Partner: Nikos Pnevmatikos

Technological Educational Institute Athens (GR)

Recent publications
1.Błachowski B., Pnevmatikos N., Neural network based vibration control of seismically excited civil structures, Periodica Polytechnica Civil Engineering, ISSN: 0553-6626, DOI: 10.3311/PPci.11601, Vol.62, No.3, pp.620-628, 2018
Abstract:

This study proposes a neural network based vibration control system designed to attenuate structural vibrations induced by an earthquake. Classical feedback control algorithms are susceptible to parameter changes. For structures with uncertain parameters they can even cause instability problems. The proposed neural network based control system can identify the structural properties of the system and avoids the above mentioned problems. In the present study it is assumed that a full state of the structure is known, which means the at each floor horizontal displacements and rotations about the vertical axis are measured. Additionally, it is assumed the acceleration signal coming from the earthquake is also available. The proposed neural control strategy is compared with the classical linear quadratic regulator (LQR) not only in terms of displacement responses, but also required control forces. Moreover, the influence of different weighting matrices on performance of the proposed control strategy has been presented.
The effectiveness of the neuro-controller has been demonstrated on two numerical examples: a simple single degree of freedom (DOF) structure and a multi-DOF structure representing a twelve story building. Both structures under consideration have been excited with El Centro acceleration signal. The results of numerical simulations on the SDOF system indicate that using neuro-controller it would be possible to obtain smaller amplitudes as compared with the LQ regulator, but it would require higher control effort.

Keywords:

vibration control, artificial neural networks, seismic excitation

Affiliations:
Błachowski B.-IPPT PAN
Pnevmatikos N.-Technological Educational Institute Athens (GR)
2.Pnevmatikos N.G., Błachowski B., Hatzigeorgiou G.D., Świercz A., Wavelet analysis based damage localization in steel frames with bolted connections, SMART STRUCTURES AND SYSTEMS, ISSN: 1738-1584, DOI: 10.12989/sss.2016.18.6.1189, Vol.18, No.6, pp.1189-1202, 2016
Abstract:

This paper describes an application of wavelet analysis for damage detection of a steel frame structure with bolted connections. The wavelet coefficients of the acceleration response for the healthy and loosened connection structure were calculated at each measurement point. The difference of the wavelet coefficients of the response of the healthy and loosened connection structure is selected as an indicator of the damage. At each node of structure the norm of the difference of the wavelet coefficients matrix is then calculated. The point for which the norm has the higher value is a candidate for location of the damage. The above procedure was experimentally verified on a laboratory-scale 2-meter-long steel frame. The structure consists of 11 steel beams forming a four-bay frame, which is subjected to impact loads using a modal hammer. The accelerations are measured at 20 different locations on the frame, including joints and beam elements. Two states of the structure are considered: healthy and damaged one. The damage is introduced by means of loosening two out of three bolts at one of the frame connections. Calculating the norm of the difference of the wavelet coefficients matrix at each node the higher value was found to be at the same location where the bolts were loosened. The presented experiment showed the effectiveness of the wavelet approach to damage detection of frame structures assembled using bolted connections.

Keywords:

complex bolted lap connection, frame structure, wavelet analysis, damage detection

Affiliations:
Pnevmatikos N.G.-Technological Educational Institute Athens (GR)
Błachowski B.-IPPT PAN
Hatzigeorgiou G.D.-Hellenic Open University (GR)
Świercz A.-IPPT PAN

Conference papers
1.Błachowski B., Świercz A., Pnevmatikos N., Experimental verification of damage location techniques for frame structures assembled using bolted connections, COMPDYN 2015, 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2015-05-25/05-27, Crete Island (GR), pp.C1511-1-12, 2015
Abstract:

This work is focused on experimental verification of existing techniques for localization of a loosened bolted connection. To this end, a laboratory-scale 2-meter-long steel frame is used. The structure consists of 11 steel beams forming a four-bay frame, which is subjected to impact loads using a modal hammer. The accelerations are measured at 20 different locations on the frame, including joints and beam elements. Two states of the structure are considered: a healthy and a damaged one. The damage is introduced by means of loosening two out of three bolts at one of the frame connections. Experimental modal analysis reveals that the loosened bolts in the connection cause a shift only in some of the frame’s natural frequencies, while the others remain insensitive to the damage.

Keywords:

bolted lap connection, frame structure, experimental modal analysis, damage location

Affiliations:
Błachowski B.-IPPT PAN
Świercz A.-IPPT PAN
Pnevmatikos N.-Technological Educational Institute Athens (GR)