Partner: M. Rezaee Hajidehi

University of Palermo (IT)

Ostatnie publikacje
1.Rezaee Hajidehi M., Stupkiewicz S., Gradient-enhanced model and its micromorphic regularization for simulation of Lüders-like bands in shape memory alloys, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, ISSN: 0020-7683, DOI: 10.1016/j.ijsolstr.2017.11.021, pp.1-11, 2017


Shape memory alloys, notably NiTi, often exhibit softening pseudoelastic response that results in formation and propagation of Lüders-like bands upon loading, for instance, in uniaxial tension. A common approach to modelling softening and strain localization is to resort to gradient-enhanced formulations that are capable of restoring well-posedness of the boundary-value problem. This approach is also followed in the present paper by introducing a gradient-enhancement into a simple one-dimensional model of pseudoelasticity. In order to facilitate computational treatment, a micromorphic-type regularization of the gradient-enhanced model is subsequently performed. The formulation employs the incremental energy minimization framework that is combined with the augmented Lagrangian treatment of the resulting non-smooth minimization problem. A thermomechanically coupled model is also formulated and implemented in a finite-element code. The effect of the loading rate on the localization pattern in a NiTi wire under tension is studied, and the features predicted by the model show a good agreement with the experimental observations. Aditionally, an analytical solution is provided for a propagating interface (macroscopic transformation front) both for the gradient-enhanced model and for its micromorphic version

Słowa kluczowe:

martensite, phase transformation, micromorphic model, strain localization, thermomechanical coupling

Afiliacje autorów:

Rezaee Hajidehi M.-University of Palermo (IT)
Stupkiewicz S.-IPPT PAN