Partner: Kouji Miyamoto

Churyo Engineering Co. (JP)

Recent publications
1.Tobushi H., Pieczyska E., Miyamoto K., Mitsui K., Torsional deformation characteristics of TiNi SMA tape and application to rotary actuator, JOURNAL OF ALLOYS AND COMPOUNDS, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2011.10.108, Vol.577S, pp.S745-S748, 2013
Abstract:

In order to develop novel shape memory actuators, the torsional deformation of a shape memory alloy (SMA) tape and the actuator models driven by the tape were investigated. The results obtained can be summarized as follows. In the SMA tape subjected to torsion, the martensitic transformation appears along the edge of the tape due to elongation of the edge of the tape and grows to the central part. The fatigue life in both the pulsating torsion and the alternating torsion is expressed by the unified relationship of the dissipated work in each cycle. Based on an opening and closing door model and a solar-powered active blind model, the two-way rotary driving actuator with a small and simple mechanism can be developed by using torsion of the SMA-tape.

Keywords:

Shape memory alloy, Actuator, Two-way, Tape, Torsion, Fatigue

Affiliations:
Tobushi H.-Aichi Institute of Technology (JP)
Pieczyska E.-IPPT PAN
Miyamoto K.-Churyo Engineering Co. (JP)
Mitsui K.-Masupuro Denkoh Corp. (JP)
2.Takeda K., Tobushi H., Miyamoto K., Pieczyska E.A., Superelastic Deformation of TiNi Shape Memory Alloy Subjected to Various Subloop Loadings, MATERIALS TRANSACTIONS, ISSN: 1345-9678, DOI: 10.2320/matertrans.M2011288, Vol.53, No.1, pp.217-223, 2012
Abstract:

This paper investigates the superelastic deformation behaviors of a TiNi shape-memory alloy (SMA) tape subjected to various subloop loadings in relation to local temperature variations and observed surface changes during a tension test. The results obtained are: (1) Upper and lower stress plateaus appear during loading and unloading accompanying the spreading and shrinking of the stress-induced martensitic transformation (SIMT) bands. In the case of unloading from the upper stress plateau under low stress rate, strain increases due to the spreading of the SIMT bands at the start of the unloading. (2) If stress at the upper stress plateau is held constant, creep deformation appears with the spread of the SIMT bands. The volume fraction in the martensitic phase increases in proportion to the increase in strain. (3) Where the strain is made to vary at the stress plateaus during loading or unloading, a return point memory effect can be seen in the reloading stress-strain curve. The spreading or shrinking of the SIMT bands starts from the boundary of the previous SIMT bands remaining from the preceding process. (4) The inclination angle of the SIMT band boundaries to the tensile axis of the tape is 33° for an aspect ratio of 5. The inclination angle is 42° in the center of the tape and 37° in the vicinity of the end secured by the grip, for an aspect ratio of 10.

Keywords:

shape memory alloy, superelasticity, titanium-nickel alloy, subloop, transformation band, creep deformation, local deformation

Affiliations:
Takeda K.-Aichi Institute of Technology (JP)
Tobushi H.-Aichi Institute of Technology (JP)
Miyamoto K.-Churyo Engineering Co. (JP)
Pieczyska E.A.-IPPT PAN
3.Takeda K., Tobushi H., Miyamoto K., Pieczyska E.A., Subloop Superelastic Deformation of TiNi Shape Memory Alloy, TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A , ISSN: 1884-8338, DOI: 10.1299/kikaia.77.1509, Vol.77, No.781, pp.1509-1517, 2011
Abstract:

The various subloop behaviors for the superelastic deformation of TiNi shape memory alloy were investigated based on the local temperature variation and the surface observation in the tension test. The results obtained are summarized as bellows. (1) The upper and lower stress plateaus during loading and unloading appear accompanying the progress and reduction of the martensitic transformation (MT) band, respectively. In the case of unloading from the upper stress plateau under low stress rate, strain increases due to the progress of the MT band in the initial stage of unloading. (2) If stress is held constant in the upper stress plateau, creep deformation appears. The creep deformation appears based on the progress of the MT band. The volume fraction of the martensitic phase increases in proportion to an increase in strain. (3) If the transformation strain varies in the stress plateau during loading and unloading, the return point memory appears in the reloading stress-strain curve. The progress and reduction of the MT band start from the boundary of the MT band which has appeared in the preceding process. (4) The angle of boundary of the MT band inclined to the tensile axis is 33° for an aspect ratio of 5 and 42° in the central part of the specimen and 37° in the vicinity of the gripping part for an aspect ratio of 10.

Keywords:

Shape Memory Alloy, Superelasticity, Titanium-Nickel Alloy, Subloop, Transformation Band, Creep Deformation

Affiliations:
Takeda K.-Aichi Institute of Technology (JP)
Tobushi H.-Aichi Institute of Technology (JP)
Miyamoto K.-Churyo Engineering Co. (JP)
Pieczyska E.A.-IPPT PAN
4.Tobushi H., Pieczyska E.A., Miyamoto K., Mitsui K., Shape-Memory Alloy Thin Strip Rotary Actuator, MATERIALS SCIENCE FORUM, ISSN: 0255-5476, Vol.674, pp.219-224, 2011
5.Pieczyska E.A., Tobushi H., Date K., Miyamoto K., Torsional deformation and fatigue properties of TiNi SMA thin strip for rotary driving element, JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERING, ISSN: 1344-7912, Vol.4, No.8, pp.1306-1314, 2010
6.Tobushi H., Pieczyska E.A., Nowacki W.K., Date K., Miyamoto K., Two-way rotary shape memory alloy thin strip actuator, JOURNAL OF THEORETICAL AND APPLIED MECHANICS, ISSN: 1429-2955, Vol.48, No.4, pp.1043-1056, 2010
Abstract:

In order to develop a two-way rotary shape memory alloy thin strip actuator, the torsional deformation and fatigue properties of a TiNi SMA thin strip were investigated. The results obtained are summarized as follows. (1) In the SMA thin strip subjected to torsion, the MT appears along the edge of the strip due to elongation of the edge of the strip and grows to the central part. (2) The number of cycles to failure decreases with an increase in the maximum angle of twist in torsion fatigue. The fatigue life in pulsating torsion is longer than that in alternating torsion by five times. The fatigue limit exists in a certain value of dissipated work of the strip in each cycle. (3) Based on the two-way motion of a lifting actuator model driven by two kinds of SMA thin strip, it is confirmed that the two-way rotary actuator with a small and simple mechanism can be developed by using the SMA thin strips.

Keywords:

shape memory alloy, thin strip, torsion, cyclic deformation, fatigue, rotary actuator, two-way motion

Affiliations:
Tobushi H.-Aichi Institute of Technology (JP)
Pieczyska E.A.-IPPT PAN
Nowacki W.K.-IPPT PAN
Date K.-Ochiai Nexus Co. (JP)
Miyamoto K.-Churyo Engineering Co. (JP)