Partner: A. Długosz

Silesian University of Technology (PL)

Ostatnie publikacje
1.Długosz A., Pokorska I., Glinicki M.A., Jaskulski R., Identification of thermal properties of hardening concrete by means of evolutionary algorithms, COMPUTER ASSISTED METHODS IN ENGINEERING AND SCIENCE, ISSN: 2299-3649, Vol.24, pp.101-111, 2017

Streszczenie:

In this paper, the evolutionary computation procedures for identifying thermophysical properties in hardening massive concrete structures are presented. The heat of cement hydration, thermal conductivity and specific heat are determined for the purpose of modeling temperature evolution in massive concrete elements. Knowledge about temperature fields is very important due to their link with undesirable thermal stresses that can cause a weakening of structures because of thermal cracking. The proposed method is based on point temperature measurements in a cylindrical mould and the numerical solution of the inverse heat transfer problem by means of the finite element method and evolutionary computation

Słowa kluczowe:

thermal properties of concrete, inverse heat transfer problem, early age concrete, evolutionary algorithm, FEM

Afiliacje autorów:

Długosz A.-Silesian University of Technology (PL)
Pokorska I.-Czestochowa University of Technology (PL)
Glinicki M.A.-IPPT PAN
Jaskulski R.-other affiliation
14p.
2.Długosz A., Burczyński T., Multiobjective shape optimization of selected coupled problems by means of evolutionary algorithms, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, Vol.60, No.2, pp.215-222, 2012

Streszczenie:

In present paper an improved multi-objective evolutionary algorithm is used for Pareto optimization of selected coupled problems. Coupling of mechanical, electrical and thermal fields is considered. Boundary-value problems of the thermo-elasticity, piezoelectricity and electro-thermo-elasticity are solved by means of finite element method (FEM). Ansys Multiphysics and MSC.Mentat/Marc software are used to solve considered coupled problems. Suitable interfaces between optimization tool and the FEM software are created. Different types of functionals are formulated on the basis of results obtained from the coupled field analysis. Functionals depending on the area or volume of the structure are also proposed. Parametric curves NURBS are used to model some optimized structures. Numerical examples for exemplary three-objective optimization are presented in the paper.

Słowa kluczowe:

multiobjective optimization, evolutionary algorithms, multiphysics, coupled field problems, finite element method

Afiliacje autorów:

Długosz A.-Silesian University of Technology (PL)
Burczyński T.-other affiliation
30p.

Prace konferencyjne
1.Szczepanik M., Poteralski A., Długosz A., Kuś W., Burczyński T., Optimization of thermomechanical structures using PSO, CMM 2011, 19th International Conference on Computer Methods in Mechanics, 2011-05-09/05-12, Warszawa (PL), pp.204-1-7, 2011

Abstrakty konferencyjne
1.Długosz A., Pokorska I., Glinicki M.A., Jaskulski R., Evolutionary computation in identification of thermophysical properties of hardening concrete, CMM-2017, 22nd International Conference on Computer Methods in Mechanics, 2017-09-13/09-16, Lublin (PL), pp.1-2, 2017

Streszczenie:

The evolutionary computation procedures in identification of thermophysical properties of hardening concrete in massive structures are presented. Heat of cement hydration, thermal conductivity and specific heat are determined for purpose of modelling temperature evolution in massive concrete elements. The knowledge of temperature fields is very important due to a link with undesired thermal stresses, which can cause a weakening of the structure because of thermal cracking. The proposed method is based on point temperature measurements in a cylindrical mould and the numerical solution of the inverse heat transfer problem by means of finite element method and evolutionary computation

Słowa kluczowe:

heat of cement hydration, inverse heat transfer problem, early age concrete, evolutionary algorithm, finite element method, thermophysical properties of concrete

Afiliacje autorów:

Długosz A.-Silesian University of Technology (PL)
Pokorska I.-Czestochowa University of Technology (PL)
Glinicki M.A.-IPPT PAN
Jaskulski R.-other affiliation
2.Długosz A., Pokorska I., Glinicki M.A., Jaskulski R., Identification of thermal properties of hardening concrete by means of evolutionary algorithms, ECCOMAS - IPM 2017, 4th International Conference on Inverse Problems in Mechanics of Structures and Materials, 2017-05-31/06-02, Rzeszów - Krasiczyn (PL), pp.17-18, 2017
3.Długosz A., Burczyński T., Multiobjective shape optimization of selected coupled problems by using evolutionary algorithms, CMM 2011, 19th International Conference on Computer Methods in Mechanics, 2011-05-09/05-12, Warszawa (PL), pp.167-1-2, 2011