Publications in journals ranked by Journal Citation Reports (JCR) 
Publications in other journals ranked by Ministry of Science and Higher Education
Conference publications indexed in the Web of Science Core Collection
Publications in other journals and conference proceedings
Affiliation to IPPT PAN

1.Dulnik J., Sajkiewicz P., Crosslinking of bicomponent nanofibres from alternative solvent system, Electrospin2018, Electrospin2018 International Conference, 2018-01-16/01-18, Stellenbosch (ZA), pp.71, 2018
2.Urbanek O., Sajkiewicz P., Pierini F., Cell response on fibres surface properties induced by process parameters and post-treatment of electrospun nonwovens, Electrospin2018, Electrospin2018 International Conference, 2018-01-16/01-18, Stellenbosch (ZA), pp.62-63, 2018
3.Sajkiewicz P., Dulnik J., Kołbuk-Konieczny D., Denis P., Structure dependent cell activity on pcl/gelatin and pcl/collagen nanofibers electrospun from various solvents, Electrospin2018, Electrospin2018 International Conference, 2018-01-16/01-18, Stellenbosch (ZA), pp.45-46, 2018
4.Pierini F., Lanzi M., Nakielski P., Pawłowska S., Urbanek O., Kowalewski T.A., Electrospinning of polythiophene with pendant fullerene nanofibers for single-material organic solar cells, Electrospin2018, Electrospin2018 International Conference, 2018-01-16/01-18, Stellenbosch (ZA), pp.19-20, 2018
5.Pawłowska S., Nakielski P., Pierini F., Electrospun polyacrylamide hydrogel nanofibers: from nanocarriers to stimuli responsive nanomaterials, Electrospin2018, Electrospin2018 International Conference, 2018-01-16/01-18, Stellenbosch (ZA), pp.39, 2018
6.Enayati M.S., Behzad T., Sajkiewicz P., Rafienia M., Bagheri R., Ghasemi-Mobarakeh L., A novel electrospun three-component Bionanocomposite for bone tissue engineering, ICNS7, 7th International Conference on Nanostructures , 2018-02-27/03-01, Teheran (IR), pp.1-3, 2018
Enayati M.S., Behzad T., Sajkiewicz P., Rafienia M., Bagheri R., Ghasemi-Mobarakeh L., A novel electrospun three-component Bionanocomposite for bone tissue engineering, ICNS7, 7th International Conference on Nanostructures , 2018-02-27/03-01, Teheran (IR), pp.1-3, 2018

Abstract:
In the present study, a full bionanocomposite scaffold from poly (vinyl alcohol) (PVA), nanohydroxy apatite (nHAp) and cellulose nanofibers (CNF) was fabricated by electospinning and its potential application for bone tissue engineering was investigated. Morphology of the electrospun scaffolds was seen by field emission scanning electron microscope (FE-SEM). Both nHAp and CNF enhanced the tensile modulus of the scaffolds; however, both tensile strength as well as slongation at break showed reduced behaviour. Porosity measurement showed that scaffolds had porosity more than 70% which is appropriate for tissue engineering scaffolds. Contact angle test proved high hydrophilicty of electrospun mats while nanofiller incorporation promoted hydrophilicity. Biodegradability was investigated in phosphate buffer saline (PBS). In vitro biomineralization in simulated body fluid (SBF) and MTT cytotoxicity analysis showed that addition of nHAp and CNF increased bioactivity and cell viability of the scaffolds. The obtained results offered a 3-component promising scaffold for bone tissue engineering.

Keywords:
Bionanocomposite, Scaffold, Electrospinning, Poly (vinyl alcohol) and Bone tissue engineering

7.Pisarski D., Myśliński A., Online adaptive semi-active vibration damping of slender structures subject to moving loads, ICoEV 2017, International Conference on Engineering Vibration, 2017-09-04/09-07, Sofia (BG), DOI: 10.1051/matecconf/201814805006 , No.148, pp.1-6, 2018
Pisarski D., Myśliński A., Online adaptive semi-active vibration damping of slender structures subject to moving loads, ICoEV 2017, International Conference on Engineering Vibration, 2017-09-04/09-07, Sofia (BG), DOI: 10.1051/matecconf/201814805006 , No.148, pp.1-6, 2018

Abstract:
The paper deals with the adaptive optimal semi-active control of the slender vibrating structures subjected to the moving loads. The deflection of the structure is governed by Euler-Bernoulli beam equation approximated by the system of bilinear ordinary differential equations. The damping function of the structure support is chosen as the control function. The optimal control problem consists in finding such bang-bang control function to minimize the energy as well as the vibrations of the carrying structure. Although the switched optimal control is a very efficient tool in the reduction of structure vibrations it is very sensitive with respect to changes of the speed of the traveling load. This paper deals with the development of the adaptive descent type algorithm that enables the update of the optimal controls in real time based on the measured speed of the traveling load or structure’s state. The proposed algorithm uses reference optimal controls computed for the constant speeds and the set of functions describing the sensitivity of the system dynamics with respect to the measured parameters. Numerical computations are carried out for different speed scenarios of the moving load. The obtained numerical results indicate that the proposed adaptive controller can significantly outperform the reference optimal solutions.

8.Marszałek A., Burczyński T., Ordered Fuzzy GARCH Model for Volatility Forecasting, Includes the proceedings of the 10th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2017), 2017-09-11/09-15, Warszawa (PL), No.XI, pp.480-492, 2018
Marszałek A., Burczyński T., Ordered Fuzzy GARCH Model for Volatility Forecasting, Includes the proceedings of the 10th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2017), 2017-09-11/09-15, Warszawa (PL), No.XI, pp.480-492, 2018

Abstract:
A volatility forecasting comparative study between the most popular original GARCH model and the same model defined based on concepts of Ordered Fuzzy Numbers and Ordered Fuzzy Candlsticks is presented. These approaches offer a suitable tool to handle both imprecision of measurements and uncertainty associated with financial data. Therefore, they are particularly useful for volatility forecasting, since the volatility is unobservable and a proxy for it is used (realised volatility). In presented study, based on intra-daily data of theWarsaw Stock Exchange Top 20 Index (WIG 20), one showed that based on the adjusted-R squared and several prediction measurements, the fuzzy approach does perform better than the original GARCH model and forecasts more precisely in both the in-sample and out-of-sample predictions

Keywords:
Volatility forecasting, Realized volatility, Ordered fuzzy number, Kosinski’s fuzzy number, Ordered fuzzy candlestick, Ordered fuzzy GARCH model, Financial high-frequency data

9.Wiśniewski K., Turska E., Recent improvements to nine-node shell element MITC9 with drilling rotations, SSTA 2017, Shell Structures: Theory and Applications, 2017-10-11/10-13, Gdańsk (PL), Vol.4, pp.399-402, 2018
Wiśniewski K., Turska E., Recent improvements to nine-node shell element MITC9 with drilling rotations, SSTA 2017, Shell Structures: Theory and Applications, 2017-10-11/10-13, Gdańsk (PL), Vol.4, pp.399-402, 2018

Abstract:
The paper describes our improved 9-node quadrilateral shell element MITC9i, which is derived for the Reissner-Mindlin shell kinematics, the extended potential energy functional and Green strain.
1. The MITCi technique is used to avoid locking and it is based on the improved transformations proposed in (Wisniewski & Panasz 2013) for a membrane element. Here, these transformations are extended to bending/twisting and transverse shear shell strains.
2. To reduce the shape distortion effects, the so-called corrected shape functions (CSF) of (Celia & Gray 1984) are used instead of the isoparametric ones, and we propose the method of computation the shift parameters for non-flat shell elements.
3. The drilling rotations are included via the drilling Rotation Constraint and the penalty method. This rotation is used in the multiplicative/additive update scheme valid for large (unrestricted) rotations.
The effect of the MITC9i technique and the CSF is that all three patch tests are passed, also for shifted side nodes along the straight edges and for arbitrary shifts of an interior node. The MITC9i shell element was subjected to a range of linear and non-linear numerical tests described in (Wisniewski & Turska 2017); here we provide additional examples illustrating its accurate and robust behavior.

Keywords:
9-node shell element MITC9,two-level approximation of strains, corrected shape functions, node shift parameters, drilling rotations

10.Nowak Z., Nowak M., Widłaszewski J., Kurp P., Experimental and Numerical Investigation on Laser-Assisted Bending of Pre-Loaded Metal Plate, AIP Conference Proceedings, ISSN: 0094-243X, DOI: 10.1063/1.5019148, Vol.1922, pp.140006-1-7, 2018
Nowak Z., Nowak M., Widłaszewski J., Kurp P., Experimental and Numerical Investigation on Laser-Assisted Bending of Pre-Loaded Metal Plate, AIP Conference Proceedings, ISSN: 0094-243X, DOI: 10.1063/1.5019148, Vol.1922, pp.140006-1-7, 2018

Abstract:
The laser forming technique has an important disadvantage, which is the limitation of plastic deformation generated by a single laser beam pass. To increase the plastic deformation it is possible to apply external forces in the laser forming process. In this paper, we investigate the influence of external pre-loads on the laser bending of steel plate. The pre-loads investigated generate bending towards the laser beam. The thermal, elastic-plastic analysis is performed using the commercial nonlinear finite element analysis package ABAQUS. The focus of the paper is to identify how this pattern of the pre-load influence the final bend angle of the plate

Keywords:
Laser forming, Force-assisted laser forming, Laser-assisted bending, Thermo-mechanical simulations, Finite element analysis

11.Ranachowski Z., Schabowicz K., Gorzelańczyk T., Kudela Jr S., Dvorak T., Visualization of Fibers and Voids Inside Industrial Fiber Concrete Boards, Material Science & Engineering International Journal, ISSN: 2574-9927, DOI: 10.15406/mseij.2017.01.00022, Vol.1, No.4, pp.1-4, 2018
Ranachowski Z., Schabowicz K., Gorzelańczyk T., Kudela Jr S., Dvorak T., Visualization of Fibers and Voids Inside Industrial Fiber Concrete Boards, Material Science & Engineering International Journal, ISSN: 2574-9927, DOI: 10.15406/mseij.2017.01.00022, Vol.1, No.4, pp.1-4, 2018

Abstract:
Fiber cement boards (FCB) microstructure and methods of fabrication are described. The method of X-ray microtomography in application for investigating of FCB microstructure is presented. The cellulose fibers constituting the remarkable reinforcement of the FCB are colorless and too small to be seen applying the standard optical methods. The X-ray microtomography method however enabled the authors to realize three goals within the investigation of the properties of FCB. The length and shape of the fibers could be assessed on specimens’ cross-sections. Applying the pseudo 3D visualization it was possible to visualize the cracked regions inside the specimen volume. The case of non-uniform fibers distribution in respect to the board thickness which was impossible to recognize applying the standard visual inspection, was also performed by merging the multiple cross-section images into a single graph

12.Leyva-Mendivil M.F., Lengiewicz J., Limbert G., Skin friction under pressure. The role of micromechanics, Surface Topography: Metrology and Properties, ISSN: 2051-672X, DOI: 10.1088/2051-672X/aaa2d4, Vol.6, No.1, pp.1-14, 2018
Leyva-Mendivil M.F., Lengiewicz J., Limbert G., Skin friction under pressure. The role of micromechanics, Surface Topography: Metrology and Properties, ISSN: 2051-672X, DOI: 10.1088/2051-672X/aaa2d4, Vol.6, No.1, pp.1-14, 2018

Abstract:
The role of contact pressure on skin friction has been documented in multiple experimental studies. Skin friction significantly raises in the low-pressure regime as load increases while, after a critical pressure value is reached, the coefficient of friction of skin against an external surface becomes mostly insensitive to contact pressure. However, up to now, no study has elucidated the qualitative and quantitative nature of the interplay between contact pressure, the material and microstructural properties of the skin, the size of an indenting slider and the resulting measured macroscopic coefficient of friction. A mechanistic understanding of these aspects is essential for guiding the rational design of products intended to interact with the skin through optimally-tuned surface and/or microstructural properties. Here, an anatomically-realistic 2D multi-layer finite element model of the skin was embedded within a computational contact homogenisation procedure. The main objective was to investigate the sensitivity of macroscopic skin friction to the parameters discussed above, in addition to the local (i.e. microscopic) coefficient of friction defined at skin asperity level. This was accomplished via the design of a large-scale computational experiment featuring 312 analyses. Results confirmed the potentially major role of finite deformations of skin asperities on the resulting macroscopic friction. This effect was shown to be modulated by the level of contact pressure and relative size of skin surface asperities compared to those of a rigid slider. The numerical study also corroborated experimental observations concerning the existence of two contact pressure regimes where macroscopic friction steeply and non-linearly increases up to a critical value, and then remains approximately constant as pressure increases further. The proposed computational modelling platform offers attractive features which are beyond the reach of current analytical models of skin friction, namely, the ability to accommodate arbitrary kinematics, non-linear constitutive properties and the complex skin microstructure.

Keywords:
skin friction, contact mechanics, pressure, microstructure, finite element, homogenisation, material properties