Partner: Tomasz Kloskowski |
Recent publications
1. | Jundziłł A.♦, Pokrywczyńska M.♦, Adamowicz J.♦, Kowalczyk T., Nowacki M.♦, Bodnar M.♦, Marszałek A.♦, Frontczak-Baniewicz M.M.♦, Mikułowski G., Kloskowski T.♦, Gatherwright J.♦, Drewa T.♦, Vascularization Potential of Electrospun Poly(L-Lactide-co-Caprolactone) Scaffold: The Impact for Tissue Engineering, Medical Science Monitor, ISSN: 1643-3750, DOI: 10.12659/MSM.899659, Vol.23, pp.1540-1551, 2017![]() Abstract: BACKGROUND: Polymers, Regenerative medicine, Tissue Engineering, Tissue Scaffolds, Urinary Diversion Affiliations:
| ![]() | |||||||||||||||||||||||||||||||||||||||
2. | Adamowicz J.♦, Pokrywczyńska M.♦, Tworkiewicz J.♦, Kowalczyk T., van Breda S.V.♦, Tyloch D.♦, Kloskowski T.♦, Bodnar M.♦, Skopińska-Wiśniewska J.♦, Marszałek A.♦, Frontczak-Baniewicz M.M.♦, Kowalewski T.A., Drewa T.♦, New Amniotic Membrane Based Biocomposite for Future Application in Reconstructive Urology, PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0146012, Vol.11, No.1, pp.e0146012-1-20, 2016![]() Abstract: Objective Bladder, Smooth muscles, Muscle regeneration, Bionanotechnology, Renal system, Urothelium, Urology, Nanomaterials Affiliations:
| ![]() | |||||||||||||||||||||||||||||||||||||||
3. | Kloskowski T.♦, Jundziłł A.♦, Kowalczyk T., Nowacki M.♦, Bodnar M.♦, Marszałek A.♦, Pokrywczyńska M.♦, Frontczak-Baniewicz M.M.♦, Kowalewski T.A., Chłosta P.♦, Drewa T.♦, Ureter Regeneration–The Proper Scaffold Has to Be Defined, PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0106023, Vol.9, No.8, pp.106023-1-13, 2014![]() Abstract: The aim of this study was to compare two different acellular scaffolds: natural and synthetic, for urinary conduit construction and ureter segment reconstruction. Acellular aortic arch (AAM) and poly(L-lactide-co-caprolactone) (PLCL) were used in 24 rats for ureter reconstruction in both tested groups. Follow-up period was 4 weeks. Intravenous pyelography, histological and immunohistochemical analysis were performed. All animals survived surgical procedures. Patent uretero-conduit junction was observed only in one case using PLCL. In case of ureter segment reconstruction ureters were patent in one case using AAM and in four cases using PLCL scaffolds. Regeneration of urothelium layer and focal regeneration of smooth muscle layer was observed on both tested scaffolds. Obtained results indicates that synthetic acellular PLCL scaffolds showed better properties for ureter reconstruction than naturally derived acellular aortic arch. Keywords:Ureter, Muscle regeneration, Kidneys, Collagens, Urine, Surgical and invasive medical procedures, Smooth muscles, Inflammation Affiliations:
| ![]() | |||||||||||||||||||||||||||||||||||||||
4. | Kloskowski T.♦, Kowalczyk T., Nowacki M.♦, Drewa T.♦, Tissue engineering and ureter regeneration: Is it possible?, INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, ISSN: 0391-3988, DOI: 10.5301/ijao.5000130, Vol.36, No.6, pp.392-405, 2013![]() Abstract: Large ureter damages are difficult to reconstruct. Current techniques are complicated, difficult to perform, and often associated with failures. The ureter has never been regenerated thus far. Therefore the use of tissue engineering techniques for ureter reconstruction and regeneration seems to be a promising way to resolve these problems. For proper ureter regeneration the following problems must be considered: the physiological aspects of the tissue, the type and shape of the scaffold, the type of cells, and the specific environment (urine). This review presents tissue engineering achievements in the field of ureter regeneration focusing on the scaffold, the cells, and ureter healing. Affiliations:
| ![]() | |||||||||||||||||||||||||||||||||||||||
5. | Nowacki M.♦, Jundziłł A.♦, Bieniek M., Kowalczyk T., Kloskowski T.♦, Drewa T.♦, Nowoczesne biomateriały jako opatrunki hemostatyczne w chirurgii oszczędzającej miąższ nerki-model zwierzęcy. Doniesienie wstępne., POLIMERY W MEDYCYNIE, ISSN: 0370-0747, Vol.42, No.1, pp.35-43, 2012 | ![]() |
Conference abstracts
1. | Kowalczyk T., Cwiek K.♦, Urbanek O., Kloskowski T.♦, Pokrywczyńska M.♦, Jundziłł A.♦, Adamowicz J.♦, Zabost E.♦, Noszczyk B.♦, Drewa T.♦, Electrospun micro and nanofibers applied for animal models in urology and wound dressing. Potential applications in cancer treatment, 2nd INTERNATIONAL CONFERENCE ON BIO-BASED POLYMERS AND COMPOSITES, 2014-08-24/08-28, Visegrad (HU), pp.24, 2015![]() Abstract: We used the principles of electrospinning to produce materials for applications in regenerative medicine of urinary bladder wall, ureter, wound dressing and potential applications in cancer therapy. Our research is based on biodegradable polymers produced by ring-opening polymerization. Scaffolds of poly(L-lactide-co-caprolactone) (PLCL) gradually degrade leaving no artificial material behind to be replaced by natural extracellular collagen matrix. We formed flat membranes of micro- and nanofibers to carry out regeneration of urinary bladder wall as animal model of cancer treatment. Grafts were tested for biocompatibility and aimed for guided cell growth, yet we were unsuccessful in mechanical compliance of nanomaterial and reconstructed tissue. We tested tubular scaffolds made of nanofibers aimed for ureter tissue engineering. We found stem cells seeding unnecessary. The results of nanomaterial implantation on animal model were better than for collagen matrices. Animal model was also tested for use of nanofibers of human serum albumin as wound dressing. The native structure of the protein was retained to maintain its anti-adhesive properties, despite poor mechanical characteristics. Nanomaterial caused no inflammation and was resorbed during 16 days. Last application of presented materials was targeted drug delivery system made of PLCL nanofibers. Release of anticancer drug complexed with nanoparticles is to be triggered by tumor cells. Such nanomaterial is potential drug delivery system. Acknowledgements: The authors wishes to thank for the cooperation: T. Chmielewski, P. Nakielski, K. Zembrzycki, G. Mikulowski and prof. T. A. Kowalewski from IPPT PAN. The project was partially supported by the National Centre for Research and Development. Grant No. STRATEGMED1/235368/8/NCBR/2014. Keywords:electrospinning, nanofibers, regenerative medicine, wound dressing, urology, biodegradable polymers, animal model. Affiliations:
| ![]() |