Tabela A z publikacjami w czasopismach wyróżnionych w Journal Citation Reports (JCR) 
Tabela B z publikacjami w czasopismach zagranicznych i krajowych, wyróżnionych na liście MNSzW
Publikacje konferencyjne indeksowane w bazie Web of Science Core Collection
Inne publikacje w pozostałych czasopismach i wydawnictwach konferencyjnych
Afiliacja IPPT PAN

1.Richter Ł., Żuk P.J., Szymczak P., Paczesny J., Bąk K.M., Szymborski T., Garstecki P., Stone H.A., Hołyst R., Drummond C., Ions in an AC electric field: strong long-range repulsion between oppositely charged surfaces, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.125.056001, Vol.125, No.5, pp.056001-1-5, 2020
Richter Ł., Żuk P.J., Szymczak P., Paczesny J., Bąk K.M., Szymborski T., Garstecki P., Stone H.A., Hołyst R., Drummond C., Ions in an AC electric field: strong long-range repulsion between oppositely charged surfaces, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.125.056001, Vol.125, No.5, pp.056001-1-5, 2020

Abstract:
Two oppositely charged surfaces separated by a dielectric medium attract each other. In contrast we observe a strong repulsion between two plates of a capacitor that is filled with an aqueous electrolyte upon application of an alternating potential difference between the plates. This long-range force increases with the ratio of diffusion coefficients of the ions in the medium and reaches a steady state after a few minutes, which is much larger than the millisecond timescale of diffusion across the narrow gap. The repulsive force, an order of magnitude stronger than the electrostatic attraction observed in the same setup in air, results from the increase in osmotic pressure as a consequence of the field-induced excess of cations and anions due to lateral transport from adjacent reservoirs.

(200p.)
2.Gupta A., Żuk P.J., Stone H.A., Charging dynamics of overlapping double layers in a cylindrical nanopore, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.125.076001, Vol.125, No.7, pp.076001-1-6, 2020
Gupta A., Żuk P.J., Stone H.A., Charging dynamics of overlapping double layers in a cylindrical nanopore, PHYSICAL REVIEW LETTERS, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.125.076001, Vol.125, No.7, pp.076001-1-6, 2020

Abstract:
The charging of electrical double layers inside a cylindrical pore has applications to supercapacitors, batteries, desalination and biosensors. The charging dynamics in the limit of thin double layers, i.e., when the double layer thickness is much smaller than the pore radius, is commonly described using an effective RC transmission line circuit. Here, we perform direct numerical simulations (DNS) of the Poisson-Nernst-Planck equations to study the double layer charging for the scenario of overlapping double layers, i.e., when the double layer thickness is comparable to the pore radius. We develop an analytical model that accurately predicts the results of DNS. Also, we construct a modified effective circuit for the overlapping double layer limit, and find that the modified circuit is identical to the RC transmission line but with different values and physical interpretation of the capacitive and resistive elements. In particular, the effective surface potential is reduced, the capacitor represents a volumetric current source, and the charging timescale is weakly dependent on the ratio of the pore radius and the double layer thickness.

(200p.)
3.Moreira R., Vargas Guzman H., Boopathi S., Baker J.L., Poma Bernaola A., Characterization of Structural and Energetic Differences Between Conformations of the SARS-CoV-2 Spike Protein, Materials, ISSN: 1996-1944, DOI: 10.3390/ma13235362, Vol.13, No.5362, pp.1-14, 2020
Moreira R., Vargas Guzman H., Boopathi S., Baker J.L., Poma Bernaola A., Characterization of Structural and Energetic Differences Between Conformations of the SARS-CoV-2 Spike Protein, Materials, ISSN: 1996-1944, DOI: 10.3390/ma13235362, Vol.13, No.5362, pp.1-14, 2020

Abstract:
The novel coronavirus disease 2019 (COVID-19) pandemic has disrupted modern societies and their economies. The resurgence in COVID-19 cases as part of the second wave is observed across Europe and the Americas. The scientific response has enabled a complete structural characterization of the Severe Acute Respiratory Syndrome—novel Coronavirus 2 (SARS-CoV-2). Among the most relevant proteins required by the novel coronavirus to facilitate the cell entry mechanism is the spike protein. This protein possesses a receptor-binding domain (RBD) that binds the cellular angiotensin-converting enzyme 2 (ACE2) and then triggers the fusion of viral and host cell membranes. In this regard, a comprehensive characterization of the structural stability of the spike protein is a crucial step to find new therapeutics to interrupt the process of recognition. On the other hand, it has been suggested that the participation of more than one RBD is a possible mechanism to enhance cell entry. Here, we discuss the protein structural stability based on the computational determination of the dynamic contact map and the energetic difference of the spike protein conformations via the mapping of the hydration free energy by the Poisson–Boltzmann method. We expect our result to foster the discussion of the number of RBD involved during recognition and the repurposing of new drugs to disable the recognition by discovering new hotspots for drug targets apart from the flexible loop in the RBD that binds the ACE2.

Keywords:
COVID-19, SARS-CoV-2, Spike Protein, RBD, Structural stability, Large conformational changes, protein complexes, Free Energy, molecular dynamics, dynamics contact analysis

(140p.)
4.Hat B., Jaruszewicz-Błońska J., Lipniacki T., Model-based optimization of combination protocols for irradiation-insensitive cancers, Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-020-69380-6, Vol.10, pp.12652-1-14, 2020
Hat B., Jaruszewicz-Błońska J., Lipniacki T., Model-based optimization of combination protocols for irradiation-insensitive cancers, Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-020-69380-6, Vol.10, pp.12652-1-14, 2020

Abstract:
Alternations in the p53 regulatory network may render cancer cells resistant to the radiation-induced apoptosis. In this theoretical study we search for the best protocols combining targeted therapy with radiation to treat cancers with wild-type p53, but having downregulated expression of PTEN or overexpression of Wip1 resulting in resistance to radiation monotherapy. Instead of using the maximum tolerated dose paradigm, we exploit stochastic computational model of the p53 regulatory network to calculate apoptotic fractions for both normal and cancer cells. We consider combination protocols, with irradiations repeated every 12, 18, 24, or 36 h to find that timing between Mdm2 inhibitor delivery and irradiation significantly influences the apoptotic cell fractions. We assume that uptake of the inhibitor is higher by cancer than by normal cells and that cancer cells receive higher irradiation doses from intersecting beams. These two assumptions were found necessary for the existence of protocols inducing massive apoptosis in cancer cells without killing large fraction of normal cells neighboring tumor. The best found protocols have irradiations repeated every 24 or 36 h with two inhibitor doses per irradiation cycle, and allow to induce apoptosis in more than 95% of cancer cells, killing less than 10% of normal cells.

(140p.)
5.Moreira R., Chwastyk M., Baker J.L., Vargas Guzman H.A., Poma A., Quantitative determination of mechanical stability in the novel coronavirus spike protein, NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/D0NR03969A, Vol.12, No.31, pp.16409-16413, 2020
Moreira R., Chwastyk M., Baker J.L., Vargas Guzman H.A., Poma A., Quantitative determination of mechanical stability in the novel coronavirus spike protein, NANOSCALE, ISSN: 2040-3364, DOI: 10.1039/D0NR03969A, Vol.12, No.31, pp.16409-16413, 2020

Abstract:
We report on the novel observation about the gain in mechanical stability of the SARS-CoV-2 (CoV2) spike (S) protein in comparison with SARS-CoV from 2002 (CoV1). Our findings have several biological implications in the subfamily of coronaviruses, as they suggest that the receptor binding domain (RBD) (~200 amino acids) plays a fundamental role as a damping element of the massive viral particle's motion prior to cell-recognition, while also facilitating viral attachment, fusion and entry. The mechanical stability via pulling of the RBD is 250 pN and 200 pN for CoV2 and CoV1 respectively, and the additional stability observed for CoV2 (~50 pN) might play a role in the increasing spread of COVID-19.

(140p.)
6.Ghalya N., Sellier A., Ekiel-Jeżewska M.L., Feuillebois F., Effective viscosity of a dilute homogeneous suspension of spheres in Poiseuille flow between parallel slip walls, JOURNAL OF FLUID MECHANICS, ISSN: 0022-1120, DOI: 10.1017/jfm.2020.429, Vol.899, pp.A13-1-36, 2020
Ghalya N., Sellier A., Ekiel-Jeżewska M.L., Feuillebois F., Effective viscosity of a dilute homogeneous suspension of spheres in Poiseuille flow between parallel slip walls, JOURNAL OF FLUID MECHANICS, ISSN: 0022-1120, DOI: 10.1017/jfm.2020.429, Vol.899, pp.A13-1-36, 2020

Abstract:
For flows in microchannels, a slip on the walls may be efficient in reducing viscous dissipation. A related issue, addressed in this article, is to decrease the effective viscosity of a dilute monodisperse suspension of spheres in Poiseuille flow by using two parallel slip walls. Extending the approach developed for no-slip walls in Feuillebois et al. (J. Fluid Mech., vol. 800, 2016, pp. 111–139), a formal expression is obtained for the suspension intrinsic viscosity [μ] solely in terms of a stresslet component and a quadrupole component exerted on a single freely suspended sphere. In the calculation of [μ], the hydrodynamic interactions between a sphere and the slip walls are approximated using either the nearest wall model or the wall-superposition model. Both the stresslet and quadrupole are derived and accurately calculated using bipolar coordinates. Results are presented for [μ] in terms of H/(2a) and ˜λ = λ/a ≤ 1, where H is the gap between walls, a is the sphere radius and λ is the wall slip length using the Navier slip boundary condition. As compared with the no-slip case, the intrinsic viscosity strongly depends on ˜λ for given H/(2a), especially for small H/(2a). For example, in the very confined case H/(2a) = 2 (a lower bound found for practical validity of single-wall models) and for ˜λ = 1, the intrinsic viscosity is three times smaller than for a suspension bounded by no-slip walls and five times smaller than for an unbounded suspension (Einstein, Ann. Phys., vol. 19, 1906, pp. 289–306). We also provide a handy formula fitting our results for [μ] in the entire range 2 ≤ H/(2a) ≤ 100 and ˜λ ≤ 1.

Keywords:
complex fluids, low-Reynolds-number flows

(140p.)
7.Słowicka A.M., Stone H.A., Ekiel-Jeżewska M.L., Flexible fibers in shear flow approach attracting periodic solutions, PHYSICAL REVIEW E, ISSN: 2470-0045, DOI: 10.1103/PhysRevE.101.023104, Vol.101, No.2, pp.023104-1-14, 2020
Słowicka A.M., Stone H.A., Ekiel-Jeżewska M.L., Flexible fibers in shear flow approach attracting periodic solutions, PHYSICAL REVIEW E, ISSN: 2470-0045, DOI: 10.1103/PhysRevE.101.023104, Vol.101, No.2, pp.023104-1-14, 2020

Abstract:
The three-dimensional dynamics of a single non-Brownian flexible fiber in shear flow is evaluated numerically, in the absence of inertia. A wide range of ratios A of bending to hydrodynamic forces and hundreds of initial configurations are considered. We demonstrate that flexible fibers in shear flow exhibit much more complicated evolution patterns than in the case of extensional flow, where transitions to higher-order modes of characteristic shapes are observed when A exceeds consecutive threshold values. In shear flow, we identify the existence of an attracting steady configuration and different attracting periodic motions that are approached by long-lasting rolling, tumbling, and meandering dynamical modes, respectively. We demonstrate that the final stages of the rolling and tumbling modes are effective Jeffery orbits, with the constant parameter C replaced by an exponential function that either decays or increases in time, respectively, corresponding to a systematic drift of the trajectories. In the limit of C→0, the fiber aligns with the vorticity direction and in the limit of C→∞, the fiber periodically tumbles within the shear plane. For moderate values of A, a three-dimensional meandering periodic motion exists, which corresponds to intermediate values of C. Transient, close to periodic oscillations are also detected in the early stages of the modes.

(140p.)
8.Zalewska-Piątek B., Olszewski M., Lipniacki T., Błoński S., Wieczór M., Bruździak P., Skwarska A., Nowicki B., Nowicki S., Piątek R., A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin, PLoS Pathogens, ISSN: 1553-7366, DOI: 10.1371/journal.ppat.1008247, Vol.16, No.1, pp. e1008247-1-32, 2020
Zalewska-Piątek B., Olszewski M., Lipniacki T., Błoński S., Wieczór M., Bruździak P., Skwarska A., Nowicki B., Nowicki S., Piątek R., A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin, PLoS Pathogens, ISSN: 1553-7366, DOI: 10.1371/journal.ppat.1008247, Vol.16, No.1, pp. e1008247-1-32, 2020

Abstract:
In this study, we established a dynamic micromodel of urinary tract infection to analyze the impact of UT-segment-specific urinary outflow on the persistence of E. coli colonization. We found that the adherence of Dr+ E. coli to bladder T24 transitional cells and type IV collagen is maximal at lowest shear stress and is reduced by any increase in flow velocity. The analyzed adherence was effective in the whole spectrum of physiological shear stress and was almost irreversible over the entire range of generated shear force. Once Dr+ E. coli bound to host cells or collagen, they did not detach even in the presence of elevated shear stress or of chloramphenicol, a competitive inhibitor of binding. Investigating the role of epithelial surface architecture, we showed that the presence of budding cells–a model microarchitectural obstacle–promotes colonization of the urinary tract by E. coli. We report a previously undescribed phenomenon of epithelial cell "rolling-shedding" colonization, in which the detached epithelial cells reattach to the underlying cell line through a layer of adherent Dr+ E. coli. This rolling-shedding colonization progressed continuously due to "refilling" induced by the flow-perturbing obstacle. The shear stress of fluid containing free-floating bacteria fueled the rolling, while providing an uninterrupted supply of new bacteria to be trapped by the rolling cell. The progressive rolling allows for transfer of briefly attached bacteria onto the underlying monolayer in a repeating cascading event.

(140p.)
9.Pierini F., Guglielmelli A., Urbanek O., Nakielski P., Pezzi L., Buda R., Lanzi M., Kowalewski T.A., De Sio L., Thermoplasmonic‐activated hydrogel based dynamic light attenuator, Advanced Optical Materials, ISSN: 2195-1071, DOI: 10.1002/adom.202000324, Vol.8, No.12, pp.2000324-1-7, 2020
Pierini F., Guglielmelli A., Urbanek O., Nakielski P., Pezzi L., Buda R., Lanzi M., Kowalewski T.A., De Sio L., Thermoplasmonic‐activated hydrogel based dynamic light attenuator, Advanced Optical Materials, ISSN: 2195-1071, DOI: 10.1002/adom.202000324, Vol.8, No.12, pp.2000324-1-7, 2020

Abstract:
This work describes the morphological, optical, and thermo‐optical properties of a temperature‐sensitive hydrogel poly(N‐isopropylacrylamide‐co‐N‐isopropylmethacrylamide) [P(NIPAm‐co‐NIPMAm]) film containing a specific amount of gold nanorods (GNRs). The light‐induced thermoplasmonic heating of GNRs is used to control the optical scattering of an initially transparent hydrogel film. A hydrated P(NIPAm‐co‐NIPMAm) film is optically clear at room temperature. When heated to temperatures over 37 °C via light irradiation with a resonant source (λ = 810 nm) to the GNRs, a reversible phase transition from a swollen hydrated state to a shrunken dehydrated state occurs. This phenomenon causes a drastic and reversible change in the optical transparency from a clear to an opaque state. A significant red shift (≈30 nm) of the longitudinal band can also be seen due to an increased average refractive index surrounding the GNRs. This change is in agreement with an ad hoc theoretical model which uses a modified Gans theory for ellipsoidal nanoparticles. Morphological analysis of the composite film shows the presence of well‐isolated and randomly dispersed GNRs. Thermo‐optical experiments demonstrate an all‐optically controlled light attenuator (65% contrast ratio) which can be easily integrated in several modern optical applications such as smart windows and light‐responsive optical attenuators.

Keywords:
active plasmonics, gold nanorods, hydrogels, optical attenuators, optical transparency, plasmonic nanoparticles, polymers

(140p.)
10.Walczak J., Malińska D., Drabik K., Michalska B., Prill M., Johne S., Luettich K., Szymański J., Peitsch M.C., Hoeng J., Duszyński J., Więckowski M.R., van der Toorn M., Szczepanowska J., Mitochondrial network and biogenesis in response to short and long-term exposure of human BEAS-2B cells to aerosol extracts from the tobacco heating system 2.2, Cellular Physiology and Biochemistry, ISSN: 1015-8987, DOI: 10.33594/000000216, Vol.54, No.2, pp.230-251, 2020
Walczak J., Malińska D., Drabik K., Michalska B., Prill M., Johne S., Luettich K., Szymański J., Peitsch M.C., Hoeng J., Duszyński J., Więckowski M.R., van der Toorn M., Szczepanowska J., Mitochondrial network and biogenesis in response to short and long-term exposure of human BEAS-2B cells to aerosol extracts from the tobacco heating system 2.2, Cellular Physiology and Biochemistry, ISSN: 1015-8987, DOI: 10.33594/000000216, Vol.54, No.2, pp.230-251, 2020

Abstract:
Background/aims: Adverse effects of cigarette smoke on health are widely known. Heating rather than combusting tobacco is one of strategies to reduce the formation of toxicants. The sensitive nature of mitochondrial dynamics makes the mitochondria an early indicator of cellular stress. For this reason, we studied the morphology and dynamics of the mitochondrial network in human bronchial epithelial cells (BEAS-2B) exposed to total particulate matter (TPM) generated from 3R4F reference cigarette smoke and from aerosol from a new candidate modified risk tobacco product, the Tobacco Heating System (THS 2.2). Methods: Cells were subjected to short (1 week) and chronic (12 weeks) exposure to a low (7.5 µg/mL) concentration of 3R4F TPM and low (7.5 µg/mL), medium (37.5 µg/mL), and high (150 µg/mL) concentrations of TPM from THS 2.2. Confocal microscopy was applied to assess cellular and mitochondrial morphology. Cytosolic Ca2+ levels, mitochondrial membrane potential and mitochondrial mass were measured with appropriate fluorescent probes on laser scanning cytometer. The levels of proteins regulating mitochondrial dynamics and biogenesis were determined by Western blot. Results: In BEAS-2B cells exposed for one week to the low concentration of 3R4F TPM and the high concentration of THS 2.2 TPM we observed clear changes in cell morphology, mitochondrial network fragmentation, altered levels of mitochondrial fusion and fission proteins and decreased biogenesis markers. Also cellular proliferation was slowed down. Upon chronic exposure (12 weeks) many parameters were affected in the opposite way comparing to short exposure. We observed strong increase of NRF2 protein level, reorganization of mitochondrial network and activation of the mitochondrial biogenesis process. Conclusion: Comparison of the effects of TPMs from 3R4F and from THS 2.2 revealed, that similar extent of alterations in mitochondrial dynamics and biogenesis is observed at 7.5 µg/mL of 3R4F TPM and 150 µg/mL of THS 2.2 TPM. 7 days exposure to the investigated components of cigarette smoke evoke mitochondrial stress, while upon chronic, 12 weeks exposure the hallmarks of cellular adaptation to the stressor were visible. The results also suggest that mitochondrial stress signaling is involved in the process of cellular adaptation under conditions of chronic stress caused by 3R4F and high concentration of THS 2.2.

Keywords:
BEAS-2B cells, candidate modified risk tobacco product, cigarette smoke, mitochondrial dynamics, tobacco heating system 2.2.

(140p.)
11.Zdioruk M., Want A., Mietelska-Porowska A., Laskowska-Kaszub K., Wojsiat J., Klejman A., Użarowska E., Koza P., Olejniczak S., Pikul S., Konopka W., Golab J., Wojda U., A new inhibitor of tubulin polymerization kills multiple cancer cell types and reveals p21-mediated mechanism determining cell death after mitotic catastrophe, Cancers, ISSN: 2072-6694, DOI: 10.3390/cancers12082161, Vol.12, No.8, pp.2161-1-21, 2020
Zdioruk M., Want A., Mietelska-Porowska A., Laskowska-Kaszub K., Wojsiat J., Klejman A., Użarowska E., Koza P., Olejniczak S., Pikul S., Konopka W., Golab J., Wojda U., A new inhibitor of tubulin polymerization kills multiple cancer cell types and reveals p21-mediated mechanism determining cell death after mitotic catastrophe, Cancers, ISSN: 2072-6694, DOI: 10.3390/cancers12082161, Vol.12, No.8, pp.2161-1-21, 2020

Abstract:
Induction of mitotic catastrophe through the disruption of microtubules is an established target in cancer therapy. However, the molecular mechanisms determining the mitotic catastrophe and the following apoptotic or non-apoptotic cell death remain poorly understood. Moreover, many existing drugs targeting tubulin, such as vincristine, have reduced efficacy, resulting from poor solubility in physiological conditions. Here, we introduce a novel small molecule 2-aminoimidazoline derivative-OAT-449, a synthetic water-soluble tubulin inhibitor. OAT-449 in a concentration range from 6 to 30 nM causes cell death of eight different cancer cell lines in vitro, and significantly inhibits tumor development in such xenograft models as HT-29 (colorectal adenocarcinoma) and SK-N-MC (neuroepithelioma) in vivo. Mechanistic studies showed that OAT-449, like vincristine, inhibited tubulin polymerization and induced profound multi-nucleation and mitotic catastrophe in cancer cells. HeLa and HT-29 cells within 24 h of treatment arrested in G2/M cell cycle phase, presenting mitotic catastrophe features, and 24 h later died by non-apoptotic cell death. In HT-29 cells, both agents altered phosphorylation status of Cdk1 and of spindle assembly checkpoint proteins NuMa and Aurora B, while G2/M arrest and apoptosis blocking was consistent with p53-independent accumulation in the nucleus and largely in the cytoplasm of p21/waf1/cip1, a key determinant of cell fate programs. This is the first common mechanism for the two microtubule-dissociating agents, vincristine and OAT-449, determining the cell death pathway following mitotic catastrophe demonstrated in HT-29 cells.

Keywords:
cancer, chemotherapeutic, microtubule-poison, vincristine, mitotic catastrophe, non-apoptotic cell death, p21, p53

(140p.)
12.Wang L., Lv H., Liu L., Zhang Q., Nakielski P., Si Y., Cao J., Li X., Pierini F., Yu J., Ding B., Electrospun nanofiber-reinforced three-dimensional chitosan matrices: architectural, mechanical and biological properties, JOURNAL OF COLLOID AND INTERFACE SCIENCE, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2020.01.016, Vol.565, pp.416-425, 2020
Wang L., Lv H., Liu L., Zhang Q., Nakielski P., Si Y., Cao J., Li X., Pierini F., Yu J., Ding B., Electrospun nanofiber-reinforced three-dimensional chitosan matrices: architectural, mechanical and biological properties, JOURNAL OF COLLOID AND INTERFACE SCIENCE, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2020.01.016, Vol.565, pp.416-425, 2020

Abstract:
The poor intrinsic mechanical properties of chitosan hydrogels have greatly hindered their practical applications. Inspired by nature, we proposed a strategy to enhance the mechanical properties of chitosan hydrogels by construction of a nanofibrous and cellular architecture in the hydrogel without toxic chemical crosslinking. To this end, electrospun nanofibers including cellulose acetate, polyacrylonitrile, and SiO2 nanofibers were introduced into chitosan hydrogels by homogenous dispersion and lyophilization. With the addition of 30% cellulose acetate nanofibers, the cellular structure could be maintained even in water without crosslinking, and integration of 60% of the nanofibers could guarantee the free-standing structure of the chitosan hydrogel with a low solid content of 1%. Moreover, the SiO2 nanofiber-reinforced chitosan (SiO2 NF/CS) three-dimensional (3D) matrices exhibit complete shape recovery from 80% compressive strain and excellent injectability. The cellular architecture and nanofibrous structure in the SiO2 NF/CS matrices are beneficial for human mesenchymal stem cell adhesion and stretching. Furthermore, the SiO2 NF/CS matrices can also act as powerful vehicles for drug delivery. As an example, bone morphogenetic protein 2 could be immobilized on SiO2 NF/CS matrices to induce osteogenic differentiation. Together, the electrospun nanofiber-reinforced 3D chitosan matrices exhibited improved mechanical properties and enhanced biofunctionality, showing great potential in tissue engineering.

Keywords:
chitosan hydrogel, electrospun nanofiber, mechanical property, nanofibrous matrix, tissue engineering

(100p.)
13.Pawłowska S., Rinoldi C., Nakielski P., Ziai Y., Urbanek O., Li X., Kowalewski T.A., Ding B., Pierini F., Ultraviolet light‐assisted electrospinning of core–shell fully cross‐linked P(NIPAAm‐co‐NIPMAAm) hydrogel‐based nanofibers for thermally induced drug delivery self‐regulation, Advanced Materials Interfaces, ISSN: 2196-7350, DOI: 10.1002/admi.202000247, Vol.7, No.12, pp.2000247-1-13, 2020
Pawłowska S., Rinoldi C., Nakielski P., Ziai Y., Urbanek O., Li X., Kowalewski T.A., Ding B., Pierini F., Ultraviolet light‐assisted electrospinning of core–shell fully cross‐linked P(NIPAAm‐co‐NIPMAAm) hydrogel‐based nanofibers for thermally induced drug delivery self‐regulation, Advanced Materials Interfaces, ISSN: 2196-7350, DOI: 10.1002/admi.202000247, Vol.7, No.12, pp.2000247-1-13, 2020

Abstract:
Body tissues and organs have complex functions which undergo intrinsic changes during medical treatments. For the development of ideal drug delivery systems, understanding the biological tissue activities is necessary to be able to design materials capable of changing their properties over time, on the basis of the patient's tissue needs. In this study, a nanofibrous thermal‐responsive drug delivery system is developed. The thermo‐responsivity of the system makes it possible to self‐regulate the release of bioactive molecules, while reducing the drug delivery at early stages, thus avoiding high concentrations of drugs which may be toxic for healthy cells. A co‐axial electrospinning technique is used to fabricate core–shell cross‐linked copolymer poly(N‐isopropylacrylamide‐co‐N‐isopropylmethacrylamide) (P(NIPAAm‐co‐NIPMAAm)) hydrogel‐based nanofibers. The obtained nanofibers are made of a core of thermo‐responsive hydrogel containing a drug model, while the outer shell is made of poly‐l‐lactide‐co‐caprolactone (PLCL). The custom‐made electrospinning apparatus enables the in situ cross‐linking of P(NIPAAm‐co‐NIPMAAm) hydrogel into a nanoscale confined space, which improves the electrospun nanofiber drug dosing process, by reducing its provision and allowing a self‐regulated release control. The mechanism of the temperature‐induced release control is studied in depth, and it is shown that the system is a promising candidate as a "smart" drug delivery platform.

Keywords:
biomimetic nanomaterials, electrospun core–shell nanofibers, hierarchical nanostructures, smart drug delivery, thermo‐responsive hydrogels

(100p.)
14.Kochańczyk M., Grabowski F., Lipniacki T., Super-spreading events initiated the exponential growth phase of COVID-19 with R-0 higher than initially estimated, Royal Society Open Science, ISSN: 2054-5703, DOI: 10.1098/rsos.200786, Vol.7, No.9, pp.200786-1-9, 2020
Kochańczyk M., Grabowski F., Lipniacki T., Super-spreading events initiated the exponential growth phase of COVID-19 with R-0 higher than initially estimated, Royal Society Open Science, ISSN: 2054-5703, DOI: 10.1098/rsos.200786, Vol.7, No.9, pp.200786-1-9, 2020

Abstract:
The basic reproduction number R0 of the coronavirus disease 2019 has been estimated to range between 2 and 4. Here, we used an SEIR model that properly accounts for the distribution of the latent period and, based on empirical estimates of the doubling time in the near-exponential phases of epidemic progression in China, Italy, Spain, France, UK, Germany, Switzerland and New York State, we estimated that R0 lies in the range 4.7-11.4. We explained this discrepancy by performing stochastic simulations of model dynamics in a population with a small proportion of super-spreaders. The simulations revealed two-phase dynamics, in which an initial phase of relatively slow epidemic progression diverts to a faster phase upon appearance of infectious super-spreaders. Early estimates obtained for this initial phase may suggest lower R0.

Keywords:
COVID-19, reproduction number

(100p.)
15.Ozen M., Lipniacki T., Levchenko A., Emamian E.S., Abdi A., Modeling and measurement of signaling outcomes affecting decision making in noisy intracellular networks using machine learning methods, Integrative Biology, ISSN: 1757-9708, DOI: 10.1093/intbio/zyaa009, Vol.12, No.5, pp.122-138, 2020
Ozen M., Lipniacki T., Levchenko A., Emamian E.S., Abdi A., Modeling and measurement of signaling outcomes affecting decision making in noisy intracellular networks using machine learning methods, Integrative Biology, ISSN: 1757-9708, DOI: 10.1093/intbio/zyaa009, Vol.12, No.5, pp.122-138, 2020

Abstract:
Characterization of decision-making in cells in response to received signals is of importance for understanding how cell fate is determined. The problem becomes multi-faceted and complex when we consider cellular heterogeneity and dynamics of biochemical processes. In this paper, we present a unified set of decision-theoretic, machine learning and statistical signal processing methods and metrics to model the precision of signaling decisions, in the presence of uncertainty, using single cell data. First, we introduce erroneous decisions that may result from signaling processes and identify false alarms and miss events associated with such decisions. Then, we present an optimal decision strategy which minimizes the total decision error probability. Additionally, we demonstrate how graphing receiver operating characteristic curves conveniently reveals the trade-off between false alarm and miss probabilities associated with different cell responses. Furthermore, we extend the introduced framework to incorporate the dynamics of biochemical processes and reactions in a cell, using multi-time point measurements and multi-dimensional outcome analysis and decision-making algorithms. The introduced multivariate signaling outcome modeling framework can be used to analyze several molecular species measured at the same or different time instants. We also show how the developed binary outcome analysis and decision-making approach can be extended to more than two possible outcomes. As an example and to show how the introduced methods can be used in practice, we apply them to single cell data of PTEN, an important intracellular regulatory molecule in a p53 system, in wild-type and abnormal cells. The unified signaling outcome modeling framework presented here can be applied to various organisms ranging from viruses, bacteria, yeast and lower metazoans to more complex organisms such as mammalian cells. Ultimately, this signaling outcome modeling approach can be utilized to better understand the transition from physiological to pathological conditions such as inflammation, various cancers and autoimmune diseases.

Keywords:
Cell decision making, noise, decision theory, machine learning, signaling errors, p53 system

(100p.)
16.Wencel A., Ciezkowska M., Wisniewska M., Zakrzewska K.E., Pijanowska D.G., Pluta K.D., Effects of genetically modified human skin fibroblasts, stably overexpressing hepatocyte growth factor, on hepatic functions of cocultured C3A cells, Biotechnology & Bioengineering, ISSN: 0006-3592, DOI: 10.1002/bit.27551, pp.1-10, 2020
Wencel A., Ciezkowska M., Wisniewska M., Zakrzewska K.E., Pijanowska D.G., Pluta K.D., Effects of genetically modified human skin fibroblasts, stably overexpressing hepatocyte growth factor, on hepatic functions of cocultured C3A cells, Biotechnology & Bioengineering, ISSN: 0006-3592, DOI: 10.1002/bit.27551, pp.1-10, 2020

Abstract:
Diseases leading to terminal hepatic failure are among the most common causes of death worldwide. Transplant of the whole organ is the only effective method to cure liver failure. Unfortunately, this treatment option is not available universally due to the serious shortage of donors. Thus, alternative methods have been developed that are aimed at prolonging the life of patients, including hepatic cells transplantation and bridging therapy based on hybrid bioartificial liver devices. Parenchymal liver cells are highly differentiated and perform many complex functions, such as detoxification and protein synthesis. Unfortunately, isolated hepatocytes display a rapid decline in viability and liver‐specific functions. A number of methods have been developed to maintain hepatocytes in their highly differentiated state in vitro, amongst them the most promising being 3D growth scaffolds and decellularized tissues or coculture with other cell types required for the heterotypic cell‐cell interactions. Here we present a novel approach to the hepatic cells culture based on the feeder layer cells genetically modified using lentiviral vector to stably produce additional amounts of hepatocyte growth factor and show the positive influence of these coculture conditions on the preservation of the hepatic functions of the liver parenchymal cells' model—C3A cells.

Keywords:
cell genetic modifications, growth surface engineering, hepatocyte growth factor, hepatocytes‐fibroblasts coculture, lentiviral vectors

(100p.)
17.Sankaran A., Pawłowska S., Pierini F., Kowalewski T.A., Yarin A.L., Dynamics of electrospun hydrogel filaments in oscillatory microchannel flows: a theoretical and experimental approach, PHYSICS OF FLUIDS, ISSN: 1070-6631, DOI: 10.1063/5.0011005, Vol.32, No.7, pp.072008-1-13, 2020
Sankaran A., Pawłowska S., Pierini F., Kowalewski T.A., Yarin A.L., Dynamics of electrospun hydrogel filaments in oscillatory microchannel flows: a theoretical and experimental approach, PHYSICS OF FLUIDS, ISSN: 1070-6631, DOI: 10.1063/5.0011005, Vol.32, No.7, pp.072008-1-13, 2020

Abstract:
The dynamics of highly flexible micro- and nano-filaments are important to a variety of biological, medical, and industrial problems. The filament configuration variation and cross-stream migration in a microchannel are affected by thermal fluctuations in addition to elastic and viscous forces. Here, hydrogel nano-filaments with small bending Young's moduli are utilized to elucidate the transitional behavior of elastic Brownian filaments in an oscillatory microchannel flow. A numerical model based on chain elastic dumbbells similar to the Rouse-Zimm model accounting for elastic, viscous, and random Brownian forces is proposed and implemented. In addition, a theoretical model to describe the average orientation–deformation tensor evolution for an ensemble of filaments in an oscillatory flow is proposed. The results are compared with the evolution observed in the experiments.

(100p.)
18.Paprocki B., Pręgowska A., Szczepański J., Optimizing information processing in brain-inspired neural networks, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/bpasts.2020.131844, Vol.68, No.2, pp.225-233, 2020
Paprocki B., Pręgowska A., Szczepański J., Optimizing information processing in brain-inspired neural networks, BULLETIN OF THE POLISH ACADEMY OF SCIENCES: TECHNICAL SCIENCES, ISSN: 0239-7528, DOI: 10.24425/bpasts.2020.131844, Vol.68, No.2, pp.225-233, 2020

Abstract:
The way brain networks maintain high transmission efficiency is believed to be fundamental in understanding brain activity. Brains consisting of more cells render information transmission more reliable and robust to noise. On the other hand, processing information in larger networks requires additional energy. Recent studies suggest that it is complexity, connectivity, and function diversity, rather than just size and the number of neurons, that could favour the evolution of memory, learning, and higher cognition. In this paper, we use Shannon information theory to address transmission efficiency quantitatively. We describe neural networks as communication channels, and then we measure information as mutual information between stimuli and network responses. We employ a probabilistic neuron model based on the approach proposed by Levy and Baxter, which comprises essential qualitative information transfer mechanisms. In this paper, we overview and discuss our previous quantitative results regarding brain-inspired networks, addressing their qualitative consequences in the context of broader literature. It is shown that mutual information is often maximized in a very noisy environment e.g., where only one-third of all input spikes are allowed to pass through noisy synapses and farther into the network. Moreover, we show that inhibitory connections as well as properly displaced long-range connections often significantly improve transmission efficiency. A deep understanding of brain processes in terms of advanced mathematical science plays an important role in the explanation of the nature of brain efficiency. Our results confirm that basic brain components that appear during the evolution process arise to optimise transmission performance.

Keywords:
neural network, entropy, mutual information, noise, inhibitory neuron

(100p.)
19.Pluta K.D., Samluk A., Wencel A., Zakrzewska K.E., Gora M., Burzynska B., Ciezkowska M., Motyl J., Pijanowska D.G., Genetically modified C3A cells with restored urea cycle for improved bioartificial liver, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/j.bbe.2019.12.006, Vol.40, No.1, pp.378-387, 2020
Pluta K.D., Samluk A., Wencel A., Zakrzewska K.E., Gora M., Burzynska B., Ciezkowska M., Motyl J., Pijanowska D.G., Genetically modified C3A cells with restored urea cycle for improved bioartificial liver, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/j.bbe.2019.12.006, Vol.40, No.1, pp.378-387, 2020

Abstract:
The bioartificial liver, a hybrid device aimed at improving the survival of patients with fulminant liver failure, requires a cell source to replicate human liver function. However, liver support systems that utilize porcine or human hepatoma-derived cells felt short of expectations in clinical trials. Here we present engineered C3A cells, with a restored function of the urea cycle, which can be used in an efficacious bioartificial liver. The genetic modification was performed using a lentiviral-mediated gene transfer which led to effective integration of the transgenes, coding for arginase I and ornithine transcarbamylase, into the target cell genomes. The engineered cells are more resistant to the oxidative/nitrosative stress induced by the presence of high concentrations of ammonia cations and produce more urea than their unmodified counterparts. Interestingly, the genetically modified cells secrete more albumin than control C3A cells and the synthesis of the protein is induced by increasing concentrations of ammonia. Although the physiological capabilities of the new cell line need to be further examined, at this stage of our study we may conclude that the genetically modified cells are able to convert ammonia to urea more effectively than regular C3A cells.

Keywords:
bioartificial liver, genetically modified cells, lentiviral vectors, urea cycle

(100p.)
20.Boopathi S., Poma Bernaola A., Kolandaivel P., Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment, Journal of Biomolecular Structure and Dynamics, ISSN: 0739-1102, DOI: 10.1080/07391102.2020.1758788, pp.1-17, 2020
Boopathi S., Poma Bernaola A., Kolandaivel P., Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment, Journal of Biomolecular Structure and Dynamics, ISSN: 0739-1102, DOI: 10.1080/07391102.2020.1758788, pp.1-17, 2020

Abstract:
In the past two decades, the world has faced several infectious disease outbreaks. Ebola, Influenza A (H1N1), SARS, MERS, and Zika virus have had a massive global impact in terms of economic disruption, the strain on local and global public health. Most recently, the global outbreak of novel coronavirus 2019 (SARS-CoV-2) that causes COVID-19 is a newly discovered virus from the coronavirus family in Wuhan city, China, known to be a great threat to the public health systems. As of 15 April 2020, The Johns Hopkins University estimated that the COVID-19 affected more than two million people, resulting in a death toll above 130,000 around the world. Infected people in Europe and America correspond about 40% and 30% of the total reported cases respectively. At this moment only few Asian countries have controlled the disease, but a second wave of new infections is expected. Predicting inhibitor and target to the COVID-19 is an urgent need to protect human from the disease. Therefore, a protocol to identify anti-COVID-19 candidate based on computer-aided drug design is urgently needed. Thousands of compounds including approved drugs and drugs in the clinical trial are available in the literature. In practice, experimental techniques can measure the time and space average properties but they cannot be captured the structural variation of the COVID-19 during the interaction of inhibitor. Computer simulation is particularly suitable to complement experiments to elucidate conformational changes at the molecular level which are related to inhibition process of the COVID-19. Therefore, computational simulation is essential tool to elucidate the phenomenon. The structure-based virtual screening computational approach will be used to filter the best drugs from the literature, the investigate the structural variation of COVID-19 with the interaction of the best inhibitor is a fundamental step to design new drugs and vaccines which can combat the coronavirus. This mini-review will address novel coronavirus structure, mechanism of action, and trial test of antiviral drugs in the lab and patients with COVID-19.

Keywords:
coronavirus, computational simulation, coronavirus spike, ACE2 receptor, antiviral drugs, COVID-19

(70p.)
21.Koza P., Przybyś J., Klejman A., Olech-Kochańczyk G., Konopka W., Generation of transgenic rats using a lentiviral vector approach, Journal of Visualized Experiments, ISSN: 1940-087X, DOI: 10.3791/60570, Vol.159, pp.e60570-1-8, 2020
Koza P., Przybyś J., Klejman A., Olech-Kochańczyk G., Konopka W., Generation of transgenic rats using a lentiviral vector approach, Journal of Visualized Experiments, ISSN: 1940-087X, DOI: 10.3791/60570, Vol.159, pp.e60570-1-8, 2020

Abstract:
Transgenic animal models are fundamentally important for modern biomedical research. The incorporation of foreign genes into early mouse or rat embryos is an invaluable tool for gene function analysis in living organisms. The standard transgenesis method is based on microinjecting foreign DNA fragments into a pronucleus of a fertilized oocyte. This technique is widely used in mice but remains relatively inefficient and technically demanding in other animal species. The transgene can also be introduced into one-cell-stage embryos via lentiviral infection, providing an effective alternative to standard pronuclear injections, especially in species or strains with a more challenging embryo structure. In this approach, a suspension that contains lentiviral vectors is injected into the perivitelline space of a fertilized rat embryo, which is technically less demanding and has a higher success rate. Lentiviral vectors were shown to efficiently incorporate the transgene into the genome to determine the generation of stable transgenic lines. Despite some limitations (e.g., Biosafety Level 2 requirements, DNA fragment size limits), lentiviral transgenesis is a rapid and efficient transgenesis method. Additionally, using female rats that are mated with a fertile male strain with a different dominant fur color is presented as an alternative to generate pseudopregnant foster mothers.

Keywords:
retraction, issue 159, transgenic rat, lentiviral vectors, perivitelline space, foster mothers

(70p.)
22.Białobrzeska W., Firganek D., Czerkies M., Lipniacki T., Skwarecka M., Dziąbowska K., Cebula Z., Malinowska N., Bigus D., Bięga E., Pyrć K., Pala K., Żołędowska S., Nidzworski D., Electrochemical immunosensors based on screen-printed gold and glassy carbon electrodes: comparison of performance for respiratory syncytial virus detection, Biosensors, ISSN: 2079-6374, DOI: 10.3390/bios10110175, Vol.10, No.11, pp.175-1-13, 2020
Białobrzeska W., Firganek D., Czerkies M., Lipniacki T., Skwarecka M., Dziąbowska K., Cebula Z., Malinowska N., Bigus D., Bięga E., Pyrć K., Pala K., Żołędowska S., Nidzworski D., Electrochemical immunosensors based on screen-printed gold and glassy carbon electrodes: comparison of performance for respiratory syncytial virus detection, Biosensors, ISSN: 2079-6374, DOI: 10.3390/bios10110175, Vol.10, No.11, pp.175-1-13, 2020

Abstract:
This paper presents the development and comparison of label-free electrochemical immunosensors based on screen-printed gold and glassy carbon (GC) disc electrodes for efficient and rapid detection of respiratory syncytial virus (RSV). Briefly, the antibody specific to the F protein of RSV was successfully immobilized on modified electrodes. Antibody coupling on the Au surface was conducted via 4-aminothiophenol (4-ATP) and glutaraldehyde (GA). The GC surface was modified with poly-L-lysine (PLL) for direct anti-RSV conjugation after EDC/NHS (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-Hydroxysuccinimide) activation. Electrochemical characterizations of the immunosensors were carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). GC-based immunosensors show a dynamic range of antigen detection from 1.0 × 10^5 PFU/mL to 1.5×10^7 PFU/mL, more than 1.0 × 10^5 PFU/mL to 1.0 × 10^7 PFU/mL for the Au-based sensor. However, the GC platform is less sensitive and shows a higher detection limit (LOD) for RSV. The limit of detection of the Au immunosensor is 1.1 × 10^3 PFU/mL, three orders of magnitude lower than 2.85 × 10^6 PFU/mL for GC. Thus, the Au-based immunosensor has better analytical performance for virus detection than a carbon-based platform due to high sensitivity and very low RSV detection, obtained with good reproducibility.

Keywords:
respiratory syncytial virus, cyclic voltammetry, electrochemical impedance spectroscopy, sensor, gold electrode, glassy carbon

(70p.)
23.Chatterjee P., Glimm T., Kaźmierczak B., Mathematical modeling of chondrogenic pattern formation during limb development: recent advances in continuous models, MATHEMATICAL BIOSCIENCES, ISSN: 0025-5564, DOI: 10.1016/j.mbs.2020.108319, Vol.322, pp.108319-1-17, 2020
Chatterjee P., Glimm T., Kaźmierczak B., Mathematical modeling of chondrogenic pattern formation during limb development: recent advances in continuous models, MATHEMATICAL BIOSCIENCES, ISSN: 0025-5564, DOI: 10.1016/j.mbs.2020.108319, Vol.322, pp.108319-1-17, 2020

Abstract:
The phenomenon of chondrogenic pattern formation in the vertebrate limb is one of the best studied examples of organogenesis. Many different models, mathematical as well as conceptual, have been proposed for it in the last fifty years or so. In this review, we give a brief overview of the fundamental biological background, then describe in detail several models which aim to describe qualitatively and quantitatively the corresponding biological phenomena. We concentrate on several new models that have been proposed in recent years, taking into account recent experimental progress. The major mathematical tools in these approaches are ordinary and partial differential equations. Moreover, we discuss models with non-local flux terms used to account for cell-cell adhesion forces and a structured population model with diffusion. We also include a detailed list of gene products and potential morphogens which have been identified to play a role in the process of limb formation and its growth.

Keywords:
mathematical models of chondrogenesis, reaction-diffusion equations, pattern formation, limb development

(70p.)
24.Błoński S., Zaremba D., Jachimek M., Jakiela S., Wacławczyk T., Korczyk P.M., Impact of inertia and channel angles on flow distribution in microfluidic junctions, MICROFLUIDICS AND NANOFLUIDICS, ISSN: 1613-4982, DOI: 10.1007/s10404-020-2319-6, Vol.24, No.2, pp.14-1-15, 2020
Błoński S., Zaremba D., Jachimek M., Jakiela S., Wacławczyk T., Korczyk P.M., Impact of inertia and channel angles on flow distribution in microfluidic junctions, MICROFLUIDICS AND NANOFLUIDICS, ISSN: 1613-4982, DOI: 10.1007/s10404-020-2319-6, Vol.24, No.2, pp.14-1-15, 2020

Abstract:
In the present paper, we provide evidence of the vital impact of inertia on the flow in microfluidic networks, which is disclosed by the appearance of nonlinear velocity–pressure coupling. The experiments and numerical analysis of microfluidic junctions within the range of moderate Reynolds number (1 < Re < 250) revealed that inertial effects are of high relevance when Re > 10. Thus, our results estimate the applicability limit of the linear relationship between the flow rate and pressure drop in channels, commonly described by the so-called hydraulic resistance. Herein, we show that neglecting the nonlinear in their nature inertial effects can make such linear resistance-based approximation mistaken for the network operating beyond Re < 10. In the course of our research, we investigated the distribution of flows in connections of three channels in two flow modes. In the splitting mode, the flow from a common channel divides between two outputs, while in the merging mode, streams from two channels join together in a common duct. We tested a wide range of junction geometries characterized by parameters such as: (1) the angle between bifurcating channels (45°, 90°, 135° and 180°); (2) angle of the common channel relative to bifurcating channels (varied within the available range); (3) ratio of lengths of bifurcating channels (up to 8). The research revealed that the inertial effects strongly depend on angles between the channels. Additionally, we observed substantial differences between the distributions of flows in the splitting and merging modes in the same geometries, which reflects the non-reversibility of the motion of an inertial fluid. The promising aspect of our research is that for some combinations of both lengths and angles of the channels, the inertial contributions balance each other in such a way that the equations recover their linear character. In such an optimal configuration, the dependence on Reynolds number can be effectively mitigated.

(70p.)
25.Kochańczyk M., Grabowski F., Lipniacki T., Dynamics of COVID-19 pandemic at constant and time-dependent contact rates, MATHEMATICAL MODELLING OF NATURAL PHENOMENA, ISSN: 0973-5348, DOI: 10.1051/mmnp/2020011, Vol.15, pp.28-1-12, 2020
Kochańczyk M., Grabowski F., Lipniacki T., Dynamics of COVID-19 pandemic at constant and time-dependent contact rates, MATHEMATICAL MODELLING OF NATURAL PHENOMENA, ISSN: 0973-5348, DOI: 10.1051/mmnp/2020011, Vol.15, pp.28-1-12, 2020

Abstract:
We constructed a simple Susceptible−Exposed–Infectious–Removed model of the spread of COVID-19. The model is parametrised only by the average incubation period, τ, and two rate parameters: contact rate, β, and exclusion rate, γ. The rates depend on nontherapeutic interventions and determine the basic reproduction number, R0 = β/γ, and, together with τ, the daily multiplication coefficient in the early exponential phase, θ. Initial R0 determines the reduction of β required to contain the spread of the epidemic. We demonstrate that introduction of a cascade of multiple exposed states enables the model to reproduce the distributions of the incubation period and the serial interval reported by epidemiologists. Using the model, we consider a hypothetical scenario in which β is modulated solely by anticipated changes of social behaviours: first, β decreases in response to a surge of daily new cases, pressuring people to self-isolate, and then, over longer time scale, β increases as people gradually accept the risk. In this scenario, initial abrupt epidemic spread is followed by a plateau and slow regression, which, although economically and socially devastating, grants time to develop and deploy vaccine or at least limit daily cases to a manageable number.

Keywords:
basic reproduction number, novel coronavirus

(40p.)
26.Volpert V., Banerjee M., D Onofrio, Lipniacki T., Petrovskii S., Tran V.C., Coronavirus - Scientific insights and societal aspects, MATHEMATICAL MODELLING OF NATURAL PHENOMENA, ISSN: 0973-5348, DOI: 10.1051/mmnp/2020010 , Vol.15, pp.E2-1-8, 2020
Volpert V., Banerjee M., D Onofrio, Lipniacki T., Petrovskii S., Tran V.C., Coronavirus - Scientific insights and societal aspects, MATHEMATICAL MODELLING OF NATURAL PHENOMENA, ISSN: 0973-5348, DOI: 10.1051/mmnp/2020010 , Vol.15, pp.E2-1-8, 2020

Abstract:
In December 2019, the first case of infection with a new virus COVID-19 (SARS-CoV-2), named coronavirus, was reported in the city of Wuhan, China. At that time, almost nobody paid any attention to it. The new pathogen, however, fast proved to be extremely infectious and dangerous, resulting in about 3–5% mortality. Over the few months that followed, coronavirus has spread over entire world. At the end of March, the total number of infections is fast approaching the psychological threshold of one million, resulting so far in tens of thousands of deaths. Due to the high number of lives already lost and the virus high potential for further spread, and due to its huge overall impact on the economies and societies, it is widely admitted that coronavirus poses the biggest challenge to the humanity after the second World war. The COVID-19 epidemic is provoking numerous questions at all levels. It also shows that modern society is extremely vulnerable and unprepared to such events. A wide scientific and public discussion becomes urgent. Some possible directions of this discussion are suggested in this article.

Keywords:
COVID-19, epidemic progression, mathematical models, crisis management, open questions

(40p.)
27.Suwa T., Kurniawan T., Redesigning a commercial combined cycle in an undergraduate thermodynamics course: connecting theory to practical cycle design, International Journal of Mechanical Engineering Education, ISSN: 0306-4190, DOI: 10.1177/0306419020904647, pp.1-20, 2020
Suwa T., Kurniawan T., Redesigning a commercial combined cycle in an undergraduate thermodynamics course: connecting theory to practical cycle design, International Journal of Mechanical Engineering Education, ISSN: 0306-4190, DOI: 10.1177/0306419020904647, pp.1-20, 2020

Abstract:
Due to various reasons, the concepts of thermodynamics are not easy to grasp for undergraduate students. One of the major reasons is that the students are mostly unfamiliar with the thermodynamics devices discussed in the courses. Offering courses with experiments is an effective approach to solve this issue. However, it is not practical or possible for universities to own devices that operate at high temperatures and with high pressure fluids. With the cooperation of a nearby electric company, undergraduate students of a thermodynamics course from the Department of Mechanical Engineering measured thermal performances of a commercial combined cycle and its sub-systems at the President University. After learning about the theory of thermal cycles, the students analyzed the thermal performances of actual thermodynamics cycles. Subsequently, they analyzed the thermal efficiency improvements when reheating or regeneration is applied to the simple Rankine cycle in the combined cycle. At the end of the course, the students gave presentations before the electric company’s management and engineering personnel, akin to professional engineers. This course is structured to familiarize undergraduate students with thermodynamics cycles and devices.

Keywords:
thermodynamics, combined cycle, Brayton cycle, gas-turbine engine, Rankine cycle

(40p.)
28.Proniewska K., Pręgowska A., Malinowski P., Identification of human vital functions directly relevant to the respiratory system based on the cardiac and acoustic parameters and random forest, IRBM, ISSN: 1959-0318, DOI: 10.1016/j.irbm.2020.02.006, pp.1-6, 2020
Proniewska K., Pręgowska A., Malinowski P., Identification of human vital functions directly relevant to the respiratory system based on the cardiac and acoustic parameters and random forest, IRBM, ISSN: 1959-0318, DOI: 10.1016/j.irbm.2020.02.006, pp.1-6, 2020

Abstract:
Regarding sleep research, polysomnography (PSG) also called a sleep study, is a gold standard. It incorporates brain waves, the oxygen level in the blood, heart rate and breathing, and leg movement recordings. PSG is a complicated and expensive laboratory-based procedure, usually done in hospitals or special sleep center. In this study, an alternative technique for Sleep-Related Breathing Disorders (SRBD) based on selected cardiac and acoustic parameters and the Random Forest (RF) has been studied. A system dedicated to the detection of simultaneously acquired ECG and acoustic signals, which are collected during sleep at home environment is proposed. Results obtained indicate that classification and regression tree models such as RF are appropriate for the evaluation of sleep disorders like SRBD. The best identification of sleep irregularities at level 89.00 percent for the raw database was obtained. Thus, statistical predictive models allow identification of breathing events with high levels of sensitivity and specificity, providing an inexpensive and accurate diagnosis.

Keywords:
patient monitoring, random forest, disorders, biomarkers

(40p.)
29.Proniewska K., Pręgowska A., Dołęga-Dołęgowski D., Dudek D., Immersive technologies as a solution for general data protection regulation in Europe and impact on the COVID-19 pandemic, Cardiology Journal, ISSN: 1897-5593, DOI: 10.5603/CJ.a2020.0102, pp.1-21, 2020
Proniewska K., Pręgowska A., Dołęga-Dołęgowski D., Dudek D., Immersive technologies as a solution for general data protection regulation in Europe and impact on the COVID-19 pandemic, Cardiology Journal, ISSN: 1897-5593, DOI: 10.5603/CJ.a2020.0102, pp.1-21, 2020

Abstract:
Background: General data protection regulation (GDPR) provides rules according to which data should be managed and processed in a secure and appropriate way for patient requirements and security. Currently, everyone in Europe is covered by GDPR. Thus, the medical practice also requires access to patient data in a safe and secure way. Methods: Holographic technology allows users to see everything visible ona computer screen in a new and less restricted way, i. e. without the limitations of traditional computers and screens. Results: In this study, a three-dimensional holographic doctors' assistant is designed and implemented in a way that meets the GDPR requirements. The HoloView application, which is tailored to run on Microsoft HoloLens, is proposed toallow display and access to personal data and so-called sensitive information of all individual patients without the risk that it will be presented to unauthorized persons. Conclusions: To enhance the user experience and remain consistent with GSPR, a holographic desk is proposed that allows displaying patient data and sensitive information only in front of the doctor's eyes using mixed reality glasses. Last but not least, it boasts of a reduction in infection risk for the staff during the COVID-19 pandemic, affording medical care to be carried out by as few doctors as possible.

Keywords:
augmented reality, mixed reality, pandemic

(40p.)
30.Garlinska M., Pręgowska A., Masztalerz K., Osial M., From mirrors to free-space optical communication-historical aspects in data transmission, Future Internet, ISSN: 1999-5903, DOI: 10.3390/fi12110179, Vol.12, No.11, pp.179-1-18, 2020
Garlinska M., Pręgowska A., Masztalerz K., Osial M., From mirrors to free-space optical communication-historical aspects in data transmission, Future Internet, ISSN: 1999-5903, DOI: 10.3390/fi12110179, Vol.12, No.11, pp.179-1-18, 2020

Abstract:
Fast communication is of high importance. Recently, increased data demand and crowded radio frequency spectrum have become crucial issues. Free-Space Optical Communication (FSOC) has diametrically changed the way people exchange information. As an alternative to wire communication systems, it allows efficient voice, video, and data transmission using a medium like air. Due to its large bandwidth, FSOC can be used in various applications and has therefore become an important part of our everyday life. The main advantages of FSOC are a high speed, cost savings, compact structures, low power, energy efficiency, a maximal transfer capacity, and applicability. The rapid development of the high-speed connection technology allows one to reduce the repair downtime and gives the ability to quickly establish a backup network in an emergency. Unfortunately, FSOC is susceptible to disruption due to atmospheric conditions or direct sunlight. Here, we briefly discuss Free-Space Optical Communication from mirrors and optical telegraphs to modern wireless systems and outline the future development directions of optical communication.

Keywords:
free-space optical communication, telecommunications, wireless communication, data transfer history, communication networks

(40p.)
31.Auguścik-Królikowska M., Ryszkowska J., Szczepkowski L., Kwiatkowski D., Kołbuk-Konieczny D., Szymańska J., Viscoelastic polyurethane foams with the addition of mint, POLIMERY, ISSN: 0032-2725, DOI: 10.14314/polimery.2020.3.4, Vol.65, No.3, pp.196-207, 2020
Auguścik-Królikowska M., Ryszkowska J., Szczepkowski L., Kwiatkowski D., Kołbuk-Konieczny D., Szymańska J., Viscoelastic polyurethane foams with the addition of mint, POLIMERY, ISSN: 0032-2725, DOI: 10.14314/polimery.2020.3.4, Vol.65, No.3, pp.196-207, 2020

Abstract:
The article presents an assessment of the possibilities of producing viscoelastic open cell polyurethane (PUR) foams produced with a natural filler in the form of mint leaves. PUR foams containing from 10 to 30 wt % of mint were produced. Chemical structure, thermal and mechanical properties of the foams were assessed. It was found that the filler containing 7 wt % of water caused significant changes in the foam characteristics. In composite foams, the content of urea and hydrogen bonds increased with higher mint contents. The hardness and comfort factor of composite foams also increased. The introduction of a filler containing a significant amount of water caused a change in the porosity and wall thickness of composite foams resulting in a significant increase in their permanent deformations.

Keywords:
open cell viscoelastic polyurethane foams, mint, cytocompatibility

(40p.)
32.Proniewska K., Pręgowska A., Walecki P., Dołęga-Dołęgowski D., Ferrari R., Dudek D., Overview of the holographic-guided cardiovascular interventions and training - a perspective, Bio-Algorithms and Med-Systems, ISSN: 1895-9091, DOI: 10.1515/bams-2020-0043, Vol.16, No.3, pp.20200043-1-9, 2020
Proniewska K., Pręgowska A., Walecki P., Dołęga-Dołęgowski D., Ferrari R., Dudek D., Overview of the holographic-guided cardiovascular interventions and training - a perspective, Bio-Algorithms and Med-Systems, ISSN: 1895-9091, DOI: 10.1515/bams-2020-0043, Vol.16, No.3, pp.20200043-1-9, 2020

Abstract:
Immersive technologies, like Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) have undergone technical evolutions over the last few decades. Their rapid development and dynamic changes enable their effective applications in medicine, in fields like imaging, preprocedural planning, treatment, operations planning, medical students training, and active support during therapeutic and rehabilitation procedures. Within this paper, a comprehensive analysis of VR/AR/MR application in the medical industry and education is presented. We overview and discuss our previous experience with AR/MR and 3D visual environment and MR-based imaging systems in cardiology and interventional cardiology. Our research shows that using immersive technologies users can not only visualize the heart and its structure but also obtain quantitative feedback on their location. The MR-based imaging system proposed offers better visualization to interventionists and potentially helps users understand complex operational cases. The results obtained suggest that technology using VR/AR/MR can be successfully used in the teaching process of future doctors, both in aspects related to anatomy and clinical classes. Moreover, the system proposed provides a unique opportunity to break the boundaries, interact in the learning process, and exchange experiences inside the medical community.

Keywords:
augmented reality, improving the education process, interaction, intraprocedural visualization, mixed reality, preprocedural planning, teaching

(20p.)
33.Bartali R., Zhang G., Tong X., Speranza G., Micheli V., Gottardi G., Fedrizzi M., Pierini F., Sun S., Laidani N., Tavares A.C., Graphene oxide/reduced graphene oxide films as protective barriers on lead against differential aeration corrosion induced by water drops, Nanoscale Advances, ISSN: 2516-0230, DOI: 10.1039/d0na00212g, Vol.2, No.11, pp.5412-5420, 2020
Bartali R., Zhang G., Tong X., Speranza G., Micheli V., Gottardi G., Fedrizzi M., Pierini F., Sun S., Laidani N., Tavares A.C., Graphene oxide/reduced graphene oxide films as protective barriers on lead against differential aeration corrosion induced by water drops, Nanoscale Advances, ISSN: 2516-0230, DOI: 10.1039/d0na00212g, Vol.2, No.11, pp.5412-5420, 2020

Abstract:
Graphene-based materials have demonstrated high chemical stability and are very promising for protection against the corrosion of metal surfaces. For this reason, in this work, protective layers composed of graphene oxide, reduced graphene oxide and their mixtures were investigated, respectively, against the corrosion of the surface of lead induced by water drops. The materials were deposited on a Pb surface from their suspensions using a Meyer rod. The surface chemical composition, morphology and structure of the coatings were studied by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and stylus profilometry. Moreover, a specific methodology based on the evolution of the water contact angle with time was used to evaluate the reactivity of the lead surface. The results show that the graphene-based materials can form an efficient barrier layer against the degradation of the Pb surface and that the degradation process induced by water is reduced by more than 70%. Moreover, unexpectedly, the best protective performance was obtained using graphene oxide as the coating.

(20p.)