Publications in journals ranked by Journal Citation Reports (JCR) 
Publications in other journals ranked by Ministry of Science and Higher Education
Conference publications indexed in the Web of Science Core Collection
Publications in other journals and conference proceedings
Affiliation to IPPT PAN

1.Kowalczyk-Gajewska K., Maździarz M., Atomistic and mean-field estimates of effective stiffness tensor of nanocrystalline copper, International Journal of Engineering Science, ISSN: 0020-7225, DOI: 10.1016/j.ijengsci.2018.04.004, Vol.129, pp.47-62, 2018
Kowalczyk-Gajewska K., Maździarz M., Atomistic and mean-field estimates of effective stiffness tensor of nanocrystalline copper, International Journal of Engineering Science, ISSN: 0020-7225, DOI: 10.1016/j.ijengsci.2018.04.004, Vol.129, pp.47-62, 2018

Abstract:
The full elasticity tensor for nano-crystalline copper is derived in molecular simulations by performing numerical tests for a set of generated samples of the polycrystalline material. The results are analysed with respect to the anisotropy degree of the overall stiffness tensor resulting from the limited number of grain orientations and their spatial distribution. The dependence of the overall bulk and shear moduli of an isotropized polycrystal on the average grain diameter is analysed. It is found that while the shear modulus decreases with grain size, the bulk modulus shows negligible dependence on the grain diameter and is close to the bulk modulus of a single crystal. A closed-form mean-field model of effective elastic properties for a bulk nano-grained polycrystal with cubic grains, i.e. made of a material with cubic symmetry, is formulated. In the model all parameters are based on the data for a single crystal and on the averaged grain size without any need for additional fitting. It is shown that the proposed model provides predictions of satisfactory qualitative and quantitative agreement with atomistic simulations.

Keywords:
Molecular statics, Elasticity, Polycrystal, Effective medium, Nano-crystalline copper

2.Rojek J., Zubelewicz A., Madan N., Nosewicz S., The discrete element method with deformable particles, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, ISSN: 0029-5981, DOI: 10.1002/nme.5767, Vol.114, No.8, pp.828-860, 2018
Rojek J., Zubelewicz A., Madan N., Nosewicz S., The discrete element method with deformable particles, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, ISSN: 0029-5981, DOI: 10.1002/nme.5767, Vol.114, No.8, pp.828-860, 2018

Abstract:
This work presents a new original formulation of the discrete element method (DEM) with deformable cylindrical particles. Uniform stress and strain fields are assumed to be induced in the particles under the action of contact forces. Particle deformation obtained by strain integration is taken into account in the evaluation of interparticle contact forces. The deformability of a particle yields a nonlocal contact model, it leads to the formation of new contacts, it changes the distribution of contact forces in the particle assembly, and it affects the macroscopic response of the particulate material. A numerical algorithm for the deformable DEM (DDEM) has been developed and implemented in the DEM program DEMPack. The new formulation implies only small modifications of the standard DEM algorithm. The DDEM algorithm has been verified on simple examples of an unconfined uniaxial compression of a rectangular specimen discretized with regularly spaced equal bonded particles and a square specimen represented with an irregular configuration of nonuniform-sized bonded particles. The numerical results have been verified by a comparison with equivalent finite elementmethod results and available analytical solutions. The micro-macro relationships for elastic parameters have been obtained. The results have proved to have enhanced the modeling capabilities of the DDEM with respect to the standard DEM.

Keywords:
average stress, deformable particles, discrete element method, elastic constants, micro-macro relationships, nonlocal contact model

3.Maździarz M., Mrozek A., Kuś W., Burczyński T., Anisotropic-Cyclicgraphene: A New Two-Dimensional Semiconducting Carbon Allotrope, Materials, ISSN: 1996-1944, DOI: 10.3390/ma11030432, Vol.11, No.3, pp.432, 2018
Maździarz M., Mrozek A., Kuś W., Burczyński T., Anisotropic-Cyclicgraphene: A New Two-Dimensional Semiconducting Carbon Allotrope, Materials, ISSN: 1996-1944, DOI: 10.3390/ma11030432, Vol.11, No.3, pp.432, 2018

Abstract:
A potentially new, single-atom thick semiconducting 2D-graphene-like material, called
Anisotropic-cyclicgraphene , has been generated by the two stage searching strategy linking molecular
and ab initio approach. The candidate was derived from the evolutionary-based algorithm and
molecular simulations was then profoundly analysed using first-principles density functional theory
from the structural, mechanical, phonon, and electronic properties point of view. The proposed
polymorph of graphene (rP16-P1m1) is mechanically, dynamically, and thermally stable and can
achieve semiconducting with a direct band gap of 0.829 eV.

Keywords:
carbon; graphene; graphyne; ab initio calculations; Semiconductors

4.Postek E., Sadowski T., Distributed microcracking process of WC/Co cermet under dynamic impulse compressive loading , COMPOSITE STRUCTURES, ISSN: 0263-8223, DOI: 10.1016/j.compstruct.2018.04.014, Vol.194, pp.494-508, 2018
Postek E., Sadowski T., Distributed microcracking process of WC/Co cermet under dynamic impulse compressive loading , COMPOSITE STRUCTURES, ISSN: 0263-8223, DOI: 10.1016/j.compstruct.2018.04.014, Vol.194, pp.494-508, 2018

Abstract:
Cermet Materials (CM), for example, WC/Co, have very good mechanical, thermal and wear properties. They are used for manufacturing of cutting tools. However, their behavior under dynamic loads is still not properly understood.
Experiments, e.g. Siegl and Fischmester (1988) and Ravichandran (1994), indicate that the fracture energy of
WC/Co is expended through ductile failure of the Co: (1) close to the binder/tungsten carbide interface (Liu et al., 2017) [64] or by (2) dimple rupture across the interphase (Sigl and Exner, 1987) [22]. Stress concentrations around grain boundaries lead to initiation of microcracks which are dispersed by dynamic loading.
The main goal of the paper is to investigate the previously formulated models of the two-phase composite (Sadowski et al., 2005, 2006, 2007; Dębski and Sadowski, 2014, 2017) [47–51] in the case of dynamic compressive
pulses that are common in the case of cutting tools. We have taken into account complex spatial distribution of cermet phases, grain/binder interfaces modeled by interface elements, possibility of cracks appearance within binders using interface elements as well, and rotation of brittle grains.
The obtained results show that microcracking process and stress distributions are different for quasi-static and dynamic loadings. Early development of microcracks distribution revealed by damage parameter was observed.

Keywords:
Cermet, Dynamic compressive impulse, Interface elements, Distributed microcracking process

5.Postek E., Sadowski T., Dynamic pulse sensitivity of WC/Co composite, COMPOSITE STRUCTURES, ISSN: 0263-8223, DOI: 10.1016/j.compstruct.2017.10.092, No.203, pp.498-512, 2018
Postek E., Sadowski T., Dynamic pulse sensitivity of WC/Co composite, COMPOSITE STRUCTURES, ISSN: 0263-8223, DOI: 10.1016/j.compstruct.2017.10.092, No.203, pp.498-512, 2018

Abstract:
Cutting tools are manufactured among others from cermet (e.g. WC/Co) having excellent mechanical properties. Geometry of the internal microstructure is complex and mechanical response due to quasi-static or dynamic loading is difficult to be described. Particularly, the dynamic loading is not investigated enough precise up till now.
Experimental evidences, e.g. Siegl and Fischmester (1988), Ravichandran (1994), indicate that the fracture energy of WC/Co is expended through ductile failure of the Co: (1) near the binder/tungsten carbide interface or by (2) dimple rupture across the interphase. Concentrations of stresses around grain boundaries lead to initiation of microcrack system, which is dispersed for dynamic loading.
The aim of the paper is to extend the previously formulated models (Sadowski et al., 2005, 2006, 2007, Dębski and Sadowski, 2014, 2017) of the polycrystalline composite towards more advanced finite element formulation, applicable for description of the cermet behavior under dynamic pulses. The model takes into account: (1) spatial distribution of the cermet constituents, (2) system of grain boundaries/binder interfaces modeled by interface elements, (3) rotation of brittle grains.
The obtained results show that stress distributions and gradual microcracking processes are quite different for quasi-static and dynamic loadings. It was revealed by damage parameter indicating concentration of microcracks.

Keywords:
Metal-ceramic composite, Interface elements, Crack propagation, Dynamic loading,

6.Postek E., Sadowski T., Qualitative comparison of dynamic compressive pressure load and impact of WC/Co composite, International Journal of Refractory Metals and Hard Materials, ISSN: 0263-4368, DOI: 10.1016/j.ijrmhm.2018.07.009, Vol.77, pp.68-81, 2018
Postek E., Sadowski T., Qualitative comparison of dynamic compressive pressure load and impact of WC/Co composite, International Journal of Refractory Metals and Hard Materials, ISSN: 0263-4368, DOI: 10.1016/j.ijrmhm.2018.07.009, Vol.77, pp.68-81, 2018

Abstract:
Degradation of Cermet Materials (CM) under impact and pulse pressure is not thoroughly investigated. In this
study, we qualitatively compare the behaviour of WC/Co samples under these types of loading.
The new models of impact and dynamic compressive load of a WC/Co plate were investigated. We developed two models of the composite plate, namely, a continuous model and a model with crack appearance possibility in the interfaces/binders.
We noted a qualitative difference of the shapes of the deformed structure due to different models and kind of loading. The differences also concern the Mises stress, equivalent plastic strains and damage parameter.
The proposed models are suitable for both impact and pressure load. The possibility of cracks appearance should not be neglected. In case of the model with discontinuities, for both kinds of loads, the grains rotation and sliding is more distinct than in case of the continuous model.

Keywords:
Cermet, Impact, Pressure load, Interface elements, Distributed microcracking process, Numerical models

7.Maździarz M., Rojek J., Nosewicz S., Molecular dynamics study of self-diffusion in stoichiometric B2-NiAl crystals, Philosophical Magazine, ISSN: 1478-6435, DOI: 10.1080/14786435.2018.1480838, Vol.98, No.24, pp.2257-2274, 2018
Maździarz M., Rojek J., Nosewicz S., Molecular dynamics study of self-diffusion in stoichiometric B2-NiAl crystals, Philosophical Magazine, ISSN: 1478-6435, DOI: 10.1080/14786435.2018.1480838, Vol.98, No.24, pp.2257-2274, 2018

Abstract:
Self-diffusion parameters in stoichiometric B2-NiAl solid state crystals were estimated by molecular statics/dynamics simulations with the study of required simulation time to stabilise diffusivity results. An extrapolation procedure to improve the diffusion simulation results was proposed. Calculations of volume diffusivity for the B2 type NiAl in the 1224–1699 K temperature range were performed using the embedded-atom-model potential. The results obtained here are in much better agreement with the experimental results than the theoretical estimates obtained with other methods.

Keywords:
NiAl; nickel–aluminium; diffusivity; molecular dynamics; molecular statics; embedded-atom method; sintering

8.Lumelskyj D., Rojek J., Tkocz M., Detection of strain localization in numerical simulation of sheet metal forming, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1016/j.acme.2017.08.004, Vol.18, No.2, pp.490-499, 2018
Lumelskyj D., Rojek J., Tkocz M., Detection of strain localization in numerical simulation of sheet metal forming, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1016/j.acme.2017.08.004, Vol.18, No.2, pp.490-499, 2018

Abstract:
This paper presents an investigation on the detection of strain localization in numerical simulation of sheet metal forming. Two methods to determine the onset of localized necking have been compared. The first criterion, newly implemented in this work, is based on the analysis of the through-thickness thinning (through-thickness strain) and its first time derivative in the most strained zone. The limit strain in the second method, studied in the authors’ earlier works, is determined by the maximum of the strain acceleration. The limit strains have been determined for different specimens undergoing deformation at different strain paths covering the whole range of the strain paths typical for sheet forming processes. This has allowed to construct numerical forming limit curves (FLCs). The numerical FLCs have been compared with the experimental one. Mesh sensitivity analysis for these criteria has been performed for the selected specimens. It has been shown that the numerical FLC obtained with the new criterion predicts formability limits close to the experimental results so this method can be used as a potential alternative tool to determine formability in standard finite element simulations of sheet forming processes.

Keywords:
Sheet forming, Formability, Forming limit diagram, Strain localization, Numerical simulation

9.Jóźwik I., Strojny-Nędza A., Chmielewski M., Pietrzak K., Kurpaska Ł., Nosewicz S., High resolution SEM characterization of nano-precipitates in ODS steels, MICROSCOPY RESEARCH AND TECHNIQUE, ISSN: 1059-910X, DOI: 10.1002/jemt.23004, Vol.81, No.5, pp.502-508, 2018
Jóźwik I., Strojny-Nędza A., Chmielewski M., Pietrzak K., Kurpaska Ł., Nosewicz S., High resolution SEM characterization of nano-precipitates in ODS steels, MICROSCOPY RESEARCH AND TECHNIQUE, ISSN: 1059-910X, DOI: 10.1002/jemt.23004, Vol.81, No.5, pp.502-508, 2018

Abstract:
The performance of the present-day scanning electron microscopy (SEM) extends far beyond delivering electronic images of the surface topography. Oxide dispersion strengthened (ODS) steel is on of the most promising materials for the future nuclear fusion reactor because of its good radiation resistance, and higher operation temperature up to 750°C. The microstructure of ODS should not exceed tens of nm, therefore there is a strong need in a fast and reliable technique for their characterization. In this work, the results of low-kV SEM characterization of nanoprecipitates formed in the ODS matrix are presented. Application of highly sensitive photo-diode BSE detector in SEM imaging allowed for the registration of single nm-sized precipitates in the vicinity of the ODS alloys. The composition of the precipitates has been confirmed by TEM-EDS.

Keywords:
ODS steels, scanning electron microscopy, spark plasma sintering

10.Zaremba D., Błoński S., Jachimek M., Marijnissen M.J., Jakieła S., Korczyk P.M., Investigations of modular microfluidic geometries for passive manipulations on droplets, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/119068, Vol.66, No.2, pp.139-149, 2018
Zaremba D., Błoński S., Jachimek M., Marijnissen M.J., Jakieła S., Korczyk P.M., Investigations of modular microfluidic geometries for passive manipulations on droplets, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/119068, Vol.66, No.2, pp.139-149, 2018

Abstract:
Multiple pipetting is a standard laboratory procedure resulting in the compartmentalisation of a liquid sample. Microfluidics offers techniques which can replace this process by the use of tiny droplets. Passive manipulation on droplets is an interesting and promising approach for the design of microfluidic devices which on one hand are easy-to-use and on the other, execute complex laboratory procedures. We present a comprehensive study of the geometry of microfluidic components which encode different operations on droplets into the structure of the device. The understanding of hydrodynamic interactions between the continuous flow and a droplet travelling through confined space of nontrivial microfluidic geometries is crucial for a rational and efficient design of new generation of modular microfluidic processors with embedded instructions.

Keywords:
microfluidics, two-phase flows, droplets