Partner: Caroline Schauer

Drexel University (US)

Ostatnie publikacje
1.Mayerberger E.A., Urbanek O., McDaniel R.M., Street R.M., Barsoum M.W., Schauer C.L., Preparation and characterization of polymer-Ti3C2Tx(MXene) composite nanofibers produced via electrospinning, JOURNAL OF APPLIED POLYMER SCIENCE, ISSN: 0021-8995, DOI: 10.1002/app.45295, Vol.134, No.37, pp.45295-1-7, 2017


MXene, a recently-discovered family of two-dimensional (2 D) transition metal carbides and/or nitrides, have attracted much interest because of their unique electrical, thermal, and mechanical properties. In this study, poly(acrylic acid) (PAA), polyethylene oxide (PEO), poly(vinyl alcohol) (PVA), and alginate/PEO were electrospun with delaminated Ti3C2 (MXene) flakes. The effect of small additions of delaminated Ti3C2 (1% w/w) on the structure and properties of the nanofibers were investigated and compared with those of the neat polymer nanofibers using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Ti3C2 had an effect on the solution properties of the polymer and a greater effect on the average fiber diameter. The Ti3C2Tx/PEO solution exhibited the largest change in viscosity and conductivity with an 11% and 73.6% increase over the base polymer, respectively. X-ray diffractograms demonstrated a high degree of crystallization for Ti3C2/PEO and a slight decrease in crystallinity for Ti3C2/PVA.

Słowa kluczowe:

composite nanofibers, electrospinning, MXene

Afiliacje autorów:

Mayerberger E.A.-Drexel University (US)
Urbanek O.-IPPT PAN
McDaniel R.M.-Drexel University (US)
Street R.M.-Drexel University (US)
Barsoum M.W.-Drexel University (US)
Schauer C.L.-Drexel University (US)

Abstrakty konferencyjne
1.Urbanek O., Sajkiewicz P., Schauer C., Charge Assisted Tailoring and its Effect on Surface Modification of Chitosan Nanofibers, Fiber Society 2016 Fall Meeting and Technical Conference, 2016-10-10/10-12, Ithaca (US), pp.1, 2016