Tabela A z publikacjami w czasopismach wyróżnionych w Journal Citation Reports (JCR) 
Tabela B z publikacjami w czasopismach zagranicznych i krajowych, wyróżnionych na liście MNSzW
Publikacje konferencyjne indeksowane w bazie Web of Science Core Collection
Inne publikacje w pozostałych czasopismach i wydawnictwach konferencyjnych
Afiliacja IPPT PAN

1.Jenczyk P., Gawrońska M., Dera W., Chrzanowska-Giżyńska J., Denis P., Jarząbek D.M., Application of SiC particles coated with a protective Ni layer for production of Ni/SiC co-electrodeposited composite coatings with enhanced tribological properties, CERAMICS INTERNATIONAL, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2019.08.063, Vol.45, pp.23540-23547, 2019
Jenczyk P., Gawrońska M., Dera W., Chrzanowska-Giżyńska J., Denis P., Jarząbek D.M., Application of SiC particles coated with a protective Ni layer for production of Ni/SiC co-electrodeposited composite coatings with enhanced tribological properties, CERAMICS INTERNATIONAL, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2019.08.063, Vol.45, pp.23540-23547, 2019

Abstract:
In this paper, the mechanical properties of composites consisting of electroplated Ni and co-electrodeposited SiC particles, coated with a thin protective layer of Ni, were studied. The protective layer was on the SiC particles prior to adding them to the electrolyte bath. It was demonstrated that due to the application of the protective layer it was possible to decrease sliding friction force, and improve the wear resistance, of the composite coatings in comparison with standard electroplated composite coatings made of Ni and co-electrodeposited pure SiC particles. Coating SiC particles with Ni was achieved by means of a PVD process. The main advantage of this step is avoiding oxidation of the surface of the particles during the contact with an electrolyte. Particles protected from oxidation lead to stronger interfacial bonding between the matrix and the reinforcement. Furthermore, better bonding protects the SiC particles from being extracted from the matrix by a counter-probe during friction and wear tests. The influence of the particle's concentration is studied. A smaller friction force and constant wear rate was observed.

Keywords:
Wear, Friction, Interfacial bonding strength, Metal matrix composites, Silicon carbide, Electrodeposited nickel

(100p.)
2.Misztal-Faraj B., Pęcherski R.B., Denis P., Jarecki L., Modeling of oriented crystallization kinetics of polymers in the entire range of uniaxial molecular orientation, POLYMER, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2019.04.037, Vol.173, pp.141-157, 2019
Misztal-Faraj B., Pęcherski R.B., Denis P., Jarecki L., Modeling of oriented crystallization kinetics of polymers in the entire range of uniaxial molecular orientation, POLYMER, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2019.04.037, Vol.173, pp.141-157, 2019

Abstract:
Closed-form analytical formulas describing kinetics of oriented crystallization under constant or variable amorphous orientation and isothermal or non-isothermal conditions are derived, valid in the whole range of orientation. Master relation for the deformation free energy vs. orientation factor, or tensile stress, is derived accounting for non-linear effects of finite chain extensibility. The Avrami-Evans model is expanded to account for the effects of orientation in thermodynamic driving force of nucleation and crystal growth. Involvement of predetermined and spontaneous nucleation varies strongly with the orientation and leads to domination of spontaneous nucleation at high orientations. Crystallization half-time involving separated or coexisting predetermined and spontaneous nucleation is discussed. A formula predicting equal contribution of both nucleation modes vs. orientation factor and temperature is derived and ranges of domination of the modes are discussed. Example computations illustrate the model predictions for an example polymer (PLLA) and are in good agreement with the experimental results.

Keywords:
Amorphous orientation, Oriented crystallization kinetics, Nucleation rate

(100p.)
3.Roszkiewicz A., Jain A., Teodorczyk M., Nasalski W., Formation and Characterization of Hole Nanopattern on Photoresist Layer by Scanning Near-Field Optical Microscope , Nanomaterials, ISSN: 2079-4991, DOI: 10.3390/nano9101452, Vol.9, No.1452, pp.1-11, 2019
Roszkiewicz A., Jain A., Teodorczyk M., Nasalski W., Formation and Characterization of Hole Nanopattern on Photoresist Layer by Scanning Near-Field Optical Microscope , Nanomaterials, ISSN: 2079-4991, DOI: 10.3390/nano9101452, Vol.9, No.1452, pp.1-11, 2019

Abstract:
PatterningoflinesofholesonalayerofpositivephotoresistSXAR-P3500/6(AllresistGmbH, Strausberg, Germany) spin-coated on a quartz substrate is carried out by using scanning near-field optical lithography. A green 532 nm-wavelength laser, focused on a backside of a nanoprobe of 90 nm diameter, is used as a light source. As a result, after optimization of parameters like laser power, exposuretime,orsleeptime,itisconfirmedthatitispossibletoobtainauniformnanopattern structure in the photoresist layer. In addition, the lines of holes are characterized by a uniform depth (71–87nm)andrelativelyhighaspectratiorangingfrom0.22to0.26. Numericalmodellingperformed with a rigorous method shows that such a structure can be potentially used as a phase zone plate.

Keywords:
optical lithography; photoresist; quartz; hole nanopatterning

(70p.)
4.Nowak Z., Nowak M., Pęcherski R.B., Wiśniewski K., Widłaszewski J., Kurp P., Computational modeling of thermoplastic behavior of inconel 718 in application to laser-assisted bending of thin-walled tubes, INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, ISSN: 1543-1649, Vol.17, No.3, pp.317-338, 2019
Nowak Z., Nowak M., Pęcherski R.B., Wiśniewski K., Widłaszewski J., Kurp P., Computational modeling of thermoplastic behavior of inconel 718 in application to laser-assisted bending of thin-walled tubes, INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, ISSN: 1543-1649, Vol.17, No.3, pp.317-338, 2019

Abstract:
Laser-assisted tube bending is a promising manufacturing process which enables production of forms and shapes that cannot be obtained by purely mechanical bending. It is particularly suitable for high hardness and brittle materials, such as nickel alloys, ceramics and cast iron. In the current paper, mechanical loading and simultaneous heating by a moving laser beam are used in a controlled manner to obtain the required deformation. Experimental investigation of the Inconel 718 (IN718) alloy provides the basis for identification of parameters of two constitutive models, which encompass softening phenomena and the coupling of temperature and strains. Numerical simulations are conducted to provide more insight into the laser-assisted bending process of the IN718 thin-walled tubes. Temperature, stress and deformation fields are determined in sequentially coupled thermomechanical analyses using the FE code ABAQUS. Laser beam is modeled as a surface heat flux using the dedicated DFLUX procedure. The temperature field is used as a thermal load in the static general step, together with an external mechanical load. The process of tube bending is controlled by the displacement of the piston rod of the actuator, while the thrust force is the resulting value.

Keywords:
laser-assisted bending of tubes, identification of material parameters, numerical simulations

(40p.)
5.Widłaszewski J., Nowak M., Nowak Z., Kurp P., LASER-ASSISTED THERMOMECHANICAL BENDING OF TUBE PROFILES, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.24425/amm.2019.126268, Vol.64, No.1, pp.421-430, 2019
Widłaszewski J., Nowak M., Nowak Z., Kurp P., LASER-ASSISTED THERMOMECHANICAL BENDING OF TUBE PROFILES, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.24425/amm.2019.126268, Vol.64, No.1, pp.421-430, 2019

Abstract:
The subject of the work is the analysis of thermomechanical bending process of a thin-walled tube made of X5CrNi18-10 stainless steel. The deformation is produced at elevated temperature generated with a laser beam in a specially designed experimental setup. The tube bending process consists of local heating of the tube by a moving laser beam and simultaneous kinematic enforcement of deformation with an actuator and a rotating bending arm. During experimental investigations, the resultant force of the actuator and temperature at the laser spot are recorded. In addition to experimental tests, the bending process of the tube was modelled using the finite element method in the ABAQUS program. For this purpose, the tube deformation process was divided into two sequentially coupled numerical simulations. The first one was the heat transfer analysis for a laser beam moving longitudinally over the tube surface. The second simulation described the process of mechanical bending with the time-varying temperature field obtained in the first simulation. The force and temperature recorded during experiments were used to verify the proposed numerical model. The final stress state and the deformation of the tube after the bending process were analyzed using the numerical solution. The results indicate that the proposed bending method can be successfully used in forming of the thin-walled profiles, in particular, when large bending angles and a small spring-back effect are of interest.

Keywords:
laser forming, laser-assisted bending, numerical modelling

(40p.)