Publications in journals ranked by Journal Citation Reports (JCR) 
Publications in other journals ranked by Ministry of Science and Higher Education
Conference publications indexed in the Web of Science Core Collection
Publications in other journals and conference proceedings
Affiliation to IPPT PAN

1.Grzywacz H., Milczarek M., Jenczyk P., Dera W., Michałowski M., Jarząbek D.M., Quantitative measurement of nanofriction between PMMA thin films and various AFM probes, MEASUREMENT, ISSN: 0263-2241, DOI: 10.1016/j.measurement.2020.108267, Vol.168, pp.108267-1-13, 2020
Grzywacz H., Milczarek M., Jenczyk P., Dera W., Michałowski M., Jarząbek D.M., Quantitative measurement of nanofriction between PMMA thin films and various AFM probes, MEASUREMENT, ISSN: 0263-2241, DOI: 10.1016/j.measurement.2020.108267, Vol.168, pp.108267-1-13, 2020

Abstract:
This study reports the quantitative, precise and accurate results of nanoscale friction measurements with the use of an Atomic Force Microscope calibrated with a precise nanoforce sensor. For this purpose, three samples of spin-coated thin Polymethylmethacrylate (PMMA) films were prepared with the following thicknesses: 235, 343, and 513 nm. Three different AFM probes were used for the friction measurements: with diamond-like carbon (DLC) tip with a small (15 nm) or big (2 µm) tip radius, and a reference silicon tip with a small (8 nm) radius. The results show that in all of the studied cases, the coefficient of friction strongly depends on the applied load, being much higher for a lower load. Furthermore, a strong relation of the friction force on the cantilever's geometry, the scanning velocity, and the film thickness was observed.

Keywords:
lateral force microscopy, friction, thin PMMA films, atomic force microscope, DLC coatings, adhesion

2.Yang H., Akinoglu E.M., Guo L., Jin M., Zhou G., Giersig M., Shui L., Mulvaney P., A PTFE helical capillary microreactor for the high throughput synthesis of monodisperse silica particles, Chemical Engineering Journal, ISSN: 1385-8947, DOI: 10.1016/j.cej.2020.126063, Vol.401, pp.126063-1-29, 2020
Yang H., Akinoglu E.M., Guo L., Jin M., Zhou G., Giersig M., Shui L., Mulvaney P., A PTFE helical capillary microreactor for the high throughput synthesis of monodisperse silica particles, Chemical Engineering Journal, ISSN: 1385-8947, DOI: 10.1016/j.cej.2020.126063, Vol.401, pp.126063-1-29, 2020

Abstract:
We propose a simple and inexpensive SiO2 submicron particle synthesis method based on a PTFE helical capillary microreactor. The device is based on Dean flow mediated, ultrafast mixing of two liquid phases in a microfluidic spiral pipe. Excellent control of particle size between 100 nm and 600 nm and narrow polydispersity can be achieved by controlling the device and process parameters. Numerical simulations are performed to determine the optimal device dimensions. In the mother liquor the silica particles exhibit zeta potentials < -60 mV, rendering them very stable even at high particle volume fractions. The current device typically produces around 0.234 g/h of the silica particles.

Keywords:
SiO2 particle synthesis, continuous flow synthesis, helical capillary microreactor

3.Mieloch A.A., Żurawek M., Giersig M., Rozwadowska N., Rybka J.D., Bioevaluation of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with dihexadecyl phosphate (DHP), Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-020-59478-2, Vol.10, pp.2725-1-11, 2020
Mieloch A.A., Żurawek M., Giersig M., Rozwadowska N., Rybka J.D., Bioevaluation of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with dihexadecyl phosphate (DHP), Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-020-59478-2, Vol.10, pp.2725-1-11, 2020

Abstract:
Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for wide variety of applications. Their unique properties render them highly applicable as MRI contrast agents, in magnetic hyperthermia or targeted drug delivery. SPIONs surface properties affect a whole array of parameters such as: solubility, toxicity, stability, biodistribution etc. Therefore, progress in the field of SPIONs surface functionalization is crucial for further development of therapeutic or diagnostic agents. In this study, SPIONs were synthesized by thermal decomposition of iron (III) acetylacetonate Fe(acac)3 and functionalized with dihexadecyl phosphate (DHP) via phase transfer. Bioactivity of the SPION-DHP was assessed on SW1353 and TCam-2 cancer derived cell lines. The following test were conducted: cytotoxicity and proliferation assay, reactive oxygen species (ROS) assay, SPIONs uptake (via Iron Staining and ICP-MS), expression analysis of the following genes: alkaline phosphatase (ALPL); ferritin light chain (FTL); serine/threonine protein phosphatase 2A (PP2A); protein tyrosine phosphatase non-receptor type 11 (PTPN11); transferrin receptor 1 (TFRC) via RT-qPCR. SPION-DHP nanoparticles were successfully obtained and did not reveal significant cytotoxicity in the range of tested concentrations. ROS generation was elevated, however not correlated with the concentrations. Gene expression profile was slightly altered only in SW1353 cells.

4.Gabriele V.R., Shvonski A., Hoffman C.S., Giersig M., Herczynski A., Naughton M.J., Kempa K., Towards spectrally selective catastrophic response, PHYSICAL REVIEW E, ISSN: 2470-0045, DOI: 10.1103/PhysRevE.101.062415, Vol.101, pp.062415-1-6, 2020
Gabriele V.R., Shvonski A., Hoffman C.S., Giersig M., Herczynski A., Naughton M.J., Kempa K., Towards spectrally selective catastrophic response, PHYSICAL REVIEW E, ISSN: 2470-0045, DOI: 10.1103/PhysRevE.101.062415, Vol.101, pp.062415-1-6, 2020

Abstract:
We study the large-amplitude response of classical molecules to electromagnetic radiation, showing the universality of the transition from linear to nonlinear response and breakup at sufficiently large amplitudes. We demonstrate that a range of models, from the simple harmonic oscillator to the successful Peyrard-Bishop-Dauxois type models of DNA, which include realistic effects of the environment (including damping and dephasing due to thermal fluctuations), lead to characteristic universal behavior: formation of domains of dissociation in driving force amplitude-frequency space, characterized by the presence of local boundary minima. We demonstrate that by simply following the progression of the resonance maxima in this space, while gradually increasing intensity of the radiation, one must necessarily arrive at one of these minima, i.e., a point where the ultrahigh spectral selectivity is retained. We show that this universal property, applicable to other oscillatory systems, is a consequence of the fact that these models belong to the fold catastrophe universality class of Thom's catastrophe theory. This in turn implies that for most biostructures, including DNA, high spectral sensitivity near the onset of the denaturation processes can be expected. Such spectrally selective molecular denaturation could find important applications in biology and medicine.

5.Kovalchuk V., Mladenov I.M., Mechanics of infinitesimal gyroscopes on mylar balloons and their action-angle analysis, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.6099, Vol.43, No.6, pp.3040-3051, 2020
Kovalchuk V., Mladenov I.M., Mechanics of infinitesimal gyroscopes on mylar balloons and their action-angle analysis, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.6099, Vol.43, No.6, pp.3040-3051, 2020

Abstract:
Here, we apply the general scheme for description of mechanics of infinitesimal bodies in Riemannian spaces to the example of geodetic and non-geodetic (for two different model potentials) motions of infinitesimal rotators on the Mylar balloon. The structure of partial degeneracy is investigated with the help of the corresponding Hamilton-Jacobi equation and action-angle analysis. In all situations it was found that for any of the sixth disjoint regions in the phase space among the three action variables only two are essential for the description of our models at the level of the old quantum theory (according to the Bohr-Sommerfeld postulates). Moreover, in both non-geodetic models, the action variables were intertwined with the quantum number N corresponding to the quantized value of the radius r of the inflated Mylar balloon.

Keywords:
action-angle analysis, affinely-rigid bodies, Bohr-Sommerfeld quantum theory, Hamilton-Jacobi equation, infinitesimal gyroscopes, mylar balloons, residue analysis

6.Kovalchuk V., Mladenov I.M., Classical motions of infinitesimal rotators on mylar balloons, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.6660, pp.1-14, 2020
Kovalchuk V., Mladenov I.M., Classical motions of infinitesimal rotators on mylar balloons, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.6660, pp.1-14, 2020

Abstract:
This paper starts with the derivation of the most general equations of motion for the infinitesimal rotators moving on arbitrary two‐dimensional surfaces of revolution. Both geodesic and geodetic (i.e., without any external potential) equations of motion on surfaces with nontrivial curvatures that are embedded into the three dimensional Euclidean space are discussed. The Mylar balloon as a concrete example for the application of the scheme was chosen. A new parameterization of this surface is presented, and the corresponding equations of motion for geodesics and geodetics are expressed in an analytical form through the elliptic functions and elliptic integrals. The so‐obtained results are also compared with those for the two‐dimensional sphere embedded into the three‐dimensional Euclidean space for which it can be shown that the geodesics and geodetics are plane curves realized as the great and small circles on the sphere, respectively.

Keywords:
elliptic integrals and elliptic functions, geodesics and geodetics, infinitesimal rotators, mylar balloons, non-Euclidean spaces, surfaces of revolution

7.Kovalchuk V., Gołubowska B., Rożko E.E., Mechanics of incompressible test bodies moving in Riemannian spaces, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.6651, pp.1-15, 2020
Kovalchuk V., Gołubowska B., Rożko E.E., Mechanics of incompressible test bodies moving in Riemannian spaces, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.6651, pp.1-15, 2020

Abstract:
In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion on the sphere has been discussed. For the geodetic case when the potential is equal to zero, the comparison between the geodetic and geodesic solutions has been done and illustrated in details for the case of a particular choice of the constants of motion of the problem. The obtained results could be applied, among others, in geophysical problems, for example, for description of the movement of continental plates or the motion of a drop of fat or a spot of oil on the surface of the ocean (e.g., produced during some "ecological disaster"), or generally in biomechanical problems, for example, for description of the motion of objects with internal structure on different curved two-dimensional surfaces (e.g., transport of proteins along the curved biological membranes).

Keywords:
geodesics, geodetics, gyroscopic motion, incompressibility constraints, mechanics of infinitesimal test bodies, Riemannian spaces

8.Luo L., Akinoglu E.M., Wu W., Dodge T., Wang X., Zhou G., Naughton M.J., Kempa K., Giersig M., Nano-bridged nanosphere lithography, NANOTECHNOLOGY, ISSN: 0957-4484, DOI: 10.1088/1361-6528/ab7c4c, Vol.31, pp.245302-1-6, 2020
Luo L., Akinoglu E.M., Wu W., Dodge T., Wang X., Zhou G., Naughton M.J., Kempa K., Giersig M., Nano-bridged nanosphere lithography, NANOTECHNOLOGY, ISSN: 0957-4484, DOI: 10.1088/1361-6528/ab7c4c, Vol.31, pp.245302-1-6, 2020

Abstract:
We develop nano-bridged nanosphere lithography (NB-NSL), a modification to the widely used conventional nanosphere lithography (NSL). Nano-bridges between polystyrene (PS) spheres of a pristine NSL template are controllably formed in a two-step process: (i) spin-coating of a dilute styrene solution on top of the template, followed by (ii) oxygen plasma etching of the template. We show that the nanobridge dimensions can be precisely tuned by controlling the pre-processing conditions and the plasma etching time. The resulting lithography templates feature control over the shape and size of the apertures, which determine the morphology of the final nano-island arrays after material deposition and template removal. The unique advantage of NB-NSL is that PS particle templates based on a single PS particle diameter can be utilized for the fabrication of a variation of nano-island shapes and sizes, whereas conventional NSL yields only bowtie-shaped nano-islands, with their size being predetermined by the PS particle diameter of the template.

Keywords:
nanofabrication, nanosphere lithography, colloid lithography

9.Pęcherski R.B., Rusinek A., Frąś T., Nowak M., Nowak Z., Energy-based yield condition for orthotropic materials exhibiting asymmetry of elastic range, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.24425/amm.2020.132819, Vol.65, No.2, pp.771-778, 2020
Pęcherski R.B., Rusinek A., Frąś T., Nowak M., Nowak Z., Energy-based yield condition for orthotropic materials exhibiting asymmetry of elastic range, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.24425/amm.2020.132819, Vol.65, No.2, pp.771-778, 2020

Abstract:
The aim of the paper is to formulate physically well founded yield condition for initially anisotropic solids revealing the asymmetry of elastic range. The initial anisotropy occurs in material primarily due to thermo-mechanical pre-processing and plastic deformation during the manufacturing processes. Therefore, materials in the "as-received" state become usually anisotropic. After short account of the known limit criteria for anisotropic solids and discussion of mathematical preliminaries the energy-based criterion for orthotropic materials was formulated and confronted with experimental data and numerical predictions of other theories. Finally, possible simplifications are discussed and certain model of isotropic material with yield condition accounting for a correction of shear strength due to initial anisotropy is presented. The experimental verification is provided and the comparison with existing approach based on the transformed-tensor method is discussed.

Keywords:
energy-based yield condition, orthotropic solids, initial anisotropy, strength differential effect, numerical simulation