Partner: Mariana Cristea

Petru Poni Institute of Macromolecular Chemistry (RO)

Recent publications
1.Pieczyska E.A., Staszczak M., Maj M., Kowalczyk-Gajewska K., Golasiński K., Cristea M., Tobushi H., Hayashi S., Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates, SMART MATERIALS AND STRUCTURES, ISSN: 0964-1726, DOI: 10.1088/0964-1726/25/8/085002, Vol.25, No.8, pp.085002-1-15, 2016
Abstract:

This paper presents experimental and modeling results of the effects of thermomechanical couplings occurring in a polyurethane shape memory polymer (SMP) subjected to tension at various strain rates within large strains. The SMP mechanical curves, recorded using a testing machine, and the related temperature changes, measured in a contactless manner using an IR camera, were used to investigate the polymer deformation process at various loading stages. The effects of thermomechanical couplings allowed the determination of the material yield point in the initial loading stage, the investigation of nucleation and development of the strain localization at larger strains and the estimation of the effects of thermoelastic behavior during the unloading process. The obtained stress–strain and thermal characteristics, the results of the dynamic mechanical analysis and estimated values of the shape fixity and shape recovery parameters confirmed that the shape memory polymer (T g = 45°C) is characterized by good mechanical and shape memory properties, as well as high sensitivity to the strain rate. The mechanical response of the SMP subjected to tension was simulated using the finite element method and applying the large strain, two-phase model. Strain localization observed in the experiment was well reproduced in simulations and the temperature spots were correlated with the accumulated viscoplastic deformation of the SMP glassy phase.

Keywords:

shape memory polymer, thermomechanical coupling, infrared camera, tension test, strain rate, strain localization, constitutive model

Affiliations:
Pieczyska E.A.-IPPT PAN
Staszczak M.-IPPT PAN
Maj M.-IPPT PAN
Kowalczyk-Gajewska K.-IPPT PAN
Golasiński K.-IPPT PAN
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
2.Pieczyska E.A., Maj M., Kowalczyk-Gajewska K., Staszczak M., Gradys A., Majewski M., Cristea M., Tobushi H., Hayashi S., Thermomechanical properties of polyurethane shape memory polymer–experiment and modelling, SMART MATERIALS AND STRUCTURES, ISSN: 0964-1726, DOI: 10.1088/0964-1726/24/4/045043, Vol.24, pp.045043-1-16, 2015
Abstract:

In this paper extensive research on the polyurethane shape memory polymer (PU-SMP) is reported, including its structure analysis, our experimental investigation of its thermomechanical properties and its modelling. The influence of the effects of thermomechanical couplings on the SMP behaviour during tension at room temperature is studied using a fast and sensitive infrared camera. It is shown that the thermomechanical behaviour of the SMP significantly depends on the strain rate: at a higher strain rate higher stress and temperature values are obtained. This indicates that an increase of the strain rate leads to activation of different deformation mechanisms at the micro-scale, along with reorientation and alignment of the molecular chains. Furthermore, influence of temperature on the SMP's mechanical behaviour is studied. It is observed during the loading in a thermal chamber that at the temperature 20°C below the glass transition temperature (Tg) the PU-SMP strengthens about six times compared to the material above Tg but does not exhibit the shape recovery. A finite-strain constitutive model is formulated, where the SMP is described as a two-phase material composed of a hyperelastic rubbery phase and elastic-viscoplastic glassy phase. The volume content of phases is governed by the current temperature. Finally, model predictions are compared with the experimental results.

Keywords:

shape memory polyurethane, thermomechanical couplings, infrared camera, temperature change, dynamic mechanical analysis, strain rate, constitutive model

Affiliations:
Pieczyska E.A.-IPPT PAN
Maj M.-IPPT PAN
Kowalczyk-Gajewska K.-IPPT PAN
Staszczak M.-IPPT PAN
Gradys A.-IPPT PAN
Majewski M.-IPPT PAN
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
3.Pieczyska E.A., Maj M., Kowalczyk-Gajewska K., Staszczak M., Urbański L., Tobushi H., Hayashi S., Cristea M., Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane, Journal of Materials Engineering and Performance, ISSN: 1059-9495, DOI: 10.1007/s11665-014-0963-2, Vol.23, No.7, pp.2553-2560, 2014
Abstract:

Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.

Keywords:

constitutive model, dynamic mechanical analysis, shape memory polyurethane, strain rate, temperature change, thermomechanical couplings

Affiliations:
Pieczyska E.A.-IPPT PAN
Maj M.-IPPT PAN
Kowalczyk-Gajewska K.-IPPT PAN
Staszczak M.-IPPT PAN
Urbański L.-IPPT PAN
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)

Conference papers
1.Pieczyska E.A., Staszczak M., Maj M., Kowalczyk-Gajewska K., Cristea M., Tobushi H., Hayashi S., Thermomechanical analysis of shape memory polyurethane PU-SMP, 6th International Conference on Mechanics and Materials in Design, 2015-07-26/07-30, Ponta Delgada (PT), pp.783-786, 2015
Abstract:

Experimental results of effects of thermomechanical couplings occurring in polyurethane shape memory polymer (PU-SMP) during tension at different strain rates are presented. Stress-strain curves were recorded by MTS 858 testing machine. The temperature changes were estimated by using a fast and sensitive infrared camera (Phoenix FLIR IR System). The stress and temperature vs. strain characteristics obtained during the tension enable to investigate the SMP deformation process and distinguish 3 different stages: the first, accompanied by a drop in temperature called thermoelastic effect, related to a limit of the material reversible deformation, the second plastic stage, associated with change of the material structure and significant increase in temperature, and the third - related to the mechanisms of damage - a breaking of the polymer chains, leading to the specimen rupture.

Keywords:

shape memory polymer, thermomechanical coupling, tension, infrared camera

Affiliations:
Pieczyska E.A.-IPPT PAN
Staszczak M.-IPPT PAN
Maj M.-IPPT PAN
Kowalczyk-Gajewska K.-IPPT PAN
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
2.Staszczak M., Pieczyska E.A., Maj M., Kowalczyk-Gajewska K., Cristea M., Tobushi H., Hayashi S., Mechanical and infrared thermography analysis of shape memory polymer - focus on thermoelastic effect, QIRT 2014, 12th International Conference on Quantitative Infrared Thermography, 2014-07-07/07-11, Bordeaux (FR), pp.183-1-9, 2014
Abstract:

Experimental results of effects of thermomechanical couplings occurring in polyurethane shape memory polymer (PU-SMP) subjected to cyclic loading at , are presented. Stress-strain characteristics were recorded by the testing machine, whereas the specimen temperature changes were measured by a fast and sensitive infrared camera. The influence of strain rate on the polymer thermomechanical behaviour is studied. It was found that PU-SMP is very sensitive to the strain rate. The higher the strain rate, the higher the values of stress and temperature changes were obtained. In the initial stage of deformation a drop in temperature called thermoelastic effect was recorded determining a limit of the material reversible deformation.

Keywords:

thermomechanical couplings, polyurethane shape memory polymer, cyclic loading, different strain rates, infrared camera, thermoelastic effect

Affiliations:
Staszczak M.-IPPT PAN
Pieczyska E.A.-IPPT PAN
Maj M.-IPPT PAN
Kowalczyk-Gajewska K.-IPPT PAN
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)

Conference abstracts
1.Cristea M., Ionita D., Oprea S., Pieczyska E.A., How loading type affects viscoelastic response in polyurethane structures, SolMech 2018, 41st SOLID MECHANICS CONFERENCE, 2018-08-27/08-31, Warszawa (PL), pp.342-343, 2018
2.Golasiński K., Pieczyska E., Staszczak M., Cristea M., Experimental investigation of thermomechanical properties of multifunctional materials at IPPT PAN, MACRO Iasi, The XXVI-th Symposium PROGRESS IN ORGANIC AND POLYMER CHEMISTRY, 2017-10-05/10-06, Jassy (RO), pp.1, 2017
3.Kukla D., Staszczak M., Pieczyska E., Heljak M., Szlązak K., Święszkowski W., Cristea M., Tobushi H., Hayashi S., Evaluation of the properties of polymeric foams with shape memory under load, PCM-CMM 2015, 3rd Polish Congress of Mechanics and 21st Computer Methods in Mechanics, 2015-09-08/09-11, Gdańsk (PL), pp.143-144, 2015
Abstract:

The paper presents the results of experimental investigation on polymer foam with shape memory properties. The research is focused on characterization of the microstructure of the foam and understanding the mechanisms of deformation under static and dynamic loading. Up till now, selected experimental techniques have been applied. Dynamic Mechanical Analysis (DMA) allows determining the extent of the value of the glass transition temperature under different load conditions, which also reveals the transformation temperature range for the SMP foam. Scanning electron microscopy (SEM) shows the foam microstructure in various scales, while X-ray tomography gave 3D microstructure results presenting in addition mechanism of the cells deformation and changes in their geometry under 30 % and 50% strain. BOSE system enables obtaining the results on dynamic loading.

Keywords:

Shape memory polymer foam, Dynamic mechanical analysis, Glass transition temperature, X-ray tomography

Affiliations:
Kukla D.-IPPT PAN
Staszczak M.-IPPT PAN
Pieczyska E.-IPPT PAN
Heljak M.-Warsaw University of Technology (PL)
Szlązak K.-other affiliation
Święszkowski W.-Warsaw University of Technology (PL)
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
4.Staszczak M., Pieczyska E., Maj M., Kowalczyk-Gajewska K., Cristea M., Tobushi H., Hayashi S., Shape memory polymer – shape fixity and recovery in cyclic loading, PCM-CMM 2015, 3rd Polish Congress of Mechanics and 21st Computer Methods in Mechanics, 2015-09-08/09-11, Gdańsk (PL), pp.147-148, 2015
Abstract:

The paper concerns investigation of polyurethane shape memory polymer (SMP) properties. Shape fixity and shape recovery, important parameters for the SMP applications, were quantitatively estimated in thermomechanical cyclic loading; three subsequent thermomechanical loading cycles were performed. It was observed that the shape fixity is proper and does not depend on the cycle number. The obtained mean values of shape fixity parameters are 97-98 %. Although the shape recovery is poor (=83 %) in the first cycle of the thermomechanical loading, it is excellent in the subsequent cycles (=99-100 %). The evaluated parameters confirm good shape memory properties of the SMP.

Keywords:

Shape memory polyurethane, shape fixity, shape recovery, thermomechanical loading, cyclic loading

Affiliations:
Staszczak M.-IPPT PAN
Pieczyska E.-IPPT PAN
Maj M.-IPPT PAN
Kowalczyk-Gajewska K.-IPPT PAN
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
5.Pieczyska E.A., Maj M., Kowalczyk-Gajewska K., Staszczak M., Tobushi H., Hayashi S., Cristea M., Thermomechanical analysis of shape memory polymer under cyclic loading and relaxation conditions, ICEM-16, 16th International Conference on Experimental Mechanics, 2014-07-07/07-11, Cambridge (GB), pp.1-2, 2014
Abstract:

Experimental evaluation and modeling of a new polyurethane shape memory polymer (SMP) subjected to cyclic tension and stress-relaxation tests are presented. The influence of effects of thermomechanical couplings on the SMP thermomechanical behaviour for various strain rates was studied, basing on the sample temperature changes measured by a fast and sensitive infrared camera. The constitutive model valid in finite strain regime was developed following [5]. In the proposed approach SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase while the volume content of phases is specified by the current temperature.

Keywords:

Experimental evaluation, constitutive modeling, polyurethane shape memory polymer, cyclic tension, stress-relaxation tests, effects of thermomechanical couplings, thermomechanical behaviour, various strain rates, temperature changes, sensitive infrared camera, hyperelastic rubbery phase, elastic-viscoplastic glassy phase

Affiliations:
Pieczyska E.A.-IPPT PAN
Maj M.-IPPT PAN
Kowalczyk-Gajewska K.-IPPT PAN
Staszczak M.-IPPT PAN
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
6.Kowalczyk-Gajewska K., Pieczyska E.A., Maj M., Staszczak M., Majewski M., Cristea M., Tobushi H., Two-phase model of shape memory polymers at finite strains: formulation and experimental verification, SolMech 2014, 39th Solid Mechanics Conference, 2014-09-01/09-05, Zakopane (PL), pp.259-260, 2014
Abstract:

A constitutive model of SMP, formulated at large strain format, is developed. SMP is described as a two-phase material composed of a soft rubbery phase and a hard glassy phase. The volume fraction of each phase is postulated as a logistic function of temperature. Identification of model parameters has been performed using the experimental tensile loading-unloading tests with different strain rates conducted at thermal chamber at different temperatures.

Keywords:

shape-memory polymers, two-phase model, large strain framework

Affiliations:
Kowalczyk-Gajewska K.-IPPT PAN
Pieczyska E.A.-IPPT PAN
Maj M.-IPPT PAN
Staszczak M.-IPPT PAN
Majewski M.-IPPT PAN
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
Tobushi H.-Aichi Institute of Technology (JP)
7.Staszczak M., Pieczyska E.A., Maj M., Kowalczyk-Gajewska K., Cristea M., Tobushi H., Hayashi S., Estimation of shape fixity and shape recovery – crucial parameters for shape memory polymer applications, SolMech 2014, 39th Solid Mechanics Conference, 2014-09-01/09-05, Zakopane (PL), pp.267-268, 2014
Abstract:

Shape memory polymers (SMP) are new unique and attractive materials which demonstrate shape memory properties. It means that the materials, as a result of an external stimulus such as temperature, can recover their original (permanent) shape from deformed (temporary) shape. The mechanical characteristics of SMP, e.g. the elastic modulus and the yield stress, change significantly below and above their glass transition temperature Tg. It can be explained by differences of molecular motion of the polymer chains below and above Tg [1, 2]. Two phenomena due to this can be observed in the SMP. The first one is a shape fixity which means that it is possible to fix a temporary shape by cooling the deformed SMP below Tg. The second phenomenon, called a shape recovery, denotes the property that the original shape, changed due to deformation, is recovered during subsequent heating above the SMP Tg temperature. Preliminary estimation of these two parameters, crucial to assess SMP potential applications, is the subject of this paper [1].

Keywords:

Shape memory polymers, elastic modulus, yield stress, glass transition temperature, shape fixity, shape recovery

Affiliations:
Staszczak M.-IPPT PAN
Pieczyska E.A.-IPPT PAN
Maj M.-IPPT PAN
Kowalczyk-Gajewska K.-IPPT PAN
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
8.Pieczyska E., Tobushi H., Hayashi S., Maj M., Kowalczyk-Gajewska K., Staszczak M., Cristea M., Thermomechanical Analysis of Shape Memory Polyurethane, 4th Integrity, Reliability and Failure of Mechanical Systems, 2013-06-23/06-27, Funchal (PT), pp.1-2, 2013
Abstract:

This paper presents experimental evaluation of a new polyurethane shape memory polymer (PU-SMP) produced by SMP Technologies Inc. It discusses mechanical characteristics and temperature changes of the SMP specimens subjected to tension test performed at room temperature with various strain rates. Basing on the mechanical data and the relevant temperature changes, we have studied the thermomechanical properties of the PU-SMP and influence of the strain rate on the strain localization behavior. Finally, we have identified the material parameters for the one-dimensional rheological model of the SMP.

Keywords:

shape memory polyurethane, tension test, dynamic mechanical analysis, infrared camera, temperature change, thermomechanical properties, rheological model

Affiliations:
Pieczyska E.-IPPT PAN
Tobushi H.-Aichi Institute of Technology (JP)
Hayashi S.-SMP Technologies Inc. (JP)
Maj M.-IPPT PAN
Kowalczyk-Gajewska K.-IPPT PAN
Staszczak M.-IPPT PAN
Cristea M.-Petru Poni Institute of Macromolecular Chemistry (RO)