, ISSN: 0009-9260, DOI: 10.1016/j.crad.2016.11.009, Vol.72, pp.339.e7-339.e15, 2017
Abstract:

AIM: To develop a method combining the statistics of the ultrasound backscatter and the Breast Imaging-Reporting and Data System (BI-RADS) classification to enhance the differentiation of breast tumours.
MATERIALS AND METHODS: The Nakagami shape parameter m was used to characterise the scatter properties of breast tumours. Raw data from the radiofrequency (RF) echo-signal and Bmode images from 107 (32 malignant and 75 benign) lesions and their surrounding tissue were recorded. Three different characteristic values of the shape parameters of m (maximum [mLmax], minimum [mLmin] and average [mLavg]) and differences between m parameters (Dmmax, Dmmin, Dmavg) of the lesions and their surrounding tissues were assessed. A lesion with a BI-RADS score of 3 was considered benign, while a lesion with a score of 4 was considered malignant (a cut-off of BI-RADS 3/4 was set for all patients).
RESULTS: The area under the receiver operating characteristic (ROC) curve (AUC) was equal to 0.966 for BI-RADS, with 100% sensitivity and 54.67% specificity. All malignant lesions were diagnosed correctly, whereas 34 benign lesions were biopsied unnecessarily. In assessing the Nakagami statistics, the sum of the sensitivity and specificity was the best for mLavg (62.5% and 93.33%, respectively). Only four of 20 lesions were found over the cut-off value in BI-RADS of 4a. When comparing the differences in m parameters, Dmavg had the highest sensitivity of 90% (only three of 32 lesions were false negative). These three lesions were classified as BIRADS category 4c. The combined use of B-mode and mLmin parameter improve the AUC up to 0.978 (pĽ0.088), compared to BI-RADS alone.
CONCLUSION: The combination of the parametric imaging and the BI-RADS assessment does not significantly improve the differentiation of breast lesions, but it has the potential to better identify the group of patients with mainly benign lesions that have a low level of suspicion for malignancy with a BI-RADS score of 4a.

Affiliations:
Dobruch-Sobczak K.-IPPT PAN
Piotrzkowska-Wróblewska H.-IPPT PAN
Roszkowska-Purska K.-other affiliation
Nowicki A.-IPPT PAN
Jakubowski W.-other affiliation
5.Piotrzkowska-Wroblewska H., Dobruch-Sobczak K., Litniewski J., Chrapowicki E., Roszkowska-Purska K., Nowicki A., Differentiation of the breast lesions using statistics of backscattered echoes, HYDROACOUSTICS, ISSN: 1642-1817, Vol.19, pp.319-328, 2016
Abstract:

The purpose of this study was to evaluate the accuracy of statistical properties of the backscttered ultrasound in differential diagnosis of the breast lesions. The B-mode images together with the appropriate RF echoes from the breast lesions and surrounding tissues were collected. The RF data were processed for the statistics of the backscattered echo signals using K and Nakagami distributions characterized by the M and m parameters, respectively. Based on both, M and m parameters, a set of 18 parameters was derived.

From the point of view of the sensitivity of detection of the cancer the best score was obtained using maximum value of M parameter, the best specificity was received using the differential Nakagami parameter (the differential values between lesions and surrounding tissues). In conclusion the quantitative sonography is a method which has potential to be a complementary tool for classification of the breast lesions.

Keywords:

quantitative ultrasound, breast cancer, Nakagami distribution, K dstribution

Affiliations:
Piotrzkowska-Wroblewska H.-IPPT PAN
Dobruch-Sobczak K.-IPPT PAN
Litniewski J.-IPPT PAN
Chrapowicki E.-Center of Oncology Memorial Institute (PL)
Roszkowska-Purska K.-other affiliation
Nowicki A.-IPPT PAN

Conference abstracts
1.Dobruch-Sobczak K., Piotrzkowska-Wróblewska H., Klimonda Z., Karwat P., Litniewski J., Roszkowska-Purska K., Markiewicz-Grodzicka E., Quantitative ultrasound parameters assessment of advanced breast cancer in evaluation the response to neoadjuvant chemotherapy, 11TH EUROPEAN BREAST CANCER CONFERENCE, 2018-03-21/03-23, Barcelona (ES), DOI: 10.1016/S0959-8049(18)30674-9, Vol.92, pp.149-150, 2018
Abstract:

Background: Monitoring of response to neoadjuvant chemotherapy (NAC) in advanced breast cancer is crucial for assessing the effectiveness of the treatment and overall survival. The purpose of this study was to investigate the ability of classical ultrasound (US) examination and quantitative ultrasound (QU) parameters to predict the therapy response comparing to histology results after surgical treatment. Material and Methods: Two ultrasound backscatter parameters: the integrated backscatter coefficient, (IBSC) and shape parameter (M) of the homodyned K distribution, were estimated from ultrasonic radiofrequency (RF) signals. Sixteen patient with 22 breast cancer tumor treated with NAC sequential Anthracyclines and Taxanes were prospectively assessed. Data were acquired using 5–14 MHz array transducer, pre-chemotherapy, and four times during treatment (one week after the subsequent courses). The US results were compared with histological response analyzing the stromal changes and the cellularity of the tumor. Results: An increase in IBSC and decrease M parameters was observed in 80% of tumors with complete response after chemotherapy. It correlates with increasing the stromal elements, fibrosis, and elastosis. In patients with partial response, the parameters IBSC and M parameters did not change during subsequent cycles of treatment and allow predicting partial response in 70% of tumors. In pathological results, a similar cluster of cells without fibrosis and elastosis were observed. Conclusions: Ultrasound parameters derived from the RF data give the promise to predict the tumor response to NAC and better personalize the therapy using US QU examination. This study was supported by the National Science Centre, Poland, grant 2016/23/B/ST8/03391. No conflict of interest

Affiliations:
Dobruch-Sobczak K.-other affiliation
Piotrzkowska-Wróblewska H.-IPPT PAN
Klimonda Z.-IPPT PAN
Karwat P.-IPPT PAN
Litniewski J.-IPPT PAN
Roszkowska-Purska K.-other affiliation
Markiewicz-Grodzicka E.-Oncology Institute (PL)