Partner: Michel Dudeck

CNRS (FR)

Ostatnie publikacje
1.Kamińska A., Hoffman J., Vacher D., Dudeck M., Szymański Z., Electrical and plasma flow characteristics of a segmented plasmatron operating with mixture of gases, PLASMA SOURCES SCIENCE AND TECHNOLOGY, ISSN: 0963-0252, DOI: 10.1088/0963-0252/24/5/055007, Vol.24, pp.055007-1-13, 2015

Streszczenie:

The electric characteristics of a segmented plasmatron and the results of optical emission spectroscopy of Ar-air, N2, and N2–CO2 are presented. The main working gas forming the plasma stream was fed near the cathode into the arc region and another additional gas was injected into the plasma stream beyond the arc. It is shown that the gas injected into the plasma stream is drawn to the arc area due to arc spot movement and cyclic arc shrinking and expanding due to the power supply pulsation. It was found that when the anode spot moves upstream, the additional gas is retracted into the arc region, changing the operating conditions of the plasmatron. The retraction mechanism depends on the gas type and is different in argon and molecular plasmas. The results of the plasma emission spectroscopy show differences in the electron excitation and rotational temperatures for the plasmas studied and are used to explain the mechanism of functioning of a segmented plasmatron.

Słowa kluczowe:

segmented plasmatron, electric properties, optical emission

Afiliacje autorów:

Kamińska A.-other affiliation
Hoffman J.-IPPT PAN
Vacher D.-Université d’Auvergne (FR)
Dudeck M.-CNRS (FR)
Szymański Z.-IPPT PAN
45p.
2.Kamińska A., Dudeck M., Hoffman J., Szymański Z., Gouy P.A., Vacher D., A plasma jet produced in a segmented plasmatron: modelling and experiment, PHYSICA SCRIPTA, ISSN: 0031-8949, DOI: 10.1088/0031-8949/2014/T161/014072, Vol.T161, pp.014072-1-4, 2014

Streszczenie:

Nitrogen and argon plasmas with a small admixture of air produced in a segmented plasmatron are studied both experimentally and theoretically. A two-temperature hydrodynamic model is used to simulate the plasma flow inside the plasmatron. The calculated plasma temperature and electron density are in reasonable agreement with the experimental values obtained from emission spectroscopy. The electron temperatures are several thousand kelvins higher than the atom temperatures, showing that the plasmas produced in the segmented plasmatron are in non-equilibrium.

Słowa kluczowe:

segmented plasmatron, plasma expansion, emission spectroscopy

Afiliacje autorów:

Kamińska A.-other affiliation
Dudeck M.-CNRS (FR)
Hoffman J.-IPPT PAN
Szymański Z.-IPPT PAN
Gouy P.A.-Clermont Université (FR)
Vacher D.-Université d’Auvergne (FR)
25p.
3.Babou Y., Lequang D., Chazot O., Surzhikov S.T., Dikaljuk A.S., Panarese A., Cicala G., Longo S., Hoffman J., Szymański Z., Kamińska A., Dudeck M., Vacher D., Thermodynamic Characterization of High-Speed and High-Enthalpy Plasma Flows, The Open Plasma Physics Journal, ISSN: 1876-5343, DOI: 10.2174/1876534301407010155, Vol.7, pp.155-172, 2014

Streszczenie:

This contribution proposes a description of selected experimental activities conducted in aerospace sciences and dedicated to generate experimental data to assess atmospheric entry plasma models. In order to provide comprehensive set of experimental data, high enthalpy shock tube facilities have been developed to generate plasma representative of entry plasma for broad range of trajectory entry conditions. The shock-heated plasma is obtained through adiabatic compression and the resulting post-shock plasma flow exhibits thermodynamic state analogous to actual entry plasma. However, significant insight can be obtained through experiments conducted also with non-equilibrium plasma flows obtained with other methods. The typical methodologies adopted to provide experimental data of interest to enhance entry plasma modeling are sketched for four distinct non-equilibrium plasma kinds produced respectively by four specific ground facilities. The contribution firstly will consider experimental campaigns conducted with a high enthalpy shock tube in order to document in absolute radiance the radiative signature in the UV spectral range of an Earth entry plasma. Then, the investigations of the interaction between a shock wave and an electrical discharge will be described. These investigations were performed to identify the role of the internal degrees of freedom of molecular gases on the propagation of the shock. Also, the contribution covers investigations devoted to the thermodynamic state characterizations by means of spectroscopic diagnostics in the cases of the non-equilibrium plasmas flows generated by plasma wind tunnels. The examination of the Saha-Boltzmann equilibrium is proposed in the case of a subsonic plasma flow. And at last, the characterization methods of air supersonic plasma jet are presented and the 2D distributions of the subsequently measured plasma properties are documented for a straight comparisons with non-equilibrium plasma jet computations.

Słowa kluczowe:

Abel transform, multi-temperature model optical emission spectroscopy, non-equilibrium plasma, particle in cell - Monte Carlo computation, plasma wind tunnel, Saha balance, shock tube, supersonic plasma

Afiliacje autorów:

Babou Y.-von Kármán Institute for Fluid Dynamics (BE)
Lequang D.-von Kármán Institute for Fluid Dynamics (BE)
Kamińska A.-other affiliation
Dudeck M.-CNRS (FR)
Vacher D.-Université d’Auvergne (FR)
Chazot O.-von Kármán Institute for Fluid Dynamics (BE)
Surzhikov S.T.-Institute for Problems in Mechanics, Russian Academy of Sciences (RU)
Dikaljuk A.S.-Institute for Problems in Mechanics, Russian Academy of Sciences (RU)
Panarese A.-University of Bari (IT)
Cicala G.-Institute of Inorganic Methodologies and Plasmas (IT)
Longo S.-University of Bari (IT)
Hoffman J.-IPPT PAN
Szymański Z.-IPPT PAN
4.Kamińska A., Hoffman J., Szymański Z., Dudeck M., Plasmatron for Simulation of Re-entry Conditions in a Planetary Atmosphere, IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, ISSN: 1070-9878, DOI: 10.1109/TDEI.2013.6633690, Vol.20, No.5, pp.1607-1615, 2013

Streszczenie:

The characteristics of segmented plasmatron are presented. The arc is sustained in argon plasma and in plasma stream, argon, nitrogen and carbon-dioxide are introduced. The numerical simulation of argon electric arc and plasma stream is carried out and the temperatures and densities of electron and heavy particles are presented. Experimental and theoretical investigations determine and explain the influence of natural gas and flow rate injected into plasma stream on working plasmatron conditions. The anode voltage drop analysis shows that in plasmatron working at a current between 40 and 340 A, gas flow rate between 0.4 and 2 g/s and pressure from 5 to 100 kPa, this drop changes from negative to positive, influencing arc voltage value. The gas injection into plasma stream results in anode spot dynamic. Electric breakdowns accompanied by high voltage fluctuations are observed when argon or nitrogen is introduced while carbon dioxide eliminates this type of breakdown reducing the voltage fluctuations and ablation of electrodes.

Słowa kluczowe:

segmented plasmatron, re-entry in planetary atmosphere, plasma jet

Afiliacje autorów:

Kamińska A.-other affiliation
Hoffman J.-IPPT PAN
Szymański Z.-IPPT PAN
Dudeck M.-CNRS (FR)
25p.
5.Peradzyński Z., Barral S., Makowski K., Dudeck M., Causality violation in analysis of Hall thruster plasma instabilities, JOURNAL OF TECHNICAL PHYSICS, ISSN: 0324-8313, Vol.49, pp.315-327, 20096p.
6.Peradzyński Z., Barral S., Makowski K., Dudeck M., Causality violation in analysis of Hall thruster plasma instabilities, JOURNAL OF TECHNICAL PHYSICS, ISSN: 0324-8313, Vol.49, pp.315-327, 2008
7.Peradzyński Z., Makowski K., Barral S., Kurzyna J., Dudeck M., The role of the electron energy balance in plasma thruster instabilities, AIP Conference Proceedings, ISSN: 0094-243X, DOI: 10.1063/1.2909169, Vol.993, pp.435, 2008

Streszczenie:

Using the fluid equations of Hall thruster plasma we analyze the influence of the electron energy balance on the stability of ion sound modes. For frequencies lower than ωc = 107 s−1 the gains and losses in the source term are approximately equal, thus the temperature can be in principle determined in terms of other dependent variables. This permits to reduce the number of equations. It appears however, that the new system can have complex characteristics in some regions. This in turn implies instability of certain modes with frequencies lower than ωc.

Słowa kluczowe:

Energy balance, Acoustic analysis, Fluid equations, Instability analysis, Plasma instabilities

Afiliacje autorów:

Peradzyński Z.-IPPT PAN
Makowski K.-IPPT PAN
Barral S.-IPPT PAN
Kurzyna J.-IPPT PAN
Dudeck M.-CNRS (FR)
8.Kurzyna J., Makowski K., Peradzyński Z., Lazurenko A., Mazouffre S., Dudeck M., Where is the breathing mode? High voltage Hall effect thruster studies with EMD method, AIP Conference Proceedings, ISSN: 0094-243X, DOI: 10.1063/1.2909172, Vol.993, pp.443, 2008

Streszczenie:

Discharge current and local plasma oscillations are studied in a high voltage Hall effect thruster PPS®-X000. Characteristic time scales that appear in different operating conditions are resolved with the use of Hilbert-Huang spectra (HHS) which display time dependenc of instantaneous frequency and power. Sets of intrinsic mode functions (imfs) that are used for HHS calculation result due to application of empirical mode decomposition method (EMD) to nonstationary multicomponent signals. In the experiment the signals are captured in the electric circuit of the thruster as well locally, in the vicinity of the thruster exhaust region. Classical electric probes spaced along the azimuth and/or thruster axis let us study correlations of signals which were captured in different locations. In this way azimuthal and axial propagation of disturbances is inspected. The discharge voltage is varied in the range of 200÷900 V while xenon mas flow rate of 5÷9 mg/s. LF, MF, and HF characteristic bands that are known from previous studies of PPS®-100 thruster have been also detected here. However, expanding discharge current onto a set of intrinsic modes we can resolve MF mode more reliably than before. Moreover, for higher discharge voltages, this irregular mode turns into more regular waveform and tends to dominate in the discharge current masking almost completely the breathing mode (LF oscillations of the discharge current). In such a case triggering of HF oscillations is correlated with the phase of MF mode while in the case of PPS®-100 thruster it was correlated with the appropriate phase of the breathing mode (LF band). Regular HF emission that can be unambiguously interpreted as azimuthal electrostatic wave now is observed only in the specific operating conditions of the thruster. However, even if irregular HF emission is observed the time delay of cross-correlated signals which are captured in different azimuthal locations corresponds to the velocity of azimuthal electron drift in the field of magnetic barrier.

Słowa kluczowe:

High voltage direct current transmission, Electrical circuits, Electrostatic discharges, Electrostatic waves, Plasma oscillations

Afiliacje autorów:

Kurzyna J.-IPPT PAN
Makowski K.-IPPT PAN
Peradzyński Z.-IPPT PAN
Lazurenko A.-CNRS (FR)
Mazouffre S.-CNRS (FR)
Dudeck M.-CNRS (FR)
9.Barral S., Makowski K., Peradzyński Z., Dudeck M., Transit time instability in Hall Thruster, PHYSICS OF PLASMAS, ISSN: 1070-664X, Vol.12, pp.73504-1-9, 2005
10.Kurzyna J., Mazouffre S., Lazurenko A., Albarede L., Bonhomme G., Makowski K., Dudeck M., Peradzyński Z., Spectral analysis of Hall effect thruster plasma oscillations based on the empirical mode decomposition, PHYSICS OF PLASMAS, ISSN: 1070-664X, DOI: 10.1063/1.2145020, Vol.12, pp.123506-1-13, 2005

Streszczenie:

Hall-effect thruster plasma oscillations recorded by means of probes located at the channel exit are analyzed using the empirical mode decomposition (EMD) method. This self-adaptive technique permits to decompose a nonstationary signal into a set of intrinsic modes, and acts as a very efficient filter allowing to separate contributions of different underlying physical mechanisms. Applying the Hilbert transform to the whole set of modes allows to identify peculiar events and to assign them a range of instantaneous frequency and power. In addition to 25kHz breathing-type oscillations which are unambiguously identified, the EMD approach confirms the existence of oscillations with instantaneous frequencies in the range of 100–500kHz typical for ion transit-time oscillations. Modeling of high-frequency modes (ν∼10MHz) resulting from EMD of measured wave forms supports the idea that high-frequency plasma oscillations originate from electron-density perturbations propagating azimuthally with the electron drift velocity.

Słowa kluczowe:

Plasma oscillations, Interplanetary magnetic fields, Plasma waves, Wavelets, High frequency discharges

Afiliacje autorów:

Kurzyna J.-IPPT PAN
Mazouffre S.-CNRS (FR)
Lazurenko A.-CNRS (FR)
Albarede L.-CNRS (FR)
Bonhomme G.-Université Henri Poincaré (FR)
Makowski K.-IPPT PAN
Dudeck M.-CNRS (FR)
Peradzyński Z.-IPPT PAN
11.Szymański Z., Peradzyński Z., Kurzyna J., Hoffman J., Dudeck M., de Graaf M., Lago V., Spectroscopic study of a supersonic jet of laser-heated argon plasma, JOURNAL OF PHYSICS D-APPLIED PHYSICS, ISSN: 0022-3727, DOI: 10.1088/0022-3727/30/6/013, Vol.30, No.6, pp.998, 1997

Streszczenie:

A spectroscopic study of a low-pressure supersonic jet of laser-heated argon plasma is presented. The experimental set-up consisted of a high-pressure convergent nozzle and a supersonic nozzle. The supersonic nozzle was placed just behind the convergent nozzle and was connected to a low-pressure chamber. A continuous wave laser with output power of 2 kW was used to maintain the plasma in the stream of argon gas flowing from the convergent nozzle. The plasma then expanded through the supersonic nozzle. Emission spectra from the laser-sustained plasma and supersonic jet were measured with a 1.3 m focal length spectrograph and 1254 silicon intensified target (SIT) detector connected to an EG&G PARC optical multichannel analyser (OMA) III. We found that the supersonic stream of argon plasma had an electron density of - and a temperature of 6 - 7 kK.

Afiliacje autorów:

Szymański Z.-IPPT PAN
Peradzyński Z.-IPPT PAN
Kurzyna J.-IPPT PAN
Hoffman J.-IPPT PAN
Dudeck M.-CNRS (FR)
de Graaf M.-other affiliation
Lago V.-other affiliation

Prace konferencyjne
1.Kamińska A., Szymański Z., Hoffman J., Vacher D., Menecier S., Dudeck M., Écoulements ionisés dans des plasmatrons pour la simulation des conditions d’entrée en atmosphéres planétaires, Conference on Modelisation : Atomes, Molécules, Plasmas et Systèmes Dynamiques, 2013-05-23/05-24, Bourges (FR), pp.75-86, 2013

Streszczenie:

Deux plasmatrons a arc non transferes sont utilises pour simuler les proprietes du gaz ionise entourant une sonde d'exploration planetaire. Le plasmatron de I'IEPE (Poznan) d'une puissance maximale de 25 kW fonctionne a pression atmospherique et a pression reduite (p>1 kPa) avec de l'argon, de l'azote et des melanges CO2-N2. La source a arc non transfere du LAEPT (Clermont-Ferrand) d'une puissance applicable maximale de 100 kW fonctionne a pression atmospherique avec de nombreux melanges gazeux dont les melanges N2-O2 et CO2-N2. Une modelisation fluide du plasmatron de I'IEPE est presentee pour de l'argon en tenant compte d'un desequilibre thermique Te-T. Des mesures de temperature par spectroscopie d'emission ont ete realisees dans les jets de plasma obtenus avec les deux plasmatrons. La temperature d'excitation de l'azote atomique et la temperature de vibration de la molecule CN ont ete determinees (IEPE). Les temperatures d'un plasma d'air et d'un plasma de CO2-N2 ont ete determinees a partir de l'emission du cuivre (LAEPT)

Afiliacje autorów:

Kamińska A.-other affiliation
Szymański Z.-IPPT PAN
Hoffman J.-IPPT PAN
Vacher D.-Université d’Auvergne (FR)
Menecier S.-Clermont Université (FR)
Dudeck M.-CNRS (FR)

Abstrakty konferencyjne
1.Kamińska A., Dudeck M., Hoffman J., Szymański Z., Vacher D., Segmented plasmatron for simulation of re-entry conditions in a planetary atmosphere, XXXI ICPIG, XXXI International Conference on Phenomena in Ionized Gases, 2013-07-14/07-19, Granada (ES), Vol.1, pp.11-14, 2013

Streszczenie:

The experimental studies are carried out to adapt the plasmatron functioning to simulate re-entry conditions in a planetary atmosphere. The plasma flow is produced using argon or nitrogen arc and nitrogen or carbon dioxide is introduced into plasma jet. Although the gas introduced into plasma jet is injected behind the arc it influences the arc characteristics and dynamics of flow. This effect is studied in detail. Emission spectra of atomic nitrogen and ionized molecular nitrogen (N2+) are also recorded and analyzed. The atomic emission is studied in the infra-red region and has allowed the determination of an excitation temperature. The electron density is determined from the continuum radiation, and the rotational and vibrational temperatures are determined from the 1stnegative system of N2+

Afiliacje autorów:

Kamińska A.-other affiliation
Dudeck M.-CNRS (FR)
Hoffman J.-IPPT PAN
Szymański Z.-IPPT PAN
Vacher D.-Université d’Auvergne (FR)