1. | Jarząbek D.M., Dziekoński C., Dera W., Chrzanowska J., Wojciechowski T., Influence of Cu coating of SiC particles on mechanical properties of Ni/SiC co-electrodeposited composites, CERAMICS INTERNATIONAL, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2018.08.271, Vol.44, pp.21750-21758, 2018Jarząbek D.M., Dziekoński C., Dera W., Chrzanowska J., Wojciechowski T., Influence of Cu coating of SiC particles on mechanical properties of Ni/SiC co-electrodeposited composites, CERAMICS INTERNATIONAL, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2018.08.271, Vol.44, pp.21750-21758, 2018Abstract: In this paper, the study of the mechanical properties of composites consisting of electrodeposited Ni and co-electrodeposited SiC particles coated with a thin Cu layer was presented. It was demonstrated that the coating allowed to increase the concentration of ceramic particles in the composite. Although the plating parameters were the same for both types of composites, the concentration of SiC was 15% for the composite containing coated particles (Ni/SiC-Cu) and 10% for the composite containing uncoated particles (Ni/SiC). Furthermore, tensile tests showed that the Ni/SiC-Cu samples exhibited higher Young's modulus than the pure electrodeposited Ni samples or Ni/SiC samples. The measured Young's modulus of the Ni/SiC-Cu composite was 250 ± 10 GPa. However, the ultimate tensile strength of the Ni/SiC-Cu composite was lower than that of pure Ni. To explain the mechanical behaviour of the Ni/SiC-Cu composite, the microstructure of the interface of this composite and its bonding strength were studied. Microstructure studies conducted using a scanning electron microscope (SEM) revealed that the SiC/Cu interface was smooth and of good quality whereas the Cu/Ni interface was rough but also of good quality. The measured bonding, normal, and shear strength values demonstrated that the SiC/Cu interface was weak, and that was the main reason for the low ultimate tensile strength of the composite. The shear strength of the SiC/Cu interface was measured using a novel method: micropillars shearing including atomic force microscopy (AFM). Finally, a simple finite element model of the Ni/SiC-Cu composite, based on cohesive elements, was developed. Keywords: Interfacial bonding strength, Metal matrix composites, Tensile strength, Silicon carbide, Electrodeposited nickel | |
2. | Jarecki L., Pecherski R.B., Kinetics of oriented crystallization of polymers in the linear stress-orientation range in the series expansion approach , Express Polymer Letters, ISSN: 1788-618X, DOI: 10.3144/expresspolymlett/2018.29, Vol.12, No.4, pp.330-348, 2018Jarecki L., Pecherski R.B., Kinetics of oriented crystallization of polymers in the linear stress-orientation range in the series expansion approach , Express Polymer Letters, ISSN: 1788-618X, DOI: 10.3144/expresspolymlett/2018.29, Vol.12, No.4, pp.330-348, 2018Abstract: An analytical formula is derived for the oriented crystallization coefficient governing kinetics of oriented crystallization under uniaxial amorphous orientation in the entire temperature range. A series expansion approach is applied to the free energy of crystallization in the Hoffman-Lauritzen kinetic model of crystallization at accounting for the entropy of orientation of the amorphous chains. The series expansion coefficients are calculated for systems of Gaussian chains in linear stress-orientation range. Oriented crystallization rate functions are determined basing on the ‘proportional expansion’ approach proposed by Ziabicki in the steady-state limit. Crystallization kinetics controlled by separate predetermined and sporadic primary nucleation is considered, as well as the kinetics involving both nucleation mechanisms potentially present in oriented systems. The involvement of sporadic nucleation in the transformation kinetics is predicted to increase with increasing amorphous orientation. Example computations illustrate the dependence of the calculated functions on temperature and amorphous orientation, as well as qualitative agreement of the calculations with experimental results.
Keywords: modeling and simulation, kinetics of oriented crystallization, amorphous orientation, sporadic nucleation, predetermined nucleation
| |
3. | Nasalski W., Elegant Laguerre–Gaussian beams — formulation of exact vector solution, Journal of Optics, ISSN: 2040-8978, DOI: 10.1088/2040-8986/aadc8a, Vol.20, No.105601, pp.1-11, 2018Nasalski W., Elegant Laguerre–Gaussian beams — formulation of exact vector solution, Journal of Optics, ISSN: 2040-8978, DOI: 10.1088/2040-8986/aadc8a, Vol.20, No.105601, pp.1-11, 2018Abstract: In photonic applications of optical beams, their transverse cross-section should be often narrow, with a diameter in their waist of the order of one wavelength or even less. Within this range, the paraxial approximation of beam fields is not valid and standard corrections by field expansions with respect to a small parameter are not efficient as well. Thus, still there is a need for more accurate beam field description. In this report, an exact vector solution for free-space propagation is given in terms of elegant Laguerre–Gaussian beams. The analysis starts from the known paraxial field approximation and next, through bidirectional field transformation and application of a Hertz potential leads to an exact vector solution. The role of the paraxial solution in construction of the exact solution is elucidated. The method works well not only in cases of free-space propagation but also in description of beam interactions with planar interfaces and multilayers. Keywords: elegant Laguerre–Gaussian beams, paraxial and nonparaxial solutions, bidirectional transformation, Hertz potentials | |
4. | Nowak M., Nowak Z., Pęcherski R.B., Potoczek M., Śliwa R.E., ASSESSMENT OF FAILURE STRENGTH OF REAL ALUMINA FOAMS WITH USE OF THE PERIODIC STRUCTURE MODEL, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.24425/amm.2018.125122, Vol.63, No.4, pp.1901-1906, 2018Nowak M., Nowak Z., Pęcherski R.B., Potoczek M., Śliwa R.E., ASSESSMENT OF FAILURE STRENGTH OF REAL ALUMINA FOAMS WITH USE OF THE PERIODIC STRUCTURE MODEL, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.24425/amm.2018.125122, Vol.63, No.4, pp.1901-1906, 2018Abstract: The subject of the study are alumina foams produced by gelcasting method. The results of micro-computed tomography of the foam samples are used to create the numerical model reconstructing the real structure of the foam skeleton as well as the simplified periodic open-cell structure models. The aim of the paper is to present a new idea of the energy-based assessment of failure strength under uniaxial compression of real alumina foams of various porosity with use of the periodic structure model of the same porosity. Considering two kinds of cellular structures: the periodic one, for instance of fcc type, and the random structure of real alumina foam it is possible to justify the hypothesis, computationally and experimentally, that the same elastic energy density cumulated in the both structures of the same porosity allows to determine the close values of fracture strength under compression. Application of finite element computations for the analysis of deformation and failure processes in real ceramic foams is time consuming. Therefore, the use of simplified periodic cell structure models for the assessment of elastic moduli and failure strength appears very attractive from the point of view of practical applications. Keywords: periodic cell structure, alumina open-cell foam, Young modulus, strength of alumina foams, Burzyński limit criterion | |
5. | Sławianowski J.J., Kovalchuk V., Gołubowska B., Martens A., Rożko E.E., Space‐time as a structured relativistic continuum, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.5087, Vol.41, pp.5404-5422, 2018Sławianowski J.J., Kovalchuk V., Gołubowska B., Martens A., Rożko E.E., Space‐time as a structured relativistic continuum, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, ISSN: 0170-4214, DOI: 10.1002/mma.5087, Vol.41, pp.5404-5422, 2018Abstract: There are various models of gravitation: the metrical Hilbert‐Einstein theory, a wide class of intrinsically Lorentz‐invariant tetrad theories (generally covariant in the space‐time sense), and many gauge models based on various internal symmetry groups (Lorentz, Poincare, GL(n,R), SU(2,2), GL(4,C), etc). The gauge models are usually preferred but nevertheless it is an interesting idea to develop the class of GL(4,R)‐invariant (or rather GL(n,R)‐invariant) tetrad (n‐leg) generally covariant models. This is done below and motivated by our idea of bringing back to life the Thales of Miletus concept of affine symmetry. Formally, the obtained scheme is a generally covariant tetrad (n‐leg) model, but it turns out that generally covariant and intrinsically affinely invariant models must have a kind of nonaccidental Born‐Infeld‐like structure. Let us also mention that they, being based on tetrads (n‐legs), have many features common with continuous defect theories. It is interesting that they possess some group‐theoretical solutions and more general spherically symmetric solutions, discussion of which is the main new result presented in this paper, including the applications of the 't Hooft‐Polyakov monopoles in the generally covariant theories, which enables us to find some rigorous solutions of our strongly nonlinear equations. It is also interesting that within such a framework, the normal‐hyperbolic signature of the space‐time metric is not introduced by hand but appears as a kind of solution, rather integration constants, of differential equations. Let us mention that our Born‐Infeld scheme is more general than alternative tetrad models. It may be also used within more general schemes, including also the gauge ones. Keywords: micromorphic medium, modified gravity, relativistic continuum, spherically symmetric solutions, theory of fundamental interactions. | |
6. | Frąś L.J., Dziekoński C., Dera W., Jarząbek D.M., Piezoelectric bimorph as a high-sensitivity viscosity resonant sensor to test the anisotropy of magnetorheological fluid, REVIEW OF SCIENTIFIC INSTRUMENTS, ISSN: 0034-6748, DOI: 10.1063/1.5025123, Vol.89, No.10, pp.105111-1-7, 2018Frąś L.J., Dziekoński C., Dera W., Jarząbek D.M., Piezoelectric bimorph as a high-sensitivity viscosity resonant sensor to test the anisotropy of magnetorheological fluid, REVIEW OF SCIENTIFIC INSTRUMENTS, ISSN: 0034-6748, DOI: 10.1063/1.5025123, Vol.89, No.10, pp.105111-1-7, 2018Abstract: In this paper, we present a device which is very sensitive for small changes in the viscosity of the investigated fluid. The main part of the device is a piezo-electric bimorph which consists of the brass shim with two piezo-ceramic layers on the opposite sides. One of them is responsible for generating vibrations, whereas the second one is meant to measure system response which is produced by the damping properties of the surrounding fluid. During the experiment, the cylindrical bar is forced to move by the series of sinusoidal waves with different frequencies and at constant amplitudes. The probe is immersed in the fluid and then the amplitude vs frequency and phase vs frequency curves are obtained. Next, one can determine the viscosity according to a proper mathematical model. The resonant frequency is related to the damping coefficient which depends on the viscosity of the surrender fluid and immersion depth of the probe. The coefficients necessary for calculating viscosity are obtained by fitting the resonance curve to the amplitude vs frequency data obtained from the experiment. The device has been applied to study the anisotropy of magnetorheological fluids. The weak anisotropy of viscosity has been observed. The highest value of viscosity was observed in the case of viscosity measurement in the direction orthogonal to the magnetic field and the lowest in the direction parallel to the magnetic field. | |
7. | Wojnar R., Kinetic equation for the dilute Boltzmann gas in an external field, ACTA PHYSICA POLONICA B, ISSN: 0587-4254, DOI: 10.5506/APhysPolB.49.905, Vol.49, No.5, pp.905-920, 2018Wojnar R., Kinetic equation for the dilute Boltzmann gas in an external field, ACTA PHYSICA POLONICA B, ISSN: 0587-4254, DOI: 10.5506/APhysPolB.49.905, Vol.49, No.5, pp.905-920, 2018Abstract: We report a kinetic equation for an auxiliary distribution function f(k,v1,t) which yields the intermediate scattering function Is(k,t). To this end, the projection operator proposed by Stecki was applied. The scattering operator was given in explicit form in the limit of low density gas. The general kinetic equation was next specialized for the case of Lorentz gas. | |
8. | Frąś L.J., Pęcherski R.B., Modified split hopkinson pressure bar for investigations of dynamic behaviour of magnetorheological materials, JOURNAL OF THEORETICAL AND APPLIED MECHANICS, ISSN: 1429-2955, DOI: 10.15632/jtam-pl.56.1.323, Vol.56, No.1, pp.323-328, 2018Frąś L.J., Pęcherski R.B., Modified split hopkinson pressure bar for investigations of dynamic behaviour of magnetorheological materials, JOURNAL OF THEORETICAL AND APPLIED MECHANICS, ISSN: 1429-2955, DOI: 10.15632/jtam-pl.56.1.323, Vol.56, No.1, pp.323-328, 2018Abstract: The magnetorheological fluid is a functional material that is changing its rheological properties and finally solidifies in a magnetic field. The dynamic behaviour, tested with the use of the Split Hopkinson Pressure Bar is an important issue for description of this material, which is commonly used in different kinds of shock absorbers. This note presents a new idea how to modify the known SHPB set up in order to investigate dynamic properties of magnetorheological materials. Keywords: Split Hopkinson Pressure Bar (SHPB), Magnetorheological Fluid (MRF), dynamic behaviour, solidification in magnetic field, ferroelements | |