Publikacje odnotowane przez trzy miesiące

1.Czerkies M., Korwek Z., Prus W., Kochańczyk M., Jaruszewicz-Błońska J., Tudelska K., Błoński S., Kimmel M., Brasier A.R., Lipniacki T., Cell fate in antiviral response arises in the crosstalk of IRF, NF-κB and JAK/STAT pathways, Nature Communications, ISSN: 2041-1723, DOI: 10.1038/s41467-017-02640-8, Vol.9, pp.493-493, 2018
Czerkies M., Korwek Z., Prus W., Kochańczyk M., Jaruszewicz-Błońska J., Tudelska K., Błoński S., Kimmel M., Brasier A.R., Lipniacki T., Cell fate in antiviral response arises in the crosstalk of IRF, NF-κB and JAK/STAT pathways, Nature Communications, ISSN: 2041-1723, DOI: 10.1038/s41467-017-02640-8, Vol.9, pp.493-493, 2018

Abstract:
The innate immune system processes pathogen-induced signals into cell fate decisions. How information is turned to decision remains unknown. By combining stochastic mathematical modelling and experimentation, we demonstrate that feedback interactions between the IRF3, NF-κB and STAT pathways lead to switch-like responses to a viral analogue, poly(I:C), in contrast to pulse-like responses to bacterial LPS. Poly(I:C) activates both IRF3 and NF-κB, a requirement for induction of IFNβ expression. Autocrine IFNβ initiates a JAK/STAT-mediated positive-feedback stabilising nuclear IRF3 and NF-κB in first responder cells. Paracrine IFNβ, in turn, sensitises second responder cells through a JAK/STAT-mediated positive feedforward pathway that upregulates the positive-feedback components: RIG-I, PKR and OAS1A. In these sensitised cells, the ‘live-or-die’ decision phase following poly(I:C) exposure is shorter—they rapidly produce antiviral responses and commit to apoptosis. The interlinked positive feedback and feedforward signalling is key for coordinating cell fate decisions in cellular populations restricting pathogen spread.

Keywords:
cellular signalling networks, innate immunity, regulatory networks, stochastic modelling

(45p.)
2.Sumelka W., Nowak M., On a general numerical scheme for the fractional plastic flow rule, MECHANICS OF MATERIALS, ISSN: 0167-6636, DOI: 10.1016/j.mechmat.2017.02.005, Vol.116, pp.120-129, 2018
Sumelka W., Nowak M., On a general numerical scheme for the fractional plastic flow rule, MECHANICS OF MATERIALS, ISSN: 0167-6636, DOI: 10.1016/j.mechmat.2017.02.005, Vol.116, pp.120-129, 2018

Abstract:
This paper presents a general numerical scheme for the fractional plastic flow rule, dedicated to a wide class of materials manifesting the non-normality of plastic flow and induced plastic anisotropy. To determine the vector of the plastic flow, a special numerical procedure has been developed, which is applicable for any smooth and convex yield function. The obtained approximation is verified based on an analytical solution. The paper also presents a set of numerical results for the generalised Drucker–Prager model

Keywords:
Non-normality, Plastic anisotropy, Fractional calculus, Return mapping algorithm

(40p.)
3.Glinicki M.A., Antolik A., Gawlicki M., Evaluation of compatibility of neutron-shielding boron aggregates with Portland cement in mortar, CONSTRUCTION AND BUILDING MATERIALS, ISSN: 0950-0618, DOI: 10.1016/j.conbuildmat.2017.12.228, Vol.164, pp.731-738, 2018
Glinicki M.A., Antolik A., Gawlicki M., Evaluation of compatibility of neutron-shielding boron aggregates with Portland cement in mortar, CONSTRUCTION AND BUILDING MATERIALS, ISSN: 0950-0618, DOI: 10.1016/j.conbuildmat.2017.12.228, Vol.164, pp.731-738, 2018

Abstract:
Enhanced neutron radiation shielding capacity of protective structures can be achieved using cement-based composites with boron-containing aggregates. Experimental tests were performed to evaluate the effect of boron aggregates (colemanite, ulexite, borax, boron carbide) and nanosilica on the setting time and hydration heat of cement in mortars using isothermal calorimetry. Boron leaching test from mineral aggregates were performed in water and saturated Ca(OH)2 solution. Cement setting retardation effects were found qualitatively correlated with boron leaching from mineral aggregates. A linear dependence of compressive strength of borated mortars and heat released after 72 h of cement hydration was found. A maximum content of boron compounds in mortar, allowing for a systematical control of setting time, was evaluated

Keywords:
Boron minerals, Cement setting, Colemanite, Early strength, Heat of hydration, Isothermal calorimetry, Leaching, Nanosilica, Neutron shielding, Retardation, Ulexite

(40p.)
4.Rojek J., Zubelewicz A., Madan N., Nosewicz S., The discrete element method with deformable particles, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, ISSN: 0029-5981, DOI: 10.1002/nme.5767, pp.1-33, 2018
Rojek J., Zubelewicz A., Madan N., Nosewicz S., The discrete element method with deformable particles, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, ISSN: 0029-5981, DOI: 10.1002/nme.5767, pp.1-33, 2018

Abstract:
This work presents a new original formulation of the discrete element method (DEM) with deformable cylindrical particles. Uniform stress and strain fields are assumed to be induced in the particles under the action of contact forces. Particle deformation obtained by strain integration is taken into account in the evaluation of interparticle contact forces. The deformability of a particle yields a nonlocal contact model, it leads to the formation of new contacts, it changes the distribution of contact forces in the particle assembly, and it affects the macroscopic response of the particulate material. A numerical algorithm for the deformable DEM (DDEM) has been developed and implemented in the DEM program DEMPack. The new formulation implies only small modifications of the standard DEM algorithm. The DDEM algorithm has been verified on simple examples of an unconfined uniaxial compression of a rectangular specimen discretized with regularly spaced equal bonded particles and a square specimen represented with an irregular configuration of nonuniform-sized bonded particles. The numerical results have been verified by a comparison with equivalent finite elementmethod results and available analytical solutions. The micro-macro relationships for elastic parameters have been obtained. The results have proved to have enhanced the modeling capabilities of the DDEM with respect to the standard DEM.

Keywords:
average stress, deformable particles, discrete element method, elastic constants, micro-macro relationships, nonlocal contact model

(40p.)
5.Kiełczyński P., Direct Sturm–Liouville problem for surface Love waves propagating in layered viscoelastic waveguides, Applied Mathematical Modelling, ISSN: 0307-904X, DOI: 10.1016/j.apm.2017.09.013, Vol.53, pp.419-432, 2018
Kiełczyński P., Direct Sturm–Liouville problem for surface Love waves propagating in layered viscoelastic waveguides, Applied Mathematical Modelling, ISSN: 0307-904X, DOI: 10.1016/j.apm.2017.09.013, Vol.53, pp.419-432, 2018

Abstract:
This paper presents theoretical model for shear-horizontal (SH) surface acoustic waves of the Love type propagating in lossy waveguides consisting of a lossy viscoelastic layer de- posited on a lossless elastic half-space. To this end, a direct Sturm–Liouville problem that describes Love waves propagation in the considered viscoelastic waveguides was formu- lated and solved, what constitutes a novel approach to the state-of-the-art. To facilitate the solution of the complex dispersion equation, the Author employed an original ap- proach that relies on the separation of its real and imaginary part. By separating the real and imaginary parts of the resulting complex dispersion equation for a complex wave vec- tor k = k 0 + j αof the Love wave, a system of two real nonlinear transcendental algebraic equations for k 0 and αhas been derived. The resulting set of two algebraic transcenden- tal equations was then solved numerically. Phase velocity v p and coefficient of attenuation αwere calculated as a function of the wave frequency f , thickness of the surface layer h and its viscosity η44 . Dispersion curves for Love waves propagating in lossy waveguides, with a lossy surface layer deposited on a lossless substrate, were compared to those cor- responding to Love surface waves propagating in lossless waveguides, i.e., with a lossless surface layer deposited on a lossless substrate. The results obtained in this paper are orig- inal and to some extent unexpected. Namely, it was found that: 1) the phase velocity v p of Love surface waves increases as a function of viscosity η44 of the lossy surface layer, and 2) the coefficient of attenuation αhas a maximum as a function of thickness h of the lossy surface layer. The results obtained in this paper are novel and can be applied in geo- physics, seismology and in the optimal design and development of viscosity sensors, bio and chemosensors.

Keywords:
Sturm–Liouville problem; Complex dispersion equation; Surface acoustic love waves; Eigenvalues; Elastic waves; Viscoelastic waveguides

(35p.)
6.Mróz Z., Kucharski S., Páczelt I., Anisotropic friction and wear rules with account for contact state evolution, WEAR, ISSN: 0043-1648, DOI: 10.1016/j.wear.2017.11.004, Vol.396-397, pp.1-11, 2018
Mróz Z., Kucharski S., Páczelt I., Anisotropic friction and wear rules with account for contact state evolution, WEAR, ISSN: 0043-1648, DOI: 10.1016/j.wear.2017.11.004, Vol.396-397, pp.1-11, 2018

Abstract:
The present study is related to analysis of coupled friction and wear process in sliding along the rough surface with an anisotropic asperity pattern characterized by single or mutually orthogonal striations. Due to wear process the initial anisotropic response evolves with the variation of asperity distribution, tending to a steadystate pattern. The orthotropic friction sliding model and the related wear rule are analytically formulated assuming evolution of contact anisotropy to its steady state. The orthotropic frictional sliding model and the related wear rule are analytically formulated assuming evolution of contact anisotropy to its steady state. The experimental study is next presented for orthotropic asperity patterns induced on steel plate surface. The transient and steady states are characterized and the respective evolution parameters calibrated. The numerical finite element wear analysis aimed at validation of model-predictions and wear parameter calibration is presented at the end of paper

Keywords:
Anisotropic contact, Friction sliding and wear rules, Evolution of contact anisotropy, Experimental study, Numerical wear analysis

(35p.)
7.Chrzanowska-Giżyńska J., Denis P., Hoffman J., Giżyński M., Mościcki T., Garbiec D., Szymański Z., Tungsten borides layers deposited by a nanosecond laser pulse, SURFACE AND COATINGS TECHNOLOGY, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2017.12.040, Vol.335, pp.181-187, 2018
Chrzanowska-Giżyńska J., Denis P., Hoffman J., Giżyński M., Mościcki T., Garbiec D., Szymański Z., Tungsten borides layers deposited by a nanosecond laser pulse, SURFACE AND COATINGS TECHNOLOGY, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2017.12.040, Vol.335, pp.181-187, 2018

Abstract:
Tungsten borides belong to the group of potentially superhard materials which hardness could be compared to cubic boron nitride and diamond. However, difficulty in fabrication of single phase material using conventional methods is the main drawback of this group of ceramics. In order to overcome this problem material can be deposited as a thin layer e.g. in the pulsed laser deposition process. In this paper, the effect of laser wavelength and energy density of nanosecond Nd:YAG laser on the WBx-type layers were analyzed using wavelengths 355 and 1064 nm with the energy density of laser beam from 1.7 to 5 J/cm2 and from 1.7 to 9.3 J/cm2, respectively. The WB2.5 and WB4.5 targets synthesized in Spark Plasma Sintering process were used and the layers were deposited onto Si (100) substrate heated to a temperature of 570 °C. Layers' microstructure were analyzed using X-ray Diffraction and scanning electron microscope equipped with energy dispersive X-ray spectrometer. Change of laser wavelength and energy density resulted in variations of the chemical composition and morphology of deposited layers. Finally, W2B-βWB, αWB-WB-WB3 and WB3, and boron layers were deposited wherein WB3 structure is formed in a wide range of laser fluences and at both investigated wavelength. Next, WB3 layers were investigated in the indentation test at a load of 5–30 mN and its hardness was up to 50 ± 10 GPa

Keywords:
Pulsed laser deposition, Super-hard materials, Tungsten borides, Tungsten triboride

(35p.)
8.Maj J., Basista M., Węglewski W., Bochenek K., Strojny-Nędza A., Naplocha K., Panzner T., Tatarkova M., Fiori F., Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2017.12.091, Vol.715, pp.154-162, 2018
Maj J., Basista M., Węglewski W., Bochenek K., Strojny-Nędza A., Naplocha K., Panzner T., Tatarkova M., Fiori F., Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2017.12.091, Vol.715, pp.154-162, 2018

Abstract:
Aluminum-alumina composites with interpenetrating network structure are interesting structural materials due to their high resistance to elevated temperature and frictional wear, good heat conductivity, enhanced mechanical strength and fracture toughness. In this paper aluminum-alumina bulk composites and FGMs are manufactured by pressure infiltration of porous alumina preforms with molten aluminium alloy (EN AC-44200). Influence of the interpenetrating microstructure on the macroscopic bending strength, fracture toughness, hardness and heat conduction is examined. Special focus is on processing-induced thermal residual stresses in aluminium-alumina composites due to their potentially detrimental effects on material performance in structural elements under in-service conditions. The residual stresses are measured experimentally in the ceramic phase by neutron diffraction and simulated numerically using a micro-CT based Finite Element model, which takes into account the actual interpenetrating microstructure of the composite. The model predictions for two different volume fractions of alumina agree fairly well with the neutron diffraction measurements

Keywords:
A. stress measurements, X-ray analysis, finite element analysis, B. composites, C. casting methods

(35p.)
9.Bigoni D., Bordignon N., Piccolroaz A., Stupkiewicz S., Bifurcation of elastic solids with sliding interfaces, PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, ISSN: 1364-5021, DOI: 10.1098/rspa.2017.0681, Vol.474, pp.20170681-1-21, 2018
Bigoni D., Bordignon N., Piccolroaz A., Stupkiewicz S., Bifurcation of elastic solids with sliding interfaces, PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, ISSN: 1364-5021, DOI: 10.1098/rspa.2017.0681, Vol.474, pp.20170681-1-21, 2018

Abstract:
Lubricated sliding contact between soft solids is an interesting topic in biomechanics and for the design of small-scale engineering devices. As a model of this mechanical set-up, two elastic nonlinear solids are considered jointed through a frictionless and bilateral surface, so that continuity of the normal component of the Cauchy traction holds across the surface, but the tangential component is null. Moreover, the displacement can develop only in a way that the bodies in contact do neither detach, nor overlap. Surprisingly, this finite strain problem has not been correctly formulated until now, so this formulation is the objective of the present paper. The incremental equations are shown to be non-trivial and different from previously (and erroneously) employed conditions. In particular, an exclusion condition for bifurcation is derived to show that previous formulations based on frictionless contact or ‘spring-type’ interfacial conditions are not able to predict bifurcations in tension, while experiments—one of which, ad hoc designed, is reported—show that these bifurcations are a reality and become possible when the correct sliding interface model is used. The presented results introduce a methodology for the determination of bifurcations and instabilities occurring during lubricated sliding between soft bodies in contact

Keywords:
frictionless contact, large strains, nonlinear elasticity

(35p.)
10.Enayati M.S., Behzad T., Sajkiewicz P., Rafienia M., Bagheri R., Ghasemi-Mobarakeh L., Kołbuk D., Pahlevanneshan Z., Bonakdar S.H., Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part A, ISSN: 1549-3296, DOI: 10.1002/jbm.a.36309, pp.1-10, 2018
Enayati M.S., Behzad T., Sajkiewicz P., Rafienia M., Bagheri R., Ghasemi-Mobarakeh L., Kołbuk D., Pahlevanneshan Z., Bonakdar S.H., Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part A, ISSN: 1549-3296, DOI: 10.1002/jbm.a.36309, pp.1-10, 2018

Abstract:
The article is focused on the role of nanohydroxy apatite (nHAp) and cellulose nanofibers (CNFs) as fillers in the electrospun poly (vinyl alcohol) (ES-PVA) nanofibers for bone tissue engineering (TE). Fibrous scaffolds of PVA, PVA/nHAp (10 wt.%), and PVA/nHAp(10 wt.%)/CNF(3 wt.%) were successfully fabricated and characterized. Tensile test on electrospun PVA/nHAp10 and PVA/nHAp10/CNF3 revealed a three-fold and seven-fold increase in modulus compared with pure ES-PVA (45.45 ± 4.77). Although, nanofiller loading slightly reduced the porosity percentage, all scaffolds had porosity higher than 70%. In addition, contact angle test proved the great hydrophilicity of scaffolds. The presence of fillers reduced in vitro biodegradation rate in PBS while accelerates biomineralization in simulated body fluid (SBF). Furthermore, cell viability, cell attachment, and functional activity of osteoblast MG-63 cells were studied on scaffolds showing higher cellular activity for scaffolds with nanofillers. Generally, the obtained results confirm that the 3-componemnt fibrous scaffold of PVA/nHAp/CNF has promising potential in hard TE.

Keywords:
electrospinning, PVA bionanocomposites, scaffolds, bone tissue engineering, cell culture

(35p.)
11.Jarecki L., Pecherski R.B., Kinetics of oriented crystallization of polymers in the linear stress-orientation range in the series expansion approach , Express Polymer Letters, ISSN: 1788-618X, DOI: 10.3144/expresspolymlett/2018.29, Vol.12, No.4, pp.330-348, 2018
Jarecki L., Pecherski R.B., Kinetics of oriented crystallization of polymers in the linear stress-orientation range in the series expansion approach , Express Polymer Letters, ISSN: 1788-618X, DOI: 10.3144/expresspolymlett/2018.29, Vol.12, No.4, pp.330-348, 2018

Abstract:
An analytical formula is derived for the oriented crystallization coefficient governing kinetics of oriented crystallization under uniaxial amorphous orientation in the entire temperature range. A series expansion approach is applied to the free energy of crystallization in the Hoffman-Lauritzen kinetic model of crystallization at accounting for the entropy of orientation of the amorphous chains. The series expansion coefficients are calculated for systems of Gaussian chains in linear stress-orientation range. Oriented crystallization rate functions are determined basing on the ‘proportional expansion’ approach proposed by Ziabicki in the steady-state limit. Crystallization kinetics controlled by separate predetermined and sporadic primary nucleation is considered, as well as the kinetics involving both nucleation mechanisms potentially present in oriented systems. The involvement of sporadic nucleation in the transformation kinetics is predicted to increase with increasing amorphous orientation. Example computations illustrate the dependence of the calculated functions on temperature and amorphous orientation, as well as qualitative agreement of the calculations with experimental results.

Keywords:
modeling and simulation, kinetics of oriented crystallization, amorphous orientation, sporadic nucleation, predetermined nucleation

(35p.)
12.Kopeć M., Wang K., Politis D.J., Wang Y., Wang L., Lin J., Formability and microstructure evolution mechanisms of Ti6Al4V alloy during a novel hot stamping process, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2018.02.038, pp.1-20, 2018
Kopeć M., Wang K., Politis D.J., Wang Y., Wang L., Lin J., Formability and microstructure evolution mechanisms of Ti6Al4V alloy during a novel hot stamping process, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, ISSN: 0921-5093, DOI: 10.1016/j.msea.2018.02.038, pp.1-20, 2018

Abstract:
A novel hot stamping process for Ti6Al4V alloy using cold forming tools and a hot blank was presented in this paper. The formability of the material was studied through uniaxial tensile tests at temperatures ranging from 600 to 900 °C and strain rates ranging from 0.1 to 5 s-1. An elongation ranging from 30% to 60% could be achieved at temperatures ranging from 750 to 900°C respectively. The main microstructure evolution mechanisms varied with the deformation temperature, including recovery, phase transformation and recrystallization. The hardness of the material after deformation first decreased with the temperature due to recovery, and subsequently increased mainly due to the phase transformation. During the hot stamping tests, qualified parts could be formed successfully at heating temperatures ranging from 750 to 850°C. The forming failed at lower temperatures due to the limited ductility of the material. At temperatures higher than 900°C, extensive phase transformation of α to β occurred during the heating. During the transfer and forming, the temperature dropped significantly which led to the formation of transformed β, reduction of the formability and subsequent failure. The post-form hardness distribution demonstrated the same tendency as that after uniaxial tensile tests.

Keywords:
titanium alloys, Ti6Al4V, hot stamping, microstructure

(35p.)
13.Nowak M., Maj M., Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: Numerical procedures and results, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1016/j.acme.2017.10.005, Vol.18, pp.630-644, 2018
Nowak M., Maj M., Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: Numerical procedures and results, ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, ISSN: 1644-9665, DOI: 10.1016/j.acme.2017.10.005, Vol.18, pp.630-644, 2018

Abstract:
The objective of the work is to develop numerical method for determining coupled thermo-mechanical fields based on experimental data obtained from two cameras working in the visible and infrared mode. The sequence of images recorded by the first camera is used to determine the displacement field on the sample surface using the 2D digital image correlation (DIC) method. The resulting field from DIC analysis in a form of a set of discrete points with the corresponding in-plane displacement vector is used as the input for the next step of analysis, where the coupled temperature field is computed. This paper provides a detailed description of the numerical procedures, that allow, to obtain coupled thermal and mechanical fields together with the specification of experimental data needed for calculations. The presented approach was tested on an experimental data obtained during uniaxial tension of the multicrystalline aluminum. The developed numerical routine has been implemented in dedicated software, which can be used for the testing of materials on both a macro and micro scales

Keywords:
Digital image correlation (DIC), Infrared thermography (IRT), Coupled thermo-mechanical fields, Aluminum multicrysta

(30p.)
14.Ustrzycka A., Szuwalski K., Annular rotating disks optimal with respect to mixed creep rupture, JOURNAL OF THEORETICAL AND APPLIED MECHANICS, ISSN: 1429-2955, DOI: 10.15632/jtam-pl.56.1.57, Vol.56, No.1, pp.57-69, 2018
Ustrzycka A., Szuwalski K., Annular rotating disks optimal with respect to mixed creep rupture, JOURNAL OF THEORETICAL AND APPLIED MECHANICS, ISSN: 1429-2955, DOI: 10.15632/jtam-pl.56.1.57, Vol.56, No.1, pp.57-69, 2018

Abstract:
Optimal shapes in the class of polynomial functions for rotating annular disks with respect to the mixed creep rupture time are found. Two effects leading to damage: diminishing of transversal dimensions and growth of micro-cracks are simultaneously taken into account. The first of them requires the finite strain analysis, the latter is described by Kachanov’s evolution equation. Behaviour of the material is described by nonlinear Norton’s law, generalized for true stresses and logarithmic strains, and the shape change law in form of similarity of true stresses and logarithmic strains deviators. For optimal shapes of the disk, changes of geometry and a continuity function are presented. The theoretical considerations based on the perception of the structural components as some highlighted objects with defined properties is presented

Keywords:
annular disk, mixed creep rupture, optimal design

(15p.)
15.Frąś L.J., Pęcherski R.B., Modified split hopkinson pressure bar for investigations of dynamic behaviour of magnetorheological materials, JOURNAL OF THEORETICAL AND APPLIED MECHANICS, ISSN: 1429-2955, DOI: 10.15632/jtam-pl.56.1.323, Vol.56, No.1, pp.323-328, 2018
Frąś L.J., Pęcherski R.B., Modified split hopkinson pressure bar for investigations of dynamic behaviour of magnetorheological materials, JOURNAL OF THEORETICAL AND APPLIED MECHANICS, ISSN: 1429-2955, DOI: 10.15632/jtam-pl.56.1.323, Vol.56, No.1, pp.323-328, 2018

Abstract:
The magnetorheological fluid is a functional material that is changing its rheological properties and finally solidifies in a magnetic field. The dynamic behaviour, tested with the use of the Split Hopkinson Pressure Bar is an important issue for description of this material, which is commonly used in different kinds of shock absorbers. This note presents a new idea how to modify the known SHPB set up in order to investigate dynamic properties of magnetorheological materials.

Keywords:
Split Hopkinson Pressure Bar (SHPB), Magnetorheological Fluid (MRF), dynamic behaviour, solidification in magnetic field, ferroelements

(15p.)
16.Kurp P., Widłaszewski J., Mucha Z., Laserowo-mechaniczne formowanie elementów cienkościennych, MECHANIK, ISSN: 0025-6552, DOI: 10.17814/mechanik.2018.2.30, No.2, pp.148-151, 2018
Kurp P., Widłaszewski J., Mucha Z., Laserowo-mechaniczne formowanie elementów cienkościennych, MECHANIK, ISSN: 0025-6552, DOI: 10.17814/mechanik.2018.2.30, No.2, pp.148-151, 2018

Abstract:
W niniejszym artykule autorzy przedstawiają założenia oraz wstępne wyniki badań doświadczalnych i symulacji numerycznych procesu formowania elementów cienkościennych z wykorzystaniem wiązki laserowej i obciążenia mechanicznego. Na podstawie założeń zaprojektowano i wykonano stanowisko do gięcia cienkościennych rur i dyfuzorów stożkowych stosowanych w budowie silników lotniczych. Metoda i stanowisko kształtowania, przetestowane w warunkach laboratoryjnych, a także wyniki analizy numerycznej procesu pokazują nowe możliwości formowania elementów cienkościennych

Keywords:
kształtowanie laserowe, obróbka laserowa, elementy cienkościenne, stopy niklu, metoda elementów skończonych

(11p.)
17.Wiśniewski K., Turska E., Recent improvements to nine-node shell element MITC9 with drilling rotations, SSTA 2017, Shell Structures: Theory and Applications, 2017-10-11/10-13, Gdańsk (PL), Vol.4, pp.399-402, 2018
Wiśniewski K., Turska E., Recent improvements to nine-node shell element MITC9 with drilling rotations, SSTA 2017, Shell Structures: Theory and Applications, 2017-10-11/10-13, Gdańsk (PL), Vol.4, pp.399-402, 2018

Abstract:
The paper describes our improved 9-node quadrilateral shell element MITC9i, which is derived for the Reissner-Mindlin shell kinematics, the extended potential energy functional and Green strain.
1. The MITCi technique is used to avoid locking and it is based on the improved transformations proposed in (Wisniewski & Panasz 2013) for a membrane element. Here, these transformations are extended to bending/twisting and transverse shear shell strains.
2. To reduce the shape distortion effects, the so-called corrected shape functions (CSF) of (Celia & Gray 1984) are used instead of the isoparametric ones, and we propose the method of computation the shift parameters for non-flat shell elements.
3. The drilling rotations are included via the drilling Rotation Constraint and the penalty method. This rotation is used in the multiplicative/additive update scheme valid for large (unrestricted) rotations.
The effect of the MITC9i technique and the CSF is that all three patch tests are passed, also for shifted side nodes along the straight edges and for arbitrary shifts of an interior node. The MITC9i shell element was subjected to a range of linear and non-linear numerical tests described in (Wisniewski & Turska 2017); here we provide additional examples illustrating its accurate and robust behavior.

Keywords:
9-node shell element MITC9,two-level approximation of strains, corrected shape functions, node shift parameters, drilling rotations

18.Marszałek A., Burczyński T., Ordered Fuzzy GARCH Model for Volatility Forecasting, Includes the proceedings of the 10th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2017), 2017-09-11/09-15, Warszawa (PL), No.XI, pp.480-492, 2018
Marszałek A., Burczyński T., Ordered Fuzzy GARCH Model for Volatility Forecasting, Includes the proceedings of the 10th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2017), 2017-09-11/09-15, Warszawa (PL), No.XI, pp.480-492, 2018

Abstract:
A volatility forecasting comparative study between the most popular original GARCH model and the same model defined based on concepts of Ordered Fuzzy Numbers and Ordered Fuzzy Candlsticks is presented. These approaches offer a suitable tool to handle both imprecision of measurements and uncertainty associated with financial data. Therefore, they are particularly useful for volatility forecasting, since the volatility is unobservable and a proxy for it is used (realised volatility). In presented study, based on intra-daily data of theWarsaw Stock Exchange Top 20 Index (WIG 20), one showed that based on the adjusted-R squared and several prediction measurements, the fuzzy approach does perform better than the original GARCH model and forecasts more precisely in both the in-sample and out-of-sample predictions

Keywords:
Volatility forecasting, Realized volatility, Ordered fuzzy number, Kosinski’s fuzzy number, Ordered fuzzy candlestick, Ordered fuzzy GARCH model, Financial high-frequency data

19.Rojek J., Zubelewicz A., Madan N., Nosewicz S., New formulation of the discrete element method, AIP Conference Proceedings, ISSN: 0094-243X, Vol.1922, No.030009, pp.1-8, 2018
20.Wawrzyk K., Kowalczyk P., Nosewicz S., Rojek J., A constitutive model and numerical simulation of sintering processes at macroscopic level, AIP Conference Proceedings, ISSN: 0094-243X, Vol.1922, No.030011, pp.1-7, 2018
21.Nowak Z., Nowak M., Widłaszewski J., Kurp P., Experimental and Numerical Investigation on Laser-Assisted Bending of Pre-Loaded Metal Plate, AIP Conference Proceedings, ISSN: 0094-243X, DOI: 10.1063/1.5019148, Vol.1922, pp.140006-1-7, 2018
Nowak Z., Nowak M., Widłaszewski J., Kurp P., Experimental and Numerical Investigation on Laser-Assisted Bending of Pre-Loaded Metal Plate, AIP Conference Proceedings, ISSN: 0094-243X, DOI: 10.1063/1.5019148, Vol.1922, pp.140006-1-7, 2018

Abstract:
The laser forming technique has an important disadvantage, which is the limitation of plastic deformation generated by a single laser beam pass. To increase the plastic deformation it is possible to apply external forces in the laser forming process. In this paper, we investigate the influence of external pre-loads on the laser bending of steel plate. The pre-loads investigated generate bending towards the laser beam. The thermal, elastic-plastic analysis is performed using the commercial nonlinear finite element analysis package ABAQUS. The focus of the paper is to identify how this pattern of the pre-load influence the final bend angle of the plate

Keywords:
Laser forming, Force-assisted laser forming, Laser-assisted bending, Thermo-mechanical simulations, Finite element analysis

22.Ranachowski Z., Schabowicz K., Gorzelańczyk T., Kudela Jr S., Dvorak T., Visualization of Fibers and Voids Inside Industrial Fiber Concrete Boards, Material Science & Engineering International Journal, ISSN: 2574-9927, DOI: 10.15406/mseij.2017.01.00022, Vol.1, No.4, pp.1-4, 2018
Ranachowski Z., Schabowicz K., Gorzelańczyk T., Kudela Jr S., Dvorak T., Visualization of Fibers and Voids Inside Industrial Fiber Concrete Boards, Material Science & Engineering International Journal, ISSN: 2574-9927, DOI: 10.15406/mseij.2017.01.00022, Vol.1, No.4, pp.1-4, 2018

Abstract:
Fiber cement boards (FCB) microstructure and methods of fabrication are described. The method of X-ray microtomography in application for investigating of FCB microstructure is presented. The cellulose fibers constituting the remarkable reinforcement of the FCB are colorless and too small to be seen applying the standard optical methods. The X-ray microtomography method however enabled the authors to realize three goals within the investigation of the properties of FCB. The length and shape of the fibers could be assessed on specimens’ cross-sections. Applying the pseudo 3D visualization it was possible to visualize the cracked regions inside the specimen volume. The case of non-uniform fibers distribution in respect to the board thickness which was impossible to recognize applying the standard visual inspection, was also performed by merging the multiple cross-section images into a single graph

23.Leyva-Mendivil M.F., Lengiewicz J., Limbert G., Skin friction under pressure. The role of micromechanics, Surface Topography: Metrology and Properties, ISSN: 2051-672X, DOI: 10.1088/2051-672X/aaa2d4, Vol.6, No.1, pp.1-14, 2018
Leyva-Mendivil M.F., Lengiewicz J., Limbert G., Skin friction under pressure. The role of micromechanics, Surface Topography: Metrology and Properties, ISSN: 2051-672X, DOI: 10.1088/2051-672X/aaa2d4, Vol.6, No.1, pp.1-14, 2018

Abstract:
The role of contact pressure on skin friction has been documented in multiple experimental studies. Skin friction significantly raises in the low-pressure regime as load increases while, after a critical pressure value is reached, the coefficient of friction of skin against an external surface becomes mostly insensitive to contact pressure. However, up to now, no study has elucidated the qualitative and quantitative nature of the interplay between contact pressure, the material and microstructural properties of the skin, the size of an indenting slider and the resulting measured macroscopic coefficient of friction. A mechanistic understanding of these aspects is essential for guiding the rational design of products intended to interact with the skin through optimally-tuned surface and/or microstructural properties. Here, an anatomically-realistic 2D multi-layer finite element model of the skin was embedded within a computational contact homogenisation procedure. The main objective was to investigate the sensitivity of macroscopic skin friction to the parameters discussed above, in addition to the local (i.e. microscopic) coefficient of friction defined at skin asperity level. This was accomplished via the design of a large-scale computational experiment featuring 312 analyses. Results confirmed the potentially major role of finite deformations of skin asperities on the resulting macroscopic friction. This effect was shown to be modulated by the level of contact pressure and relative size of skin surface asperities compared to those of a rigid slider. The numerical study also corroborated experimental observations concerning the existence of two contact pressure regimes where macroscopic friction steeply and non-linearly increases up to a critical value, and then remains approximately constant as pressure increases further. The proposed computational modelling platform offers attractive features which are beyond the reach of current analytical models of skin friction, namely, the ability to accommodate arbitrary kinematics, non-linear constitutive properties and the complex skin microstructure.

Keywords:
skin friction, contact mechanics, pressure, microstructure, finite element, homogenisation, material properties

24.Gawlicki M., Jankowski Ł., Identification of moving loads using the l1 norm minimization, CMM 2017, 22nd International Conference on Computer Methods in Mechanics, 2017-09-13/09-16, Lublin (PL), DOI: 10.1063/1.5019092, No.AIP Conference Proceedings 1922, 100007, pp.1-9, 2018
Gawlicki M., Jankowski Ł., Identification of moving loads using the l1 norm minimization, CMM 2017, 22nd International Conference on Computer Methods in Mechanics, 2017-09-13/09-16, Lublin (PL), DOI: 10.1063/1.5019092, No.AIP Conference Proceedings 1922, 100007, pp.1-9, 2018

Abstract:
This contribution deals with the inverse problem of indirect identification of moving loads. The identification is performed based on the recorded response of the loaded structure and its numerical model. A specific feature of such problems is a very large number of the degrees of freedom (DOFs) that can be excited and a limited number of available sensors. As a result, unless the solution space is significantly limited, the identification problem is underdetermined: it has an infinite number of exact, observationally indistinguishable solutions. We propose an approach based on the assumption of sparsity of the excitation, which can be expressed in the form of a requirement of a bounded l1 norm of the solution. As long as the loads are sparse, the approach allows them to be freely moving, without the usual assumption of a constant velocity. We first test the approach in a numerical example with 10% rms measurement noise. A good qualitative agreement of the numerical results allows to proceed with experimental investigations, and the moving load identification is then carried out based on the response measured experimentally on a lab test stand.

25.Wiśniewski K., Turska E., Improved nine-node shell element MITC9i with reduced distortion sensitivity, COMPUTATIONAL MECHANICS, ISSN: 0178-7675, DOI: 10.1007/s00466-017-1510-4, pp.1-25, 2017
Wiśniewski K., Turska E., Improved nine-node shell element MITC9i with reduced distortion sensitivity, COMPUTATIONAL MECHANICS, ISSN: 0178-7675, DOI: 10.1007/s00466-017-1510-4, pp.1-25, 2017

Abstract:
The 9-node quadrilateral shell element MITC9i is developed for the Reissner-Mindlin shell inematics, the extended potential energy and Green strain. The following features of its formulation ensure an improved behavior: 1. The MITC technique is used to avoid locking, and we propose improved ransformations for bending and transverse shear strains, which render that all patch tests are passed for the regular mesh, i.e. with straight element sides and middle positions of midside nodes and a central node. 2. To reduce shape distortion effects, the so-called corrected shape functions of Celia and Gray (Int J Numer Meth Eng 20:1447–1459, 1984) are extended to shells and used instead of the standard ones. In effect, all patch tests are passed additionally for shifts of the midside nodes along straight element sides and for arbitrary shifts of the central node. 3. Several extensions of the corrected shape functions are proposed to enable computations of non-flat shells. In particular, a criterion is put forward to determine the shift parameters associated with the central node for non-flat elements. Additionally, the method is presented to construct a parabolic side for a shifted midside node, which improves accuracy for symmetric curved edges. Drilling rotations are included by using the drilling Rotation Constraint equation, in a way consistent with the additive/multiplicative rotation update scheme for large rotations. We show that the corrected shape functions reduce the sensitivity of the solution to the regularization parameter γ of the penalty method for this constraint. The MITC9i shell element is subjected to a range of linear and non-linear tests to show passing the patch tests, the absence of locking, very good accuracy and insensitivity to node shifts. It favorably compares to several other tested 9-node elements.

Keywords:
9-node shell element MITC9i, Two-level approximation of strains, Patch tests, Corrected shape functions, Node shift parameters, Coarse mesh accuracy, Drilling rotations

(45p.)
26.Enayati M.S., Behzad T., Sajkiewicz P.Ł., Bagheri R., Ghasemi-Mobarakeh L., Pierini F., Theoretical and experimental study of the stiffness of electrospun composites of poly(vinyl alcohol), cellulose nanofibers, and nanohydroxy apatite, CELLULOSE, ISSN: 0969-0239, DOI: 10.1007/s10570-017-1601-6, pp.1-11, 2017
Enayati M.S., Behzad T., Sajkiewicz P.Ł., Bagheri R., Ghasemi-Mobarakeh L., Pierini F., Theoretical and experimental study of the stiffness of electrospun composites of poly(vinyl alcohol), cellulose nanofibers, and nanohydroxy apatite, CELLULOSE, ISSN: 0969-0239, DOI: 10.1007/s10570-017-1601-6, pp.1-11, 2017

Abstract:
The present study aims to theoretically model and verify the mechanical behavior of electrospun fibers of poly(vinyl alcohol) (PVA) reinforced by nanohydroxy apatite (nHAp) and cellulose nanofibers (CNF), the three composites designated as PVA/nHAp, PVA/CNF, and PVA/nHAp/CNF. Tensile tests and AFM nanoindentation studies were used to measure tensile modulus of electrospun scaffolds and single fibers respectively. Halpin–Tsai and Ouali models were applied to predict the stiffness of electrospun mats. Theoretical analysis according to the Halpin–Tsai model showed that CNF have no preferred orientation in the electrospun fibers, particularly at higher filler content. Additionally, this model provided a better prediction than Ouali model, especially at lower filler content. Theoretical models based on the geometry of an unit cell in open-cell structure such as honeycomb, tetrakaidecahedron and cube models simulate electrospun scaffolds. Among the structural models for analysis of porous scaffolds, the honeycomb model showed the best prediction, tetrakaidecahedron model—a moderate one, and cube model was the worst. In general, it was proved by both experiment and theory that the porous structure of electrospun mat caused significant modulus reduction of nanocomposites.

Keywords:
Nanocomposites, Cellulose nanofibers, Electrospinning, Modulus

(45p.)
27.Tudelska K., Markiewicz J., Kochańczyk M., Czerkies M., Prus W., Korwek Z., Abdi A., Błoński S., Kaźmierczak B., Lipniacki T., Information processing in the NF-κB pathway, Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-017-16166-y, Vol.7, pp.15926-15926, 2017
Tudelska K., Markiewicz J., Kochańczyk M., Czerkies M., Prus W., Korwek Z., Abdi A., Błoński S., Kaźmierczak B., Lipniacki T., Information processing in the NF-κB pathway, Scientific Reports, ISSN: 2045-2322, DOI: 10.1038/s41598-017-16166-y, Vol.7, pp.15926-15926, 2017

Abstract:
The NF-κB pathway is known to transmit merely 1 bit of information about stimulus level. We combined experimentation with mathematical modeling to elucidate how information about TNF concentration is turned into a binary decision. Using Kolmogorov-Smirnov distance, we quantified the cell’s ability to discern 8 TNF concentrations at each step of the NF-κB pathway, to find that input discernibility decreases as signal propagates along the pathway. Discernibility of low TNF concentrations is restricted by noise at the TNF receptor level, whereas discernibility of high TNF concentrations it is restricted by saturation/depletion of downstream signaling components. Consequently, signal discernibility is highest between 0.03 and 1 ng/ml TNF. Simultaneous exposure to TNF or LPS and a translation inhibitor, cycloheximide, leads to prolonged NF-κB activation and a marked increase of transcript levels of NF-κB inhibitors, IκBα and A20. The impact of cycloheximide becomes apparent after the first peak of nuclear NF-κB translocation, meaning that the NF-κB network not only relays 1 bit of information to coordinate the all-or-nothing expression of early genes, but also over a longer time course integrates information about other stimuli. The NF-κB system should be thus perceived as a feedback-controlled decision-making module rather than a simple information transmission channel.

Keywords:
cellular signaling networks, innate immunity, stress signaling

(40p.)
28.Żuk P.J., Cichocki B., Szymczak P., Intrinsic viscosity of macromolecules within the generalized Rotne–Prager–Yamakawa approximation, JOURNAL OF FLUID MECHANICS, ISSN: 0022-1120, DOI: 10.1017/jfm.2017.264, Vol.822, pp.R2-1-11, 2017
Żuk P.J., Cichocki B., Szymczak P., Intrinsic viscosity of macromolecules within the generalized Rotne–Prager–Yamakawa approximation, JOURNAL OF FLUID MECHANICS, ISSN: 0022-1120, DOI: 10.1017/jfm.2017.264, Vol.822, pp.R2-1-11, 2017

Abstract:
We develop a generalized Rotne–Prager–Yamakawa approximation for the dipolar components of the inverse friction matrix and use it for calculating the intrinsic viscosity of rigidly connected bead conglomerates. Such bead models are commonly used in the calculation of hydrodynamic properties of macromolecules. We consider both the case of non-overlapping constituent beads as well as overlapping beads of different sizes. We demonstrate the accuracy of the approximation in two test cases and show that it performs well even if the distances between the beads are small or if the beads overlap. Robust performance of this approximation in the case of overlapping beads stems from its correct limiting behaviour at a complete overlap, with one sphere fully immersed in the other. The generalized Rotne–Prager–Yamakawa approximation is thus well suited for evaluation of intrinsic viscosity, which is a key quantity in characterizing molecular conformations of biological macromolecules.

Keywords:
complex fluids, low-Reynolds-number flows, mathematical foundations

(40p.)
29.Kowalewski P.K., Olszewski R., Walędziak M.S., Janik M.R., Kwiatkowski A., Gałązka-Świderek N., Cichoń K., Brągoszewski J., Paśnik K., Long-Term Outcomes of Laparoscopic Sleeve Gastrectomy—a Single-Center, Retrospective Study, Obesity Surgery, ISSN: 0960-8923, DOI: 10.1007/s11695-017-2795-2, pp.1-5, 2017
Kowalewski P.K., Olszewski R., Walędziak M.S., Janik M.R., Kwiatkowski A., Gałązka-Świderek N., Cichoń K., Brągoszewski J., Paśnik K., Long-Term Outcomes of Laparoscopic Sleeve Gastrectomy—a Single-Center, Retrospective Study, Obesity Surgery, ISSN: 0960-8923, DOI: 10.1007/s11695-017-2795-2, pp.1-5, 2017

Abstract:
Introduction Sleeve gastrectomy (LSG) is one of the most
popular bariatric procedures. We present our long-term results
regarding weight loss, comorbidities, and gastric reflux
disease.
Material and Methods We identified patients who underwent
LSG in our institution between 2006 and 2009. We revised the
data, and the patients with outdated contact details were
tracked with the national health insurance database and social
media (facebook). Each of the identified patients was asked to
complete an online or telephone survey covering, among
others, their weight and comorbidities. On that basis, we calculated
the percent total weight loss (%TWL) and percent
excess weight loss (%EWL), along with changes in body mass
index (ΔBMI). Satisfactory weight loss was set at >50% EWL
(for BMI = 25 kg/m2
). We evaluated type 2 diabetes (T2DM)
and arterial hypertension (AHT) based on the pharmacological
therapy. GERD presence was evaluated by the typical
symptoms and/or proton pump inhibitor (PPI) therapy.
Results One hundred twenty-seven patients underwent LSG
between 2006 and 2009. One hundred twenty patients were
qualified for this study. Follow-up data was available for 100
participants (47 female, 53 male). Median follow-up period
reached 8.0 years (from 7.1 to 10.7). Median BMI upon qualification
for LSG was 51.6 kg/m2
. Sixteen percent of patients
required revisional surgery over the years (RS group), mainly
because of insufficient weight loss (14 Roux-Y gastric bypass—LRYGB;
one mini gastric bypass, one gastric banding).
For the LSG (LSG group n = 84), the mean %EWL was
51.1% (±22.3), median %TWL was 23.5% (IQR 17.7–
33.3%), and median ΔBMI was 12.1 kg/m2 (IQR 8.2–17.2).
Fifty percent (n = 42) of patients achieved the satisfactory
%EWL of 50%. For RS group, the mean %EWL was 57.8%
(±18.2%) and median %TWL reached 33% (IQR 27.7–
37.9%). Sixty-two percent (n = 10) achieved the satisfactory
weight loss. Fifty-nine percent of patients reported improvement
in AHT therapy, 58% in T2DM. After LSG, 60%
(n = 60) of patients reported recurring GERD symptoms and
44% were treated with proton pomp inhibitors (PPI). In 93%
of these cases, GERD has developed de novo.
Conclusions Isolated LSG provides fairly good effects in a
long-term follow-up with mean %EWL at 51.1%. Sixteen
percent of patients require additional surgery due to insufficient
weight loss. More than half of the subjects observe improvement
in AHT and T2DM. Over half of the patients complain
of GERD symptoms, which in most of the cases is a de
novo complaint.

Keywords:
Bariatricsurgery, Sleeve, Long-termfollow-up, Comorbidities, GERD

(40p.)
30.Kiełczyński P., Ptasznik S., Szalewski M., Balcerzak A., Wieja K., Rostocki A.J., Thermophysical properties of rapeseed oil methyl esters (RME) at high pressures and various temperatures evaluated by ultrasonic methods, Biomass and Bioenergy, ISSN: 0961-9534, DOI: 10.1016/j.biombioe.2017.09.015, Vol.107, pp.113-121, 2017
Kiełczyński P., Ptasznik S., Szalewski M., Balcerzak A., Wieja K., Rostocki A.J., Thermophysical properties of rapeseed oil methyl esters (RME) at high pressures and various temperatures evaluated by ultrasonic methods, Biomass and Bioenergy, ISSN: 0961-9534, DOI: 10.1016/j.biombioe.2017.09.015, Vol.107, pp.113-121, 2017

Abstract:
Investigation of the high-pressure thermophysical properties of biofuels, e.g., bulk modulus, Surface tension, and viscosity is of paramount importance in fuel injection systems in diesel engines. Another crucial and dangerous phenomenon that may occur in biofuels at high pressures is phase transition (solidification), which can drastically increase the viscosity of the biofuel. This effect may hamper proper operation of the engine, especially under cold-start conditions. Unfortunately, the availability of highpressure thermophysical properties of biofuels is still limited. The goal of this paper is to investigate the impact of high pressures on thermophysical properties of biofuels on the example of rapeseed fatty acid methyl esters (RME) in a wide range of pressures (0:1 to 250 MPa) and temperatures (5 to 20 _C). To this end we employed innovative ultrasonic techniques, i.e., the Bleustein-Gulyaev surface acoustic waves for measuring RME viscosity, and ultrasonic bulk compressional waves for measuring sound velocity in RME and consequently evaluating RME thermophysical parameters, e.g., bulk modulus and surface tension. The viscosity of the measured RME displayed an abrupt increase at pressures: 260 MPa (t Ľ 20 _C), 230 MPa (t Ľ 15 _C), 190 MPa (t Ľ 10 _C), and 130 MPa (t Ľ 5 _C). Evidently it was a signature of the phase transition (solidification) occurring in the RME. The discovered high viscosity high-pressure phase in RME can be very detrimental for operation of modern common rail Diesel engines. Therefore, the results of research presented in this paper should be interesting for engineers and designers working with modern common rail Diesel engines using biofuels.

Keywords:
Biofuels; Methyl esters; Phase transitions; Viscosity; Speed of sound; Ultrasonic methods; High pressure

(35p.)
31.Pietrzak K., Strojny-Nędza A., Olesińska W., Bańkowska A., Gładki A., Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation, APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2016.11.155, Vol.421, pp.228-233, 2017
Pietrzak K., Strojny-Nędza A., Olesińska W., Bańkowska A., Gładki A., Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation, APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2016.11.155, Vol.421, pp.228-233, 2017

Abstract:
On the basis of a specially designed experiment, this paper presents a model, which is an attempt to explain the mechanism of formatting and creating oxidation resistance of Cu-rGO subsurface layers. Practically zero chemical affinity of copper to carbon is a fundamental difficulty in creating composite structures of Cu-C, properties which are theoretically possible to estimate. In order to bind the thermally reduced graphene oxide with copper surface, the effect of structural rebuilding of the copper oxide, in the process of annealing in a nitrogen atmosphere, have been used. On intentionally oxidized and anoxic copper substrates the dispersed graphene oxide (GO) and thermally reduced graphene oxide (rGO) were loaded. Annealing processes after the binding effects of both graphene oxide forms to Cu substrates were tested. The methods for high-resolution electron microscopy were found subsurface rGO-Cu layer having a substantially greater resistance to oxidation than pure copper. The mechanism for the effective resistance to oxidation of the Cu-rGO has been presented in a hypothetical form

Keywords:
Metal matrix composite, Copper, Graphene, Oxidation

(35p.)
32.Rezaee Hajidehi M., Stupkiewicz S., Gradient-enhanced model and its micromorphic regularization for simulation of Lüders-like bands in shape memory alloys, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, ISSN: 0020-7683, DOI: 10.1016/j.ijsolstr.2017.11.021, pp.1-11, 2017
Rezaee Hajidehi M., Stupkiewicz S., Gradient-enhanced model and its micromorphic regularization for simulation of Lüders-like bands in shape memory alloys, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, ISSN: 0020-7683, DOI: 10.1016/j.ijsolstr.2017.11.021, pp.1-11, 2017

Abstract:
Shape memory alloys, notably NiTi, often exhibit softening pseudoelastic response that results in formation and propagation of Lüders-like bands upon loading, for instance, in uniaxial tension. A common approach to modelling softening and strain localization is to resort to gradient-enhanced formulations that are capable of restoring well-posedness of the boundary-value problem. This approach is also followed in the present paper by introducing a gradient-enhancement into a simple one-dimensional model of pseudoelasticity. In order to facilitate computational treatment, a micromorphic-type regularization of the gradient-enhanced model is subsequently performed. The formulation employs the incremental energy minimization framework that is combined with the augmented Lagrangian treatment of the resulting non-smooth minimization problem. A thermomechanically coupled model is also formulated and implemented in a finite-element code. The effect of the loading rate on the localization pattern in a NiTi wire under tension is studied, and the features predicted by the model show a good agreement with the experimental observations. Aditionally, an analytical solution is provided for a propagating interface (macroscopic transformation front) both for the gradient-enhanced model and for its micromorphic version

Keywords:
martensite, phase transformation, micromorphic model, strain localization, thermomechanical coupling

(35p.)
33.Jaruszewicz-Błońska J., Lipniacki T., Genetic toggle switch controlled by bacterial growth rate, BMC SYSTEMS BIOLOGY, ISSN: 1752-0509, DOI: 10.1186/s12918-017-0483-4, Vol.11, pp.117-1-11, 2017
Jaruszewicz-Błońska J., Lipniacki T., Genetic toggle switch controlled by bacterial growth rate, BMC SYSTEMS BIOLOGY, ISSN: 1752-0509, DOI: 10.1186/s12918-017-0483-4, Vol.11, pp.117-1-11, 2017

Abstract:
Background

In favorable conditions bacterial doubling time is less than 20 min, shorter than DNA replication time. In E. coli a single round of genome replication lasts about 40 min and it must be accomplished about 20 min before cell division. To achieve such fast growth rates bacteria perform multiple replication rounds simultaneously. As a result, when the division time is as short as 20 min E. coli has about 8 copies of origin of replication (ori) and the average copy number of the genes situated close to ori can be 4 times larger than those near the terminus of replication (ter). It implies that shortening of cell cycle may influence dynamics of regulatory pathways involving genes placed at distant loci.

Results

We analyze this effect in a model of a genetic toggle switch, i.e. a system of two mutually repressing genes, one localized in the vicinity of ori and the other localized in the vicinity of ter. Using a stochastic model that accounts for cell growth and divisions we demonstrate that shortening of the cell cycle can induce switching of the toggle to the state in which expression of the gene placed near ter is suppressed. The toggle bistability causes that the ratio of expression of the competing genes changes more than two orders of magnitude for a two-fold change of the doubling time. The increasing stability of the two toggle states enhances system sensitivity but also its reaction time.

Conclusions

By fusing the competing genes with fluorescent tags this mechanism could be tested and employed to create an indicator of the doubling time. By manipulating copy numbers of the competing genes and locus of the gene situated near ter, one can obtain equal average expression of both genes for any doubling time T between 20 and 120 min. Such a toggle would accurately report departures of the doubling time from T.

Keywords:
Mathematical modeling, Stochastic simulations, Regulatory pathways, Bistability, DNA replication, Gene copy number

(35p.)
34.Białecki S., Kaźmierczak B., Lipniacki T., Polarization of concave domains by traveling wave pinning, PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0190372, Vol.12, No.12, pp.e0190372-1-10, 2017
Białecki S., Kaźmierczak B., Lipniacki T., Polarization of concave domains by traveling wave pinning, PLOS ONE, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0190372, Vol.12, No.12, pp.e0190372-1-10, 2017

Abstract:
Pattern formation is one of the most fundamental yet puzzling phenomena in physics and biology. We propose that traveling front pinning into concave portions of the boundary of 3-dimensional domains can serve as a generic gradient-maintaining mechanism. Such a mechanism of domain polarization arises even for scalar bistable reaction-diffusion equations, and, depending on geometry, a number of stationary fronts may be formed leading to complex spatial patterns. The main advantage of the pinning mechanism, with respect to the Turing bifurcation, is that it allows for maintaining gradients in the specific regions of the domain. By linking the instant domain shape with the spatial pattern, the mechanism can be responsible for cellular polarization and differentiation.

(35p.)
35.Pietrzak K., Gładki A., Frydman K., Wójcik-Grzybek D., Strojny-Nędza A., Wejrzanowski T., Copper-carbon nanoforms composites – processing, microstructure and thermal properties, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0198, Vol.62, No.2B, pp.1307-1310, 2017
Pietrzak K., Gładki A., Frydman K., Wójcik-Grzybek D., Strojny-Nędza A., Wejrzanowski T., Copper-carbon nanoforms composites – processing, microstructure and thermal properties, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0198, Vol.62, No.2B, pp.1307-1310, 2017

Abstract:
The main current of publication is focused around the issues and problems associated with the formation of composite materials with Cu matrix and reinforcing phases in the various carbon nanoforms. The core of the research has been focused on thermal conductivity of these composites types. This parameter globally reflects the state of the structure, quality of raw materials and the technology used during the formation of composite materials. Vanishingly low affinity of copper for carbon, multilayered forms of graphene, the existence of critical values of graphene volume in the composite are not conducive to the classic procedures of composites designing. As a result, the expected, significant increase in thermal conductivity of composites is not greater than for pure copper matrix. Present paper especially includes: (i) data of obtaining procedure of copper/graphene mixtures, (ii) data of sintering process, (iii) the results of structure investigations and of thermal properties. Structural analysis revealed the homogenous distribution of graphene in copper matrix, the thermal analysis indicate the existence of carbon phase critical concentration, where improvement of thermal diffusivity to pure copper can occur

Keywords:
metal matrix composite, sintering, copper, graphene, thermal diffusivity

(30p.)
36.Zybała R., Mars K., Mikuła A., Bogusławski J., Soboń G., Sotor J., Schmidt M., Kaszyca K., Chmielewski M., Ciupiński L., Pietrzak K., Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0155, Vol.62, No.2B, pp.1067-1070, 2017
Zybała R., Mars K., Mikuła A., Bogusławski J., Soboń G., Sotor J., Schmidt M., Kaszyca K., Chmielewski M., Ciupiński L., Pietrzak K., Synthesis and characterization of antimony telluride for thermoelectric and optoelectronic applications, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0155, Vol.62, No.2B, pp.1067-1070, 2017

Abstract:
Antimony telluride (Sb2Te3) is an intermetallic compound crystallizing in a hexagonal lattice with R-3m space group. It creates a c lose packed structure of an ABCABC type. As intrinsic semiconductor characterized by excellent electrical properties, Sb2Te3 is widely used as a low-temperature thermoelectric material. At the same time, due to unusual properties (strictly connected with the structure), antimony telluride exhibits nonlinear optical properties, including saturable absorption. Nanostructurization, elemental doping and possibilities of synthesis Sb2Te3 in various forms (polycrystalline, single crystal or thin film) are the most promising methods for improving thermoelectric properties of Sb2Te3.Applications of Sb2Te3 in optical devices (e.g. nonlinear modulator, in particular saturable absorbers for ultrafast lasers) are also interesting. The antimony telluride in form of bulk polycrystals and layers for thermoelectric and optoelectronic applications respectively were used. For optical applications thin layers of the material were formed and studied. Synthesis and structural characterization of Sb2Te3 were also presented here. The anisotropy (packed structure) and its influence on thermoelectric properties have been performed. Furthermore, preparation and characterization of Sb2Te3 thin films for optical uses have been also made

Keywords:
antimony telluride, thermoelectric materials, thin films, PVD magnetron sputtering, topological insulator

(30p.)
37.Orłowska A., Graczykowski C., Gałęzia A., The effect of prestress force magnitude on the natural bending frequencies of the eccentrically prestressed glass fibre reinforced polymer composite beams, Journal of Composite Materials, ISSN: 0021-9983, DOI: 10.1177/0021998317740202, pp.1-14, 2017
Orłowska A., Graczykowski C., Gałęzia A., The effect of prestress force magnitude on the natural bending frequencies of the eccentrically prestressed glass fibre reinforced polymer composite beams, Journal of Composite Materials, ISSN: 0021-9983, DOI: 10.1177/0021998317740202, pp.1-14, 2017

Abstract:
This paper studies the effect of prestress force magnitude on natural frequencies and dynamic behaviour of eccentrically prestressed glass fibre reinforced polymer composite beams, including the theoretical background, numerical results and experimental verification. The term prestress indicates the initial tensile stress applied to the fibres embedded in selected external layers of the composite material. First, the paper presents the theoretical background of the finite element method modelling of prestressed composites. Then, the results of numerical simulations conducted for a five-layered glass-epoxy composite beam are presented. The natural frequencies corresponding to three initial bending modes are analyzed for different prestressing force levels and for different fibre volume content. Finally, the results are verificated by experimental modal analysis conducted on three different glass-epoxy composite specimens of various mechanical parameters. Both the numerical results obtained from finite element method and the experimental results obtained from experimental modal analysis reveal that the first bending frequency increases and the two subsequent bending frequencies decrease due to the prestressing force. The comparison of numerical and experimental data confirms the effect and allows to quantify the influence that the prestress force has on the natural frequencies of composites, which is an interesting and practically relevant phenomenon.

Keywords:
Prestressed structures, laminated composites, prestressed reinforced composites, glass fibre reinforced polymer composite materials, vibrations, finite element method

(30p.)
38.Gluba-Brzózka A., Franczyk B., Olszewski R., Banach M., Rysz J., Personalized Medicine: New Perspectives for the Diagnosis and the Treatment of Renal Diseases, International Journal of Molecular Sciences, ISSN: 1422-0067, DOI: 10.3390/ijms18061248, Vol.18, No.1248, pp.1-20, 2017
Gluba-Brzózka A., Franczyk B., Olszewski R., Banach M., Rysz J., Personalized Medicine: New Perspectives for the Diagnosis and the Treatment of Renal Diseases, International Journal of Molecular Sciences, ISSN: 1422-0067, DOI: 10.3390/ijms18061248, Vol.18, No.1248, pp.1-20, 2017

Abstract:
The prevalence of renal diseases is rising and reaching 5–15% of the adult population. Renal damage is associated with disturbances of body homeostasis and the loss of equilibrium between exogenous and endogenous elements including drugs and metabolites. Studies indicate that renal diseases are influenced not only by environmental but also by genetic factors. In some cases the disease is caused by mutation in a single gene and at that time severity depends on the presence of one or two utated alleles. In other cases, renal disease is associated with the presence of alteration within a gene or genes, but environmental factors are also necessary for the development of disease. Therefore, it seems that the analysis of genetic aspects should be a natural component of clinical and xperimental studies. The goal of personalized medicine is to determine the right drug,for the right patient,at the right time. Whole-genome examinations may help to change the approach to the disease and the patient resulting in the creation of“personalized medicine”with new diagnostic and treatment strategies designed on the basis of genetic background of each individual. The identification of high-risk patients in pharmacogenomics analyses will help to avoid many unwarranted side effects while optimizing treatment efficacy for individual patients. Personalized therapies for kidney diseases are still at the preliminary stage mainly due to high costs of such analyses and the complex nature of human genome. This review will focus on several areas of interest: renal disease pathogenesis, diagnosis, treatment, rate of progression and the prediction ofprognosis.

Keywords:
renal diseases; personalized medicine;treatment;diagnosis;biomarkers

(30p.)
39.Trots I., Nowicki A., Postema M., Ultrasound Image Improvement by Code Bit Elongation, IEEE SIGNAL PROCESSING LETTERS, ISSN: 1070-9908, DOI: 10.1109/LSP.2017.2776040, pp.1-5, 2017
Trots I., Nowicki A., Postema M., Ultrasound Image Improvement by Code Bit Elongation, IEEE SIGNAL PROCESSING LETTERS, ISSN: 1070-9908, DOI: 10.1109/LSP.2017.2776040, pp.1-5, 2017

Abstract:
This paper analyses the influence of the transducer bandwidth on the compression and the axial resolution of an ultrasound image. The distortion of an electrical signal visible in the final image is a major problem in ultrasonography. To solve this problem, the bit length in Golay-complementary sequences was elongated, narrowing the fractional bandwidth of the coded sequences. Therefore, more energy of the burst signal could be transferred through the ultrasound transducer. The experimental results obtained for transmission of the complementary Golay-coded sequences with two different bit lengths - one-cycle and two-cycles - have been compared, and the efficiency of the pulse compression and its influence on the axial resolution for two fractional bandwidths have been discussed. The results are presented for two transducers having a fractional bandwidth of 25% and 80% and operating at a 6-MHz frequency. The results obtained show that the elongation of the Golay single bit length (doubled in our case) compensate for the limited transducer bandwidth. 2D ultrasound images of a tissue-mimicking phantom are presented and demonstrate the benefits of the use of two-cycle bit length.

Keywords:
Coded excitation, Golay sequences, synthetic aperture method, transducer bandwidth, ultrasound imaging

(30p.)
40.Mróz Z., Maciejewski J., Constitutive modeling of cyclic deformation of metals under strain controlled axial extension and cyclic torsion, ACTA MECHANICA, ISSN: 0001-5970, DOI: 10.1007/s00707-017-1982-5, pp.1-22, 2017
Mróz Z., Maciejewski J., Constitutive modeling of cyclic deformation of metals under strain controlled axial extension and cyclic torsion, ACTA MECHANICA, ISSN: 0001-5970, DOI: 10.1007/s00707-017-1982-5, pp.1-22, 2017

Abstract:
The present work provides a formulation of a constitutive model for metals with the aim to simulate cyclic deformation under axial extension or compression assisted by cyclic torsional (or shearing) straining of specified amplitude and frequency. Such a mode of deformation was recently implemented in technological processes such as extrusion, forging and rolling, cf. Bochniak and Korbel (Eng Trans 47:351–367, 1999, J Mater Process Technol 134:120–134, 2003, Philos Mag 93:1883–1913, 2013, Mater Sci Technol 16:664–674, 2000). The constitutive model accounting for combined hardening (isotropic–kinematic) with both hardening and recovery effects is presented and calibrated for several materials: pure copper, aluminum alloy (2024), and austenitic steel. The experimental data are used to specify model parameters of materials tested, and next the cyclic response for different shear strain amplitudes is predicted and confronted with empirical data. The constitutive model is developed in order to simulate technological processes assisted by cyclic deformation

(30p.)
41.Balcerzak A., Comparison of High-Pressure Behavior of Physicochemical Properties of the Di- and Triacylglycerols Established by Ultrasonic Methods, JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, ISSN: 0003-021X, DOI: 10.1007/s11746-017-3030-y, Vol.94, No.10, pp.1261-1268, 2017
Balcerzak A., Comparison of High-Pressure Behavior of Physicochemical Properties of the Di- and Triacylglycerols Established by Ultrasonic Methods, JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, ISSN: 0003-021X, DOI: 10.1007/s11746-017-3030-y, Vol.94, No.10, pp.1261-1268, 2017

Abstract:
Two samples of triacylglycerols i.e., olive oil and triolein, and one sample of diacylglycerol were investigated.
In the course of compression, the density of the samples was determined by measurements of the change of piston position in a pressure chamber and volume correction due to chamber expansion under pressure. The speed of sound was evaluated from the time of flight of an ultrasonic impulse between emitting and receiving transducers placed in the high pressure chamber. The adiabatic compressibility, the intermolecular free length, the molar volume, the van der Waals’ constant b and the surface tension were evaluated from the density, the speed of sound and the average molecular mass. All tested liquids undergo a high-pressure phase transition. Discontinuities in the measured isotherms of the physicochemical parameters of the investigated oils indicate the presence of high-pressure phase transitions. Moreover the time dependent change of pressure at constant volume during the phase transition was measured. The fundamental difference in the molecular structure of these acylglycerols influences their behavior significantly under high pressure.

Keywords:
Acylglycerols; Physicochemical parameters; Ultrasonic measurements

(25p.)
42.Wilczek M.M., Olszewski R., Krupienicz A., Trans -Fatty Acids and Cardiovascular Disease: Urgent Need for Legislation , CARDIOLOGY, ISSN: 0008-6312, DOI: 10.1159/000479956 , Vol.138, No.4, pp.254-258, 2017
Wilczek M.M., Olszewski R., Krupienicz A., Trans -Fatty Acids and Cardiovascular Disease: Urgent Need for Legislation , CARDIOLOGY, ISSN: 0008-6312, DOI: 10.1159/000479956 , Vol.138, No.4, pp.254-258, 2017

Abstract:
Hydrogenated oils containing trans -fatty acids (TFA) are used to produce margarine and various processed foods. TFA affect serum lipid levels, fatty acid metabolism, and endothelial function. High TFA intake is linked to increased allcause mortality, coronary heart disease mortality, and cardiovascular disease (CVD) incidence. Denmark was the first country to introduce a law that limited TFA content in food; this action led to lower CVD mortality. So far 7 European countries have followed this practice, in a few others the food industry voluntarily reduced TFA use. The issue remains mostly unaddressed in the rest of the world. Legal TFA limits should be commonly established as they are the optimal solution considering both CVD prevention and the associated cost savings in public healthcare.

Keywords:
Trans -fatty acids, Cardiovascular disease, Nutrition policy

(25p.)
43.Mrozek A., Kuś W., Burczyński T., Method for determining structures of new carbon-based 2D materials with predefined mechanical properties, INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, ISSN: 1543-1649, Vol.15, No.5, pp.379-394, 2017
Mrozek A., Kuś W., Burczyński T., Method for determining structures of new carbon-based 2D materials with predefined mechanical properties, INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, ISSN: 1543-1649, Vol.15, No.5, pp.379-394, 2017

Abstract:
The following article presents the description and application of an algorithm for optimal searching for the new stable atomic arrangements of two-dimensional graphenelike carbon lattices with predefined mechanical properties. The proposed method combines the evolutionary algorithm and the conjugate-gradient optimization. The main goal of the optimization is to find stable arrangements of carbon atoms placed in the unit cell with imposed periodic boundary conditions, which reveal desired mechanical properties. Examples of the newly obtained models of the flat, carbon materials are presented. Their mechanical properties are additionally validated during the simulation of the tensile tests using molecular dynamics.

Keywords:
2D atomic structures, graphenelike materials, hybrid algorithm, evolutionary algorithm, mechanical properties

(25p.)
44.Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., Ptasznik S., Rostocki A.J., Investigation of regular and anomalous behavior of liquid media under high pressure using ultrasonic methods, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), pp.1-4, 2017
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., Ptasznik S., Rostocki A.J., Investigation of regular and anomalous behavior of liquid media under high pressure using ultrasonic methods, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), pp.1-4, 2017

Abstract:
In many industrial technological processes, liquids are subjected to high pressures, e.g., in the high pressure food preservation. Similarly, in modern fuel injection systems for diesel engines, biofuel is subjected to a pressure up to 300 MPa. In such conditions, in liquids, high-pressure phase transitions (solidification) can occur that substantially increase the density and liquid viscosity. This solidification can result in significant problems with engine failure under cold-start conditions. This is an evident recipe for disaster, since the engine and its accessories would be very likely quickly destroyed. Thus, it is important to determine at what pressures and temperatures phase transitions occur. Conventional mechanical methods for measuring physicochemical properties of liquids at these extreme conditions do not operate. By contrast, ultrasonic techniques are very suitable for measurements of hysicochemical properties of liquids at high pressure, since they are non-destructive, can be fully automated and are characterized by the absence of moving parts. The aim of this work is to study the high-pressure hysicochemical properties of liquids (exemplified by a Camelina sativa - false flax oil) using novel ultrasonic methods.

Keywords:
pressure; ultrasonic methods; phase transitions; Camelina sativa

45.Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., The influence of rheological parameters of viscoelastic liquids on the propagation characteristics of ultrasonic Love waves, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), pp.1-4, 2017
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., The influence of rheological parameters of viscoelastic liquids on the propagation characteristics of ultrasonic Love waves, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), pp.1-4, 2017

Abstract:
Progress in materials science has led to development of new materials with improved functional characteristics. One of the new types of materials introduced into industrial practice are plastics and polymers. These materials exhibit rheological (viscoelastic) properties, which combine simultaneously the properties of liquids and solids. Due to their attractive features, such as low specific weight, high resistance to chemical agents, ease of processing, cost ffectiveness etc. these materials are widely used in chemical, automotive, aviation and space industry. In addition, these materials are very common in many aspects of everyday life. Thus, it is very important, both from the theoretical and practical point of view, to develop new, robust and accurate methods to measure the rheological parameters (viscosity η, elasticity μ and density ρ) of plastics and polymers. The conventional mechanical methods used so far to this end are outdated, time consuming, and cumbersome. Ultrasonic methods do not possess these disadvantages. The first step in the formulation of the Inverse Method for evaluating the rheological parameters of viscoelastic liquids is to formulate and solve the Direct Sturm-Liouville Problem for Love waves propagating in the investigated layered elastic aveguide loaded on its surface with various types of viscoelastic materials (e.g., liquids). The aim of this study is to develop a rigorous mathematical model (Direct Sturm-Liouville Problem) of propagation of shear horizontal (SH) surface Love waves in layered viscoelastic structures, i.e., in layered elastic waveguides with a guiding surface layer covered with a viscoelastic material described by Kelvin-Voigt, Newton and Maxwell viscoelastic models respectively

Keywords:
Love waves; viscoelastic liquid; Sturm-Liouville problem; dispersion curves

46.Jarzębski P., Wiśniewski K., Evaluation of Partial Factorization for Reduction of Finite Element Matrices, ENGINEERING TRANSACTIONS (ROZPRAWY INŻYNIERSKIE), ISSN: 0867-888X, Vol.65, No.1, pp.163-170, 2017
Jarzębski P., Wiśniewski K., Evaluation of Partial Factorization for Reduction of Finite Element Matrices, ENGINEERING TRANSACTIONS (ROZPRAWY INŻYNIERSKIE), ISSN: 0867-888X, Vol.65, No.1, pp.163-170, 2017

Abstract:
In this paper, we present the concept of Partial Factorization [1] and discuss its possible applications to the Finite Element method. We consider: (1) reduction of the element tangent matrix, which is particularly important for mixed/enhanced elements and (2) reduction of the sub-domain matrices of the Domain Decomposition (DD) equation solvers run either sequen-tially on a single machine or in parallel on a cluster of computers. We demonstrate that Partial Factorization can be beneficial for these applications.

Keywords:
multi-scale models of multi-layer shells, mixed/enhanced finite elements, parallel computing, domain decomposition, solvers

(15p.)
47.Banak R., Mościcki T., Tofil S., Hoffman J., Antoszewski B., Laser Welding of a Spark Plug Electrode: Modelling the Problem of Metals with Disparate Melting Points, LASERS in ENGINEERING, ISSN: 0898-1507, Vol.38, No.3-6, pp.267-281, 2017
Banak R., Mościcki T., Tofil S., Hoffman J., Antoszewski B., Laser Welding of a Spark Plug Electrode: Modelling the Problem of Metals with Disparate Melting Points, LASERS in ENGINEERING, ISSN: 0898-1507, Vol.38, No.3-6, pp.267-281, 2017

Abstract:
The numerical model of laser welding is presented. The time dependent set of equations describing heating, melting and solidification is solved using ANSYS-Fluent package and adopted to the problem using the external user-defined functions. The developed model is used for investigation of laser welding of Ir pad with spark plug electrode made of Ni. These spark plugs are key parts of industrial internal combustion engines using biogas as fuel. Problems in welding arise from significant difference of melting points of both metals; moreover, the boiling point of Ni is close to melting point of Ir. Theoretical model of the welding process is a useful and cost lowering tool providing guidance for selection of parameters and reducing significantly number of expensive and time consuming experiments

Keywords:
Nd:YAG laser, iridium, Ir, nickel, Ni, spark plug, laser welding, numerical model, dissimilar metals welding, temperature dependent material properties

(15p.)
48.Topolewski P., Komorowski M., Cell cycle does not contribute to cell-to-cell heterogeneity of interferon responses, Cytokine, ISSN: 1043-4666, DOI: 10.1016/j.cyto.2017.09.011, No.Mo-P7-11, pp.100, 2017(15p.)
49.Zakrzewska K.E., Jetka T., Nienałtowski K., Szymańska K., Andryka K., Topolewski P., Głów E., Komorowski M., Sensing and remembering IFNs concentrations, Cytokine, ISSN: 1043-4666, DOI: 10.1016/j.cyto.2017.09.011, No.Mo-P7-12, pp.100, 2017(15p.)
50.Konowrocki R., Walczak S., Influence of Flexibility Parameters of Wheels and Wheelset on the Railway Bogie Dynamics -Experimental and Theoretical Investigations, Machine Dynamics Research, ISSN: 2080-9948, Vol.41, No.4, pp.41-53, 2017
Konowrocki R., Walczak S., Influence of Flexibility Parameters of Wheels and Wheelset on the Railway Bogie Dynamics -Experimental and Theoretical Investigations, Machine Dynamics Research, ISSN: 2080-9948, Vol.41, No.4, pp.41-53, 2017

Abstract:
The paper is devoted to the experimental and theoretical analysis of wheelset elastic properties on the railway vehicle-track interaction. Results of experimental measurements of stiffness components of wheelsets obtained by a new measurement method are shown. Some types of wheelsets are considered with different wheel-disk design. For the theoretical analysis of bending and torsional flexibility of the wheel and wheelset are used. To numerical modeling of the considered wheels and wheelsets models the Finite Element Method (FEM) are applied. Simulation of dynamic interaction between a railway bogie and a curved sector of track in the rigid multibody systems method (VI-Rail software) is modeled. Exemplary simulations results obtained from the bogie-track system model using flexible and rigid model of the wheel and wheelset are presented.

Keywords:
experimental tests, contact force, measurement, bending wheelset, torsional flexibility wheel

(14p.)
51.Lejkowski W., Dobrowolski A.P., Gawron B., Olszewski R., Wieloaspektowa Analiza Spektralna Sygnałów Fonokardiograficznych , PRZEGLĄD ELEKTROTECHNICZNY, ISSN: 0033-2097, DOI: 10.15199/48.2017.10.17 , Vol.93, No.10, pp.73-76, 2017
Lejkowski W., Dobrowolski A.P., Gawron B., Olszewski R., Wieloaspektowa Analiza Spektralna Sygnałów Fonokardiograficznych , PRZEGLĄD ELEKTROTECHNICZNY, ISSN: 0033-2097, DOI: 10.15199/48.2017.10.17 , Vol.93, No.10, pp.73-76, 2017

Abstract:
W artykule przedstawiono koncepcję analizy spektralnej sygnałów fonokardiograficznych. Zaprezentowano wyniki analizy sygnałów zawierających od kilku do kilkunastu uderzeń serca oraz sygnałów krótkich zawierających pojedyncze uderzenie serca. Przedstawiono propozycje kilkudziesięciu widmowych cech dystynktywnych oraz ocenę ich przydatności w diagnostyce schorzeń kardiologicznych. (Multifaceted Spectral Analysis of Phonocardiographic Signals)

Keywords:
fonokardiografia, elektrokardiografia, metrologia medyczna, tony serca, analiza spektralna

(14p.)
52.Długosz A., Pokorska I., Glinicki M.A., Jaskulski R., Identification of thermal properties of hardening concrete by means of evolutionary algorithms, COMPUTER ASSISTED METHODS IN ENGINEERING AND SCIENCE, ISSN: 2299-3649, Vol.24, pp.101-111, 2017
Długosz A., Pokorska I., Glinicki M.A., Jaskulski R., Identification of thermal properties of hardening concrete by means of evolutionary algorithms, COMPUTER ASSISTED METHODS IN ENGINEERING AND SCIENCE, ISSN: 2299-3649, Vol.24, pp.101-111, 2017

Abstract:
In this paper, the evolutionary computation procedures for identifying thermophysical properties in hardening massive concrete structures are presented. The heat of cement hydration, thermal conductivity and specific heat are determined for the purpose of modeling temperature evolution in massive concrete elements. Knowledge about temperature fields is very important due to their link with undesirable thermal stresses that can cause a weakening of structures because of thermal cracking. The proposed method is based on point temperature measurements in a cylindrical mould and the numerical solution of the inverse heat transfer problem by means of the finite element method and evolutionary computation

Keywords:
thermal properties of concrete, inverse heat transfer problem, early age concrete, evolutionary algorithm, FEM

(14p.)
53.Frąś T., Frąś L.J., Faderl N., Rubber and magnetorheological fluid applied as the interlayer in composite armours against high-velocity loadings, DIAGNOSTYKA, ISSN: 1641-6414, Vol.18, No.3, pp.63-68, 2017
Frąś T., Frąś L.J., Faderl N., Rubber and magnetorheological fluid applied as the interlayer in composite armours against high-velocity loadings, DIAGNOSTYKA, ISSN: 1641-6414, Vol.18, No.3, pp.63-68, 2017

Abstract:
Monolithic, homogenous ballistic shields consisting of a single thick, high-hardness and high-strength steel plate are rarely applied in modern combat vehicles. Currently, a popular armour concept is a multilayered shield since it is expected that the kinetic energy of a threat may be dissipated by transmission through materials with different properties and also by multiple interface reflections. Searching for a maximum ballistic protection at minimum weight inspires applications of various materials which complementary behaviour provides a high protective efficiency without excessive mass. The preliminary experimental investigation presented in the paper aimed to verify behaviour of two prototyped laminated armours under impacts of small-calibre projectiles (cal. 7.62). The main interest lied in impact properties of materials proposed as the intermediate layer. The first tested concept was a laminated steel armour with the 10 mm thick rubber interlayer. In the second armour, the intermediate layer consisted of a magnetorheological fluid.

Keywords:
energy absorption, rubber, magnetorheological fluid, protective properties

(11p.)
54.Wojnar R., Heuristic derivation of Brinkman's seepage equation, Technical Sciences, ISSN: 1505-4675, Vol.20, No.4, pp.359-374, 2017
Wojnar R., Heuristic derivation of Brinkman's seepage equation, Technical Sciences, ISSN: 1505-4675, Vol.20, No.4, pp.359-374, 2017

Abstract:
Brinkman’s law is describing the seepage of viscous fluid through a porous medium and is more acuratethan the classicalDarcy’s law.Namely, Brinkman’s law permitsto conform the flow through a porous medium to the free Stokes’ flow. However, Brinkman’s law, similarly as Schro¨dinger’s equation was only devined. Fluid in its motion through a porous solid is interacting at every point with the walls of pores, but the interactions of the fluid particles inside pores are different than the interactions at the walls, and are described by Stokes’ equation. Here, we arrive at Brinkman’s law from Stokes’ flow equation making use of successive iterations, in type of Born’s approximation method, and using Darcy’s law as a zero-th approximation.

Keywords:
porosity, Darcy’s law, Stokes’ equation, successive iterations, Born’s approximation

(11p.)
55.Rowiński P.M., Burczyński T., Duszyński J., Rychard A., Uniwersytet badawczy, czyli…?, NAUKA, ISSN: 1231-8515, Vol.3, pp.35-56, 2017(10p.)
56.Fryczowski K., Roskosz M., Kukla D., Szwed M., Wykorzystanie szumu Barkhausena w ocenie twardości warstw nawęglanych oraz hartowanych indukcyjnie na stali AMS 6414, PRZEGLĄD SPAWALNICTWA, ISSN: 0033-2364, Vol.89, No.11, pp.1-6, 2017
Fryczowski K., Roskosz M., Kukla D., Szwed M., Wykorzystanie szumu Barkhausena w ocenie twardości warstw nawęglanych oraz hartowanych indukcyjnie na stali AMS 6414, PRZEGLĄD SPAWALNICTWA, ISSN: 0033-2364, Vol.89, No.11, pp.1-6, 2017

Abstract:
Analizowano możliwości określenia zmian twardości warstw nawęglanych i hartowanych indukcyjnie na podstawie wielkości ilościowo opisujących szum Barkhausena. Badania przeprowadzono na zestawie trzech próbek o stałej grubości warstwy nawęglanej (1,2 mm) o różnych wartościach twardości. Pomiary przeprowadzono dla trzech konfiguracji aparatury MEB-4C Mag-Lab s.c. różniących się częstotliwością prądu magnesującego. Analizowano obwiednię szumu Barkhausena i jej punkty charakterystyczne, energię, RMS, periodogramy FFT oraz rozkłady liczby zdarzeń. Uzyskano interesujące korelacje diagnostyczne mogące posłużyć w rozwiązywaniu zagadnień odwrotnych badań nieniszczących

Keywords:
twardość, szum Barkhausena, zagadnienie odwrotne

(9p.)
57.Brzozowski Bartosz, Kawka Karol, Kaźmierczak Krzysztof, Rochala Zdzisław, Wojtowicz Konrad, Supporting the Process of Aircraft Maintenance with Mobile Devices, Transactions of the INSTITUTE of AVIATION, ISSN: 0509-6669, No.2(247), pp.7-18, 2017
Brzozowski Bartosz, Kawka Karol, Kaźmierczak Krzysztof, Rochala Zdzisław, Wojtowicz Konrad, Supporting the Process of Aircraft Maintenance with Mobile Devices, Transactions of the INSTITUTE of AVIATION, ISSN: 0509-6669, No.2(247), pp.7-18, 2017

Abstract:
Maintenance of aircraft is a complex process and therefore, in order to optimize the process, integrated information systems are increasingly used. Rapid development and wide availability of mobile devices equipped with powerful processors and with a wide range of modern communication connections suggests their high usability for enterprise IT systems. In the Department of Avionics and Air Armament of the Military University of Technology (WAT) an ERP-class (Enterprise Resource Planning) system, intended to support aircraft maintenance [4] has been designed and developed. The main concept of the system is to store the aircraft related and maintenance information in a central repository, i.e. in databases hosted on a central database server. This solution ensures concurrent availability of the data to a large group of authorized users. The key components of the system include the database server and client applications, which ensure access to centralized information resources, according to assigned user rights. The project involves development of client applications using three technologies: web, desktop and mobile one. Developed client applications have successfully passed integration tests performed using sample maintenance data. Currently works on user authorization security and wireless data security are under way.

Keywords:
maintenance system, mobile application, aircraft

(9p.)
58.Gibas K., Jóźwiak-Niedźwiedzka D., Glinicki M.A., Petrograficzna identyfikacja kruszyw podatnych na wystąpienie reakcji alkalicznej w betonie, PRACE INSTYTUTU CERAMIKI I MATERIAŁÓW BUDOWLANYCH, ISSN: 1899-3230, Vol.X, No.30, pp.68-78, 2017
Gibas K., Jóźwiak-Niedźwiedzka D., Glinicki M.A., Petrograficzna identyfikacja kruszyw podatnych na wystąpienie reakcji alkalicznej w betonie, PRACE INSTYTUTU CERAMIKI I MATERIAŁÓW BUDOWLANYCH, ISSN: 1899-3230, Vol.X, No.30, pp.68-78, 2017

Abstract:
Przedstawiono wyniki analizy petrograficznej 20 kruszyw łamanych z rożnych regionów Polski, przeprowadzonej na cienkich szlifach analizowanych pod mikroskopem w świetle przechodzącym. Próbki kruszyw grubych frakcji do 16 mm pochodziły ze skał litych oraz ze złóż polodowcowych z zakładów produkcji kruszyw, łamanych stosowanych do betonu. Ocenę składu mineralnego kruszyw, mającą na celu rozpoznanie składników szkodliwych, przeprowadzono z uwagi na zawartość reaktywnych minerałów krzemionkowych, m.in. opalu, krystobalitu, trydymitu, chalcedonu, wielkość kryształów (skryto- i mikrokrystaliczny kwarc) oraz kwarcu w stanie naprężeń. Zastosowanie metody petrograficznej na cienkich szlifach pozwoliło na wstępną kwalifikację do kategorii potencjalnie reaktywnej lub reaktywnej. Uzyskane wyniki badań stanowią wstępną informację o przydatności kruszyw jako składników betonu bądź o skierowaniu ich do dalszych szczegółowych badań lub ich odrzucenia

Keywords:
analiza petrograficzna, kruszywo, minerały reaktywne, reakcja alkaliczna kruszywa (AAR)

(8p.)
59.Glinicki M.A., Brandt A.M., Dąbrowski M., Gibas K., Jaskulski R., Jóźwiak-Niedźwiedzka D., Baran T., Gryziński M., Ładyżyński K., Nowowiejski G., Beton osłonowy w konstrukcjach narażonych na promieniowanie jonizujące, INŻYNIERIA I BUDOWNICTWO, ISSN: 0021-0315, Vol.12, pp.637-643, 2017
Glinicki M.A., Brandt A.M., Dąbrowski M., Gibas K., Jaskulski R., Jóźwiak-Niedźwiedzka D., Baran T., Gryziński M., Ładyżyński K., Nowowiejski G., Beton osłonowy w konstrukcjach narażonych na promieniowanie jonizujące, INŻYNIERIA I BUDOWNICTWO, ISSN: 0021-0315, Vol.12, pp.637-643, 2017

Abstract:
W artykule opisano podstawowe wyniki uzyskane w trakcie realizacji projektu badawczego „Trwałość i skuteczność betonowych osłon przed promieniowaniem jonizującym w obiektach energetyki jądrowej” [1]. Przedstawiono też wytyczne techniczne i kryteria oceny betonu osłonowego. Uzyskane wyniki mogą stanowić podstawę dalszych prac przy projektowaniu obiektów elektrowni jądrowych, składowisk materiałów radioaktywnych i innych miejsc powstawania, stosowania lub przechowywania materiałów wytwarzających promieniowanie jonizujące. Artykuł obejmuje zagadnienia związane z wymaganą skutecznością betonowych konstrukcji osłonowych przez zapewnienie bezpieczeństwa personelu i otoczenia przed oddziaływaniem promieniowania jonizującego. Rozpatrzono również trwałość osłon betonowych, tzn. zachowanie właściwości mechanicznych i nieprzepuszczalności w okresie przewidzianej eksploatacji pod wpływem przewidywanych oddziaływań zewnętrznych i procesów starzenia, a także przy podwyższonej temperaturze i promieniowaniu jonizującym. Artykuł nie obejmuje zagadnień integralności osłon pod obciążeniami wyjątkowymi, spowodowanymi awarią reaktora, uderzeniem samolotu, działaniami terrorystycznymi itp.

(7p.)
60.Majka K., Krupienicz A., Olszewski R., Telepielęgniarstwo w ortopedii, Medycyna Ogólna i Nauki o Zdrowiu, ISSN: 2083-4543, DOI: 10.26444/monz/75509, Vol.23, No.2, pp.94-97, 2017
Majka K., Krupienicz A., Olszewski R., Telepielęgniarstwo w ortopedii, Medycyna Ogólna i Nauki o Zdrowiu, ISSN: 2083-4543, DOI: 10.26444/monz/75509, Vol.23, No.2, pp.94-97, 2017

Abstract:
Wprowadzenie i cel pracy. Rozwój technologii informacyjno-komunikacyjnej może doprowadzić do poprawy sytuacji w służbie zdrowia. Telepielęgniarstwo pozwoli na rozszerzenie praktyki pielęgniarskiej oraz wielu funkcji takich jak: opiekuńczo-pielęgnacyjna, profilaktyczna, diagnostyczna, rehabilitacyjna i związana z promocją zdrowia. Celem pracy jest ukazanie telepielęgniarstwa w ortopedii, a także zaprezentowanie wielu korzyści, jakie niesie zarówno dla pacjenta, jak i dla personelu medycznego. Skrócony opis stanu wiedzy. Starzejące się społeczeństwo potrzebuje zarówno wykwalifikowanego personelu pielęgniarskiego, jak i możliwości uzyskania szybkiej konsultacji lekarskiej i pielęgniarskiej. Udzielanie wskazówek, porad i opieki pielęgniarskiej przez pielęgniarki specjalistki w swej profesji m.in. za pomocą wideokonferencji przysporzy znaczących korzyści zarówno pacjentom, lekarzom, pielęgniarkom, jak i rehabilitantom. Podsumowanie. Wdrożenie wirtualnych wizyt może doprowadzić do poprawy sytuacji w ochronie zdrowia. Telepielęgniarstwo rozszerzyłoby kompetencje pielęgniarki, a także podniosłoby jakość świadczonych przez nie usług. Być może zatrzymałoby również emigrację zarobkową pielęgniarek w Polsce.

Keywords:
telepielęgniarstwo, ortopedia, edukacja pacjenta, nowe technologie, kształcenie, niedobór personelu pielęgniarskiego

(6p.)
61.Duszyński J., Burczyński T., Rowiński P.M., Rychard A., Projekt: Uniwersytet PAN , Nauka i Szkolnictwo Wyższe, ISSN: 1231-0298, Vol.2, No.50, pp.59-76, 2017
Duszyński J., Burczyński T., Rowiński P.M., Rychard A., Projekt: Uniwersytet PAN , Nauka i Szkolnictwo Wyższe, ISSN: 1231-0298, Vol.2, No.50, pp.59-76, 2017

Abstract:
Instytuty Polskiej Akademii Nauk mają wśród polskich instytucji naukowych czołowy
potencjał merytoryczny. W instytutach PAN w latach 2013-2016 powstało 19,7% prac afiliowanych
w polskich instytucjach i umieszczonych w najbardziej prestiżowych pismach naukowych
danych dziedzin (górne 10% z list pism danej dziedziny nauki uszeregowanych według rosnącego
współczynnika wpływu, IF). Jest to najlepszy wynik wśród polskich instytucji akademickich. Kadra
instytutów PAN zajmuje się nie tylko badaniami, ale też dydaktyką; 1607 osób (stan na 31 grudnia
2016) było na stacjonarnych studiach doktoranckich w Instytutach PAN. Stopień umiędzynarodowienia
studiów w PAN (8%) jest największy wśród polskich uczelni. W związku z tym uzasadnione
wydaje się powołanie Uniwersytetu PAN (UPAN), który mógłby stać się pierwszą w Polsce uczelnią
badawczą. Planuje się, że docelowo kształciłoby się na nim 2,5 tys. osób, w przeważającej części studentek
i studentów III stopnia. Taka liczba pozwoli na zagwarantowanie indywidualnej merytorycznej
opieki każdemu studentowi, a także na wprowadzenie i przetestowanie nowatorskich programów
dydaktycznych, właściwych erze Internetu i e-learningu, prowadzenia studiów online poprzez
courser, studiów inter- i crossdyscyplinarnych. UPAN ma realne szanse stać się wizytówką polskiej
nauki i szkolnictwa wyższego, gdyż otwarte, międzynarodowe wieloletnie programy konkursowe na
pozycje: wizytujących profesorów, stażystów podoktorskich i doktorantów mogą podnieść umiędzynarodowienie
zarówno kadry, jak i studentów UPAN do poziomu właściwego najlepszym uczelniom
świata. Z uwagi na wielkość naszego budżetu nauki i szkolnictwa wyższego osiągnięcie takiego umiędzynarodowienia
jest finansowo realne w najbliższym czasie tylko dla uczelni tak małej jak UPAN.
Opisane działania będą projakościowe także dla samych instytutów PAN i istotnie podniosą ich poziom
merytoryczny. Po kilku latach UPAN ma realne szanse na uplasowanie się w międzynarodowych
rankingach na bardzo dobrych pozycjach, w pierwszej dwusetce, a nawet w pierwszej setce
najlepszych światowych uczelni. Należy podkreślić, że warunkiem tego jest zapewnienie finansowania
badań w instytutach PAN na co najmniej takim jak obecnie poziomie, uelastycznienie ich sieci, wytworzenie mechanizmów synergii pomiędzy instytutami (wspólny cel – UPAN) oraz wsparcie tego
projektu długoletnim programem umiędzynarodowienia kadry i studentów.

Keywords:
research university, University of the Polish Academy of Sciences, excellence in science

(6p.)
62.Secomski W., Wójcik J., Klimonda Z., Olszewski R., Nowicki A., Influence of absorption and scattering on the velocity of acoustic streaming, HYDROACOUSTICS, ISSN: 1642-1817, Vol.20, No.1, pp.159-166, 2017
Secomski W., Wójcik J., Klimonda Z., Olszewski R., Nowicki A., Influence of absorption and scattering on the velocity of acoustic streaming, HYDROACOUSTICS, ISSN: 1642-1817, Vol.20, No.1, pp.159-166, 2017

Abstract:
Streaming velocity depends on intensity and absorption of ultrasound in the media. In some cases, such as ultrasound scattered on blood cells at high frequencies, or the presence of ultrasound contrast agents, scattering affects the streaming speed. The velocities of acoustic streaming in a blood-mimicking starch suspension in water and Bracco BR14 contrast agent were measured. The source of the streaming was a plane 20MHz ultrasonic transducer. Velocity was estimated from the averaged Doppler spectrum. The single particle driving force was calculated as the integral of the momentum density tensor components. For different starch concentrations, the streaming velocity increased from 8.9 to 12.5mm/s. This corresponds to a constant 14% velocity increase for a 1 g/l increase in starch concentration. For BR14, the streaming velocity remained constant at 7.2mm/s and was independent of the microbubbles concentration. The velocity was less than in reference, within 0.5mm/s measurement error. Theoretical calculations showed a 16% increase in streaming velocity for 1 g/l starch concentration rise, very similar to the experimental results. The theory has also shown the ability to reduce the streaming velocity by low-density scatterers, as was experimentally proved using the BR14 contrast agent.

Keywords:
ultrasound, radiation force, starch, contrast agent, blood, thrombolysis

(6p.)
63.Kujawska T., Dera W., Dziekoński C., Automated bimodal ultrasound device for preclinical testing of HIFU technique in treatment of solid tumors implanted into small animals , HYDROACOUSTICS, ISSN: 1642-1817, Vol.20, pp.93-98, 2017
Kujawska T., Dera W., Dziekoński C., Automated bimodal ultrasound device for preclinical testing of HIFU technique in treatment of solid tumors implanted into small animals , HYDROACOUSTICS, ISSN: 1642-1817, Vol.20, pp.93-98, 2017

Abstract:
In Poland cancer is the second cause of death overall, and the first before 65. Demand for new anticancer therapies is increasing every year. The main objective of studies on medical and technical aspects of new anticancer methods is to reduce unwanted side effects and costs associated with conventional methods of treatment. Percutaneous (noninvasive) HIFU (High Intensity Focused Ultrasound) technique gives the chance to radically reduce both of these factors. The main goal of this work is automation of HIFU technology for producing thermal damage to the entire volume of a solid breast tumor implanted into a rat mammary gland using the proposed bi-modal ultrasound equipment, enabling the ultrasonic heating of a small volume within the tumor under the ultrasonic imaging control, as well as 3D scanning of the heating beam focus throughout the entire tumor volume. Design of the proposed equipment includes the heating probe of low frequency (about 1MHz), allowing penetration of pulsed focused waves into tissues, and the linear phased array probe of high frequency (from 4 MHz to 10 MHz), allowing visualization of the locally heated area inside the tumor in real time. Automatic 3D scanning of the heating beam focus provides the thermal damage to its entire volume.

Keywords:
High Intensity Focused Ultrasound beam, focal volume, tissue damage

(6p.)
64.Nowicki A., Dobruch-Sobczak K., Introduction to tissue shear wave elastography , HYDROACOUSTICS, ISSN: 1642-1817, Vol.20, pp.129-138, 2017
Nowicki A., Dobruch-Sobczak K., Introduction to tissue shear wave elastography , HYDROACOUSTICS, ISSN: 1642-1817, Vol.20, pp.129-138, 2017

Abstract:
Ultrasonic elastography is a technique allowing imaging of the elastic properties of tissue. There are two basic techniques of elastographic imaging; compressional - displaying the evaluation of tissue deformation under the external stress; and dynamic, tracking the propagation velocity of the shear wave generated by the acoustic radiation force. Soft tissue bulk modulus varies, from a few to several GPa, whereas the shear modulus is significantly smaller, not exceeding a few hundred Pa for adipose tissue, breast or liver, up to several hundred kPa for hard tissue. Forces generated in the tissue due to the external, axial piston-like stresses depend mainly on the shear modulus. In Shear Wave Elastography, long, several tens of microseconds, ultrasonic pulses successively focused at several depths are sent: generating a conical wave front moving with the supersonic velocity, depending on the tissue stiffness. Velocity of propagation of shear wave depends on the shear modulus μ and the modulus of elasticity E of the examined tissue is equal to E=3μ.

Keywords:
elastography, ultrasonic imaging, thyroid, breast

(6p.)
65.Żurek Z.H., Kukla D., Przetwornik ldc 1000 m w zastosowaniu do defektoskopii i badań parametrów materiału, NAPĘDY I STEROWANIE, ISSN: 1507-7764, Vol.12, pp.76-82, 2017
Żurek Z.H., Kukla D., Przetwornik ldc 1000 m w zastosowaniu do defektoskopii i badań parametrów materiału, NAPĘDY I STEROWANIE, ISSN: 1507-7764, Vol.12, pp.76-82, 2017

Abstract:
Moduł LDC 1000 [1, 2] jest przetwornikiem pomiarowym indukcyjnym produkcji Texas Instruments. W podstawowej wersji został zaprojektowany do pomiaru odległości od powierzchni materiałów przewodzących. Jego konstrukcja i oprogramowanie umożliwiają wiele innowacyjnych zastosowań. Zastosowania można przenieść na diagnostykę maszyn (pomiar skręcenia wałów napędowych, wykrywanie i pomiar niezrównoważenia mas wirujących), a także w obszar badań nieniszczących defektów ciągłości kształtu i struktury. W artykule opisano przykłady zastosowania w defektoskopii pęknięć, w pomiarze parametrów elektrycznych i magnetycznych oraz w pomiarze odległości od powierzchni materiałów przewodzących. Układ LDC 1000 jest dostępny od kilku lat na rynku. Obszar podstawowy jego zastosowania jest ciągle poszerzany [4, 5]. Jest też tematem prac doktorskich [7]. Przedstawione na wstępie zasady pomiaru unormowanych składowych impedancji są wstępem do opisu działania przetwornika LDC. Przetwornik LDC 1000 pracuje w obszarze rezonansu prądu: cewka indukcyjna – materiał badany. Spośród możliwości diagnostycznych układu zaprezentowano jego zastosowanie w wykrywaniu defektów. Przeprowadzono pomiar pęknięć, pomiar przewodności oraz pomiar odległości. Wartościami rejestrowanymi była lokalna indukcja obwodu. Pomiary prowadzono na wzorcach stosowanych w defektoskopii magneto-indukcyjnej. Wykonano badania na powtarzalność czasową pomiaru

Keywords:
NDT, NDE, diagnostyka parametrów i struktury materiału

(5p.)
66.Makowska K., Kowalewski Z.L., Ziółkowski P., Badur J., Ocena stopnia uszkodzenia eksploatowanych łopatek turbiny z wykorzystaniem sygnału szumu Barkhausena, ENERGETYKA, PROBLEMY ENERGETYKI I GOSPODARKI PALIWOWO-ENERGETYCZNEJ, ISSN: 0013-7294, Vol.760, No.10, pp.638-641, 2017(4p.)
67.Olaszek P., Świercz A., Wyczałek I., Kołakowski P., Szadkowski K., Moduł pomiaru i oceny odpowiedzi eksploatowanych kolejowych konstrukcji mostowych, Mosty, ISSN: 1896-7663, Vol.3-4, pp.22-26, 2017(3p.)
68.Chrzanowska J., Hoffman J., Mościcki T., Denis P., Szymański Z., Comparison of tungsten boride layers deposite by laser pulse, magnetron sputtering and combined magnetron sputtering-pulsed laser deposition, COLA 2017, International Conference on Laser Ablation, 2017-09-03/09-08, Marseille (FR), pp.202-202, 2017
69.Zawidzki M., Szklarski J., Single-branch Truss-Z Optimization Based on Image Processing and Evolution Strategy, PARENG2017, International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, 2017-05-30/05-31, Pécs (HU), DOI: 10.4203/ccp.111.28, pp.28, 2017
Zawidzki M., Szklarski J., Single-branch Truss-Z Optimization Based on Image Processing and Evolution Strategy, PARENG2017, International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, 2017-05-30/05-31, Pécs (HU), DOI: 10.4203/ccp.111.28, pp.28, 2017

Abstract:
Truss-Z (TZ) is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. TZ structures are composed of four variations of a single basic unit subjected to affine transformations (mirror reflection, rotation and combination of both). This paper presents a new approach to the optimization of the layout of a singlebranch Truss-Z (STZ) in constrained environment (E). The problem is formulated as follows: create an STZ from a start (sP) to end point (eP) without self-intersections and collisions with two obstacles. This is a multi-criterial optimization problem where three independent objectives are subjected to minimization: the total number of modules (n), the “reaching error” to eP and the “overlapping error”. All three criteria are weighted and aggregated to a single cost function (CF). The calculation of CF is based on image processing of rendered geometry of individual STZs in E. The optimization is performed by population-based classic heuristic method - Evolution Strategy (ES). The computation of CF is the most time consuming, however, its parallelization is rather straightforward. Two parallelization methods are presented: distribution over Wolfram Lightweight Grid and application of general purpose graphical processing units (GPGPUs) with the use of CUDA platform.

Keywords:
Extremely Modular System, Truss-Z, discrete optimization, image processing, rasterization, GPU, CUDA, Mathematica, Wolfram Lightweight Grid.

70.Zawidzki M., Szklarski J., Preliminary Optimization of Pipe-Z Reconfiguration, PARENG2017, International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, 2017-05-30/05-31, Pécs (HU), DOI: 10.4203/ccp.111.27, pp.27, 2017
Zawidzki M., Szklarski J., Preliminary Optimization of Pipe-Z Reconfiguration, PARENG2017, International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, 2017-05-30/05-31, Pécs (HU), DOI: 10.4203/ccp.111.27, pp.27, 2017

Abstract:
Pipe-Z (PZ) is a parametric design system which comprised of a congruent modules (PZM) allows the creation of complex three-dimensional, single-branch structures which can be represented by mathematical knots. Once the geometrical parameters are set for the PZM, the shape of PZ is controlled solely by relative twists of the PZMs in a sequence. Therefore each PZM has one degree of freedom (1DOF). This paper presents the preliminary optimization of PZ reconfiguration from a “straight tube” to a half-torus. Here the displacement of PZMs transverse to the “bending direction” is to be minimized. In other words, it resembles “truing” of a wheel. In the considered case, the PZ is comprised of eight hexagonal PZMs. Thus every PZM can have six possible positions relative to the previous module. The initial (PZI) and target (PZT) configurations are given. Since the time-steps and relative twists are discrete, it is a discrete optimization and has combinatorial nature. The number of possible configurations grows astronomically with the assumed number of time-steps from one position to another and the number of PZMs. However, the optimization algorithm can be naturally parallelized. At first the concept of PZ is outlined, followed by the experiment. The results are illustrated and discussed.

Keywords:
Extremely Modular System, Pipe-Z, Arm-Z, discrete optimization, dihedral rotation, “snakebot”, reconfiguration.

71.Secomski W., Wójcik J., Klimonda Z., Nowicki A., Estimation and Measurement of the Streaming Velocity in Presence of the Contrast Agents or Blood Mimicking Scatterers, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), DOI: 10.1109/ULTSYM.2017.8092858, pp.1-4, 2017
Secomski W., Wójcik J., Klimonda Z., Nowicki A., Estimation and Measurement of the Streaming Velocity in Presence of the Contrast Agents or Blood Mimicking Scatterers, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), DOI: 10.1109/ULTSYM.2017.8092858, pp.1-4, 2017

Abstract:
Streaming velocity mainly depends on the intensity and absorption of ultrasound in the media. For high frequencies exceeding 20 MHz the speed of streaming in blood is also affected by scattering effects on the blood cells and contrast agent microbubbles. According to theoretical calculations, 12.2 % increase in streaming velocity for 1 g/l starch concentration rise should be expected. The theory has also shown the reduction of the streaming velocity by low-density scatterers, estimated decrease was -9.7 % for BR14 contrast agent. The experimental measurements of streaming velocities were done in blood mimicking fluid and Bracco BR14 microbubbles dissolved in water. The streaming was generated by a plane 20 MHz ultrasonic transducer driven by a pulsed Doppler flowmeter. For starch concentration changing from 0.01g/l (reference fluid) up to 1g/l the streaming velocity increased by 13%, very close to the theoretical prediction. For BR14, the measured velocity was 9% less than in reference fluid and remained independent on the microbubbles concentration.

Keywords:
streaming; radiation force; starch; contrast agent; blood

72.Żołek N., Wójcik J., Optimized Acoustic Echoes Simulator in Fourier domain, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), DOI: 10.1109/ULTSYM.2017.8092654, pp.1-3, 2017
Żołek N., Wójcik J., Optimized Acoustic Echoes Simulator in Fourier domain, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), DOI: 10.1109/ULTSYM.2017.8092654, pp.1-3, 2017

Abstract:
A new toolbox for the simulation of acoustic wave fields is described. The toolbox, USim, is designed to make an acoustic modeling of ultrasound propagation in tissues reliable and fast. The forward simulations of the wave field are based on the Born-Neumann single scattering approximation of the solution of Sturm-Liouville equation. The toolbox allows simulating the ultrasound wave propagation in non-homogeneous media containing finite size scatterers similar to those existing in a real tissues. The approach of calculations conducted in Fourier space increases the efficiency and allows taking into account the absorption and density phenomena in a simple and correct way.

Keywords:
acoustic propagation; numerical simulations; fourier domain

73.Secomski W., Pomiary pola akustycznego, XXIII Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW, 2017-03-15/03-17, Zakopane (PL), pp.139-146, 2017
74.Kowalczyk P., Parametric Constitutive Modelling of Cancellous Bone, IAMMC 2017, Interaction of Applied Mathematics and Mechanics Conference, 2017-05-09/05-11, Paris (FR), pp.11-12, 2017
75.Burczyński T., Topology Optimization In Nano-Scale - New Graphene-Like Materials, IAMMC 2017, Interaction of Applied Mathematics and Mechanics Conference, 2017-05-09/05-11, Paris (FR), pp.13-13, 2017
76.Rojek J., Multiscale Modelling of Powder Sintering, IAMMC 2017, Interaction of Applied Mathematics and Mechanics Conference, 2017-05-09/05-11, Paris (FR), pp.21-22, 2017
77.Konowrocki R., Dąbrowski A., Wantoch-Rekowski R., Brona P., Modelling of special train dynamic for construction simulator to train drivers training , ART 2017, 6th International Scientific Conference - ADVANCED RAIL TECHNOLOGIES - , 2017-11-15/11-16, Conference venue: Hotel Boss, Żwanowiecka 20, Warsaw. (PL), pp.10-11, 2017
Konowrocki R., Dąbrowski A., Wantoch-Rekowski R., Brona P., Modelling of special train dynamic for construction simulator to train drivers training , ART 2017, 6th International Scientific Conference - ADVANCED RAIL TECHNOLOGIES - , 2017-11-15/11-16, Conference venue: Hotel Boss, Żwanowiecka 20, Warsaw. (PL), pp.10-11, 2017

Abstract:
Due to the fact that training simulators of railway vehicles must fulfill unique requirements resulting from the specific properties of the simulated vehicles, in this article on determining the main criteria for modeling the dynamics of such systems was presented. A methodology used in the study on the selection of parameters of the modeled vehicle and its driveline based on experimental studies was described. Adaptation of parameters obtained from the experimentally test into the dynamics model of vehicle was presented. Currently used solutions in simulators as well as issues related to animation and presentation of the image was provided. The requirements for the operation of the rail vehicle simulator, as well the design requirements for visualization of the image were defined and discussed

Keywords:
railway vehicle simulator, railway vehicle drive system, virtual environment VBS3

78.Konowrocki R., Kukulski J., Groll W., Walczak S., Investigation of material property changes of discs during braking on hot spots and hot bands generation, ART 2017, 6th International Scientific Conference - ADVANCED RAIL TECHNOLOGIES - , 2017-11-15/11-16, Conference venue: Hotel Boss, Żwanowiecka 20, Warsaw. (PL), pp.48-49, 2017
Konowrocki R., Kukulski J., Groll W., Walczak S., Investigation of material property changes of discs during braking on hot spots and hot bands generation, ART 2017, 6th International Scientific Conference - ADVANCED RAIL TECHNOLOGIES - , 2017-11-15/11-16, Conference venue: Hotel Boss, Żwanowiecka 20, Warsaw. (PL), pp.48-49, 2017

Abstract:
A braking systems during friction interaction convert mechanical energy into heat energy. The corresponding heating is a major design parameter as it influences the tribological and mechanical performances (wear of the materials, friction performances, risks of cracks, vibrations, etc.). During breaking process in such breaking systems, different locations of thermal overheating areas of material of friction pair may occur, usually named as hot spots or hot bands. These spot and bands are characterized by very high temperature gradients. This brake systems exposed to thermoelastic instabilities show a characteristic temperature distribution on break disc surface that can lead to local material change. The interaction of thermal energy and thermal expansion of the material of the friction braking effect on the local increase in temperature leading to a dominant impact frictional forces in this area. Often destabilization of the braking process is a consequence of such a rise in temperature. The difficulty of understanding and modeling all of these phenomena still remains due to the complex interactions of thermal, mechanical, and tribological effects. Experimental investigation is still nowadays a major instrument for detecting and understanding the physical effects. In this presentation, we propose to consider an example

Keywords:
braking system, hot spots, hot bands, braking tests, infrared testing

79.Konowrocki R., Stability analysis of the railway vehicle drive with electromechanical coupling effects, ART 2017, 6th International Scientific Conference - ADVANCED RAIL TECHNOLOGIES - , 2017-11-15/11-16, Conference venue: Hotel Boss, Żwanowiecka 20, Warsaw. (PL), pp.22-23, 2017
Konowrocki R., Stability analysis of the railway vehicle drive with electromechanical coupling effects, ART 2017, 6th International Scientific Conference - ADVANCED RAIL TECHNOLOGIES - , 2017-11-15/11-16, Conference venue: Hotel Boss, Żwanowiecka 20, Warsaw. (PL), pp.22-23, 2017

Abstract:
Aiming at the torsional vibration in the electromechanical driveline system for railway trains, this article introduces a stability analysis of the drive system with electromechanically coupling. For a reliability and security of drive system of railway vehicles drive by electric motors, the electromagnetic output traction force and torques should drive stably, otherwise the shaft train vibration caused by motor torque ripple will affect the fatigue life of the device and the operation security of the driven object. For this reason an investigation of the dynamic response and stability of a electromechanical drive train system was done. For this purpose a dynamic model integrated with an electric motor to simulate the vibration in the component parts of the drive system were created. Such an approach for modelling of the considered electrical drive systems coupled with elements of a driven vehicle is particularly important when the purpose of such modelling is to obtain an information about the transient phenomena of system operation

Keywords:
electromechanical coupling, electric drive, electric motor, torsion vibrations, railway drive

80.Chrzanowska J., Błoński S., Hoffman J., Małolepszy A.G., Stobiński L.A., Trykowski G., Szymański Z., Carbon nanoparticles synthesized by the laser ablation in liquid, COLA 2017, International Conference on Laser Ablation, 2017-09-03/09-08, Marseille (FR), pp.286-286, 2017
81.Mościcki T., Hoffman J., Szymański Z., Expansion of laser-ablated carbon plume to ambient argon, PLASMA-2017, International Conference on Research and Applications of Plasmas, 2017-09-18/09-22, Warszawa (PL), pp.50-50, 2017
Mościcki T., Hoffman J., Szymański Z., Expansion of laser-ablated carbon plume to ambient argon, PLASMA-2017, International Conference on Research and Applications of Plasmas, 2017-09-18/09-22, Warszawa (PL), pp.50-50, 2017

Keywords:
laser ablation, plasma plume

82.Pawłowska S., Pierini F., Nakielski P., Piechocka I., Zembrzycki K., Kowalewski T.A., Lateral Migration of Highly Deformable Nanofilaments Conveyed by Oscillatory Flow, CNM, 5th Conference on Nano- and Micromechanics, 2017-07-04/07-06, Wrocław (PL), pp.29-31, 2017
Pawłowska S., Pierini F., Nakielski P., Piechocka I., Zembrzycki K., Kowalewski T.A., Lateral Migration of Highly Deformable Nanofilaments Conveyed by Oscillatory Flow, CNM, 5th Conference on Nano- and Micromechanics, 2017-07-04/07-06, Wrocław (PL), pp.29-31, 2017

Keywords:
thermal fluctuations, lateral migration, flexible filaments

83.Pawłowska S., Kowalewski T.A., Lateral migration of solid spheroidal nanoparticles and highly deformable hydrogel nanofilaments under the influence of oscillatory flow, ExFM2017, Experiments in Fluid Mechanics, 2017-10-23/10-24, Warszawa (PL), pp.1-2, 2017
84.Pęcherski R.B., Deformacja metali z udziałem wielopoziomowej hierarchii pasm ścinania - nowe spojrzenie. Deformation of metals accounting for multilevel hierarchy of shear bands - revisited., OMIS'2017, XII Konferencja NAukowa ODKSZTAŁCALNOŚĆ METALI I STOPÓW, 2017-11-21/11-24, Łańcut (PL), pp.52-53, 2017
Pęcherski R.B., Deformacja metali z udziałem wielopoziomowej hierarchii pasm ścinania - nowe spojrzenie. Deformation of metals accounting for multilevel hierarchy of shear bands - revisited., OMIS'2017, XII Konferencja NAukowa ODKSZTAŁCALNOŚĆ METALI I STOPÓW, 2017-11-21/11-24, Łańcut (PL), pp.52-53, 2017

Abstract:
Obserwacje doświadczalne wykazują, że deformacja plastyczna metali jest często efektem konkurujących ze sobą mechanizmów krystalograficznych poślizgów, bliźniakowania oraz mikropasm ścinania. Te ostatnie przejawiają się jako koncentracje odkształcenia postaciowego w formie cienkich transkrystalicznych warstewek o grubości rzędu 0,1 µm. Mikropasma ścinania współdziałają z aktywnymi mechanizmami krystalograficznego poślizgu lub bliźniakowania, kontrolując w różnym stopniu proces plastycznej deformacji. Na podstawie analizy aktualnego stanu badań prowadzonych na różnych poziomach obserwacji: wspomagane cyfrową korelacją obrazu badania mechaniczne – próby jedno- i dwuosiowe, badania in-situ przy użyciu mikroskopii elektronowej, badania tomografii atomowej w połączeniu z obliczeniami ab initio oraz dynamiki molekularnej, zaproponowano fizyczny obraz wielopoziomowej hierarchii oraz ewolucji pasm ścinania. Przedstawiono motywację fizykalną i heurystyczne podstawy opisu teoretycznego. Odniesiono się do znanych wyników z literatury, [2]. Przedyskutowano trudności z zastosowaniem prostego wielkoskalowego sposobu uśredniania oraz oryginalną koncepcję rozszerzenia pojęcia reprezentatywnego elementu objętości z wykorzystaniem znanej teorii propagacji powierzchni osobliwych jako fal silnej nieciągłości mikroskopowego pola prędkości. Przedstawiono nowe sformułowanie opisu prędkości odkształcenia postaciowego generowanego przez wielopoziomową hierarchię pasm ścinania z uwzględnieniem decyzyjnego procesu wyboru kluczowych efektów przepływu informacji dla poszczególnych poziomów obserwacji.
*********
Experimental observations show that plastic deformation of metals is often produced as an effect of competing mechanisms of crystallographic glide, twinning and micro-shear banding. The micro-shear bands are observed as concentrated shear zones in the form of trans crystalline layers of the thickness of the order 0.1 µm. They cooperate with active mechanisms of crystallographic glide and/or twinning controlling to various degrees process of plastic flow. It has been observed that the change of the mechanism of plastic deformation has strong influence on mechanical properties of material under consideration. Therefore, the identification and elucidation of physical mechanisms that are responsible for initiation, growth and evolution of micro-shear bands is of fundamental importance for understanding the macroscopic behaviour of metallic materials. Basing on the analysis of recent state of the art of the investigations carried on different levels of observations: uni-axial and bi-axial mechanical tests enhanced with digital image correlation method, in-situ tests with use of electron microscopy, atom probe tomography in relation with ab initio and molecular dynamics computational simulations, certain physical model of multilevel hierarchy and evolution of shear bands is proposed. Physical motivation and heuristic foundations of theoretical description are discussed with reference to known results in the literature, [2]. The difficulties with application of a direct multiscale integration scheme are discussed and an original idea of an extension of the representative volume element concept with use of the known theory of the propagation of the singular surfaces of microscopic velocity field is proposed. A new formulation of the description of rate of shear strain generated by multilevel hierarchy of shear bands is formulated in the workflow integration approach, in which information from molecular simulation at different levels flows into the decision process.

Keywords:
pasma ścinania, hierarchia pasm ścinania, powierzchnia osobliwa, cyfrowa korelacja obrazu (DIC) shear bands, multilevel hierarchy of shear bands, singulatity surface, digital image correlation (DIC)

85.Golasiński K., Pieczyska E., Staszczak M., Cristea M., Experimental investigation of thermomechanical properties of multifunctional materials at IPPT PAN, MACRO Iasi, The XXVI-th Symposium PROGRESS IN ORGANIC AND POLYMER CHEMISTRY, 2017-10-05/10-06, Romanian Academy, Iasi (RO), pp.1-1, 2017
86.Golasiński K.M., Pieczyska E.A., Maj M., Staszczak M., Takesue N., Unique mechanical performance of an innovative Ti-based superalloy Gum Metal under compression, International Scientific Conference Humboldt-Kolleg Limits of Knowledge, 2017-06-22/06-25, University of Sciences & Technology, Cracow (PL), No.P35-NS, pp.218-219, 2017
87.Brzozowski B., Kaźmierczak K., Magnetic field mapping as a support for UAV indoor navigation system, Proceedings of 4th IEEE International Workshop on Metrology for Aerospace, 2017-06-21/06-23, Paduna (IT), DOI: 10.1109/MetroAeroSpace.2017.7999535, pp.583-588, 2017
Brzozowski B., Kaźmierczak K., Magnetic field mapping as a support for UAV indoor navigation system, Proceedings of 4th IEEE International Workshop on Metrology for Aerospace, 2017-06-21/06-23, Paduna (IT), DOI: 10.1109/MetroAeroSpace.2017.7999535, pp.583-588, 2017

Abstract:
Safe indoor flights of unmanned aerial vehicles (UAVs) requires an independent measurement systems, that will enable efficient navigation in the absence of GPS data. One of the many solutions currently being developed is the use of information about changes in the value of the local magnetic field. This paper presents ways of recording, visualizing and mapping local magnetic field changes that can be used as a support for indoor navigation systems. At the beginning we reviewed devices for acquisition of magnetic field strength and the type of data being recorded. In the next step we analyzed the possibilities of visualization of acquired data. Finally the methods used to generate magnetic field maps of enclosed areas have been presented. In each of the aspects covered in this paper, solutions developed by the authors will be described.

Keywords:
Magnetic field, Position estimation, UAV, Indoor Navigation, Avionics.

88.Bogacz R., Konowrocki R., Influence of track defects on railway vehicle damage - O wpływie usterek toru na uszkodzenia pojazdów szynowych, SITK207, Nowoczesne technologie i systemy zarządzania w transporcie szynowym. Część I: DROGA KOLEJOWA., 2017-11-29/12-02, Zakopane Hotel Mercure KASPROWY ZAKOPANE (PL), pp.21-28, 2017
Bogacz R., Konowrocki R., Influence of track defects on railway vehicle damage - O wpływie usterek toru na uszkodzenia pojazdów szynowych, SITK207, Nowoczesne technologie i systemy zarządzania w transporcie szynowym. Część I: DROGA KOLEJOWA., 2017-11-29/12-02, Zakopane Hotel Mercure KASPROWY ZAKOPANE (PL), pp.21-28, 2017

Abstract:
The paper contain description of certain dynamical problems connected with the kinematic excitation of railway track. Some phenomena are given which may create high loads, track degradation and fatigue of wheelset axles. An alternative approach to measurement rail vehicle overload are given. Some examples of experimental investigations are given which pointed out that the dynamical load acting on the track can be a few times higher as the static load. In the paper the results obtained from the electromechanical drive model describing the torsion vibration of wheelset caused by passing through gaps in a single rail of track are presented.

Keywords:
wheel-rail dynamics, vehicle-track interaction, track and vehicle degradation

89.Basista M., Micro-CT based numerical modeling of residual stresses and fracture in metal-ceramic composites, 13TH NATIONAL CONGRESS ON THEORETICAL AND APPLIED MECHANICS, 2017-09-06/09-10, Sofia, Institute of Mechanics, Bulgarian Academy of Sciences (BG), pp.1-1, 2017
90.Marijnissen M.J., Graczykowski C., Rojek J., Two-stage method for the simulation of the comminution process in a high-speed beater mill, MEC-2017, MINERAL ENGINEERING CONFERENCE, 2017-09-20/09-23, Wisła (PL), DOI: 10.1051/e3sconf/20171801011, No.18, pp.1-7, 2017
Marijnissen M.J., Graczykowski C., Rojek J., Two-stage method for the simulation of the comminution process in a high-speed beater mill, MEC-2017, MINERAL ENGINEERING CONFERENCE, 2017-09-20/09-23, Wisła (PL), DOI: 10.1051/e3sconf/20171801011, No.18, pp.1-7, 2017

Abstract:
The paper presents a two-stage simplified method for the simulation of comminution process which takes place in a beater mill. The first stage of the proposed method is a simulation of the flow of gas and ore particles through a mill based on a two-phase continuous-discrete model. It allows to capture the interaction between the fluid flow and embedded particles, to determine trajectories of their motion and average velocities and frequencies of their collisions against the flywheel and the mill’s walls. The second stage of the proposed method is a discrete element method simulation of the process of comminution of a single ore particle. It allows to determine the size distribution of created smaller particles in terms of normal velocity and angle of impact and to estimate the global efficiency of the comminution process. The proposed simulation methodology is applied for the verification of the innovative concept of the pplication of high–speed beater mill for the comminution of the copper ore.

91.Dera W., Dziekoński C., Jarząbek D.M., Lateral force calibration in atomic force microscope using MEMS microforce sensor, EUROMAT 2017 , European Congress and Exhibition on Advanced Materials and Processes, 2017-09-17/09-22, Thessaloniki (GR), pp.1, 2017
92.Dziekoński C., Jarząbek D.M., Dera W., Influence of mode of electrodeposition, grain size on mechanical propertice of electrodeposited nanocrystaline nickel coatings., EUROMAT 2017 , European Congress and Exhibition on Advanced Materials and Processes, 2017-09-17/09-22, Thessaloniki (GR), pp.38-38, 2017
93.Dera W., Dziekoński C., Jarząbek D.M., Method for lateral force calibration in atomic force microscope using MEMS microforce sensor. , 8TH International Colloquium Micro-Tribology, 2017-09-11/09-13, Warszawa (PL), pp.1, 2017
94.Jarząbek D.M., Dziekoński C., Chmielewski M., Effect of metal coatings on the interfacial bonding strength of ceramics to copper in sintered Cu-SiC composites., EUROMAT 2017 , European Congress and Exhibition on Advanced Materials and Processes, 2017-09-17/09-22, Thessaloniki (GR), pp.17-17, 2017
95.Frąś L.J., Dziekoński C., Dera W., Jarząbek D.M., The anisotrophy of viscosity of magnetorheological fluid., 8TH International Colloquium Micro-Tribology, 2017-09-11/09-13, Warszawa (PL), pp.1, 2017
96.Jarząbek D.M., Dziekoński C., Chmielewski M., Measurement of adhesion between ceramics and copper in sintered Cu-SiC composites., 8TH International Colloquium Micro-Tribology, 2017-09-11/09-13, Warszawa (PL), pp.1, 2017
97.Ekiel-Jeżewska M.L., Bukowicki M., Hydrodynamic and elastic interactions of sedimenting flexible fibers, Bulletin of the American Physical Society, ISSN: 0003-0503, Vol.62, No.14, pp.221-221, 2017
98.Szolc T., On dynamics and stability of the automotive engine turbocharger rotor supported by the electrodynamic passive magnetic bearings, SiRM - 2017, Schwingungen in rotierenden Maschinen - 2017, 2017-02-15/02-17, Graz (AT), DOI: 10.24352/UB.OVGU-2017-103, No.S16-1, pp.268-279, 2017
Szolc T., On dynamics and stability of the automotive engine turbocharger rotor supported by the electrodynamic passive magnetic bearings, SiRM - 2017, Schwingungen in rotierenden Maschinen - 2017, 2017-02-15/02-17, Graz (AT), DOI: 10.24352/UB.OVGU-2017-103, No.S16-1, pp.268-279, 2017

Abstract:
In the paper dynamic investigations on the automotive turbocharger rotor-shaft supported on the electro-dynamic passive magnetic bearings (EDPMB) and on the traditional floating-ring journal bearings have been carried out using a computer model. The results of computations obtained for the two mutually compared kinds of suspension are demonstrated in the form of Campbell diagrams and amplitude-frequency characteristics. Here, the main attention is focused on resonant-free operation ability assured by the support on the EDPMBs. Moreover, conditions of stability for the support on the journal bearings and on the EDPMBs have been investigated by means of the eigenvalue analysis. There is studied an influence of skew-symmetrical dynamic properties of the both kinds of rotor-shaft suspensions caused by the bearing stiffness negative cross-coupling terms as well as by the gyroscopic effects which are particularly severe at turbocharger high rotational speeds.

Keywords:
turbocharger rotor, electrodynamic passive magnetic bearings, rotor dynamics, stability analysis

99.Konowrocki R., Szolc T., An influence of electromechanical coupling effects on stability of the drive systems of machines and railway vehicles driven by electric motors, XXV French-Polish Seminar on Mechanics, 2017-05-15/05-16, Bourges (FR), pp.32-32, 2017
Konowrocki R., Szolc T., An influence of electromechanical coupling effects on stability of the drive systems of machines and railway vehicles driven by electric motors, XXV French-Polish Seminar on Mechanics, 2017-05-15/05-16, Bourges (FR), pp.32-32, 2017

Abstract:
To ensure a reliability and unconditional security of drive system of machine and railway vehicles drive by electric motors, the electromagnetic output traction force and torques should drive stably, otherwise the shaft train vibration caused by motor torque ripple will affect the fatigue life of the device and the operation security of the driven object. For this reason an investigation of the dynamic response and stability of a electromechanical drive train system was done. The obtained results have demonstrated that the electromagnetic transient processes generated in the electric motor should be taken into account for the use of the assessing the stability of the system.
The knowledge about stability of drive transmission systems of machines and railway vehicles is of a great importance in the field of dynamics and material fatigue of the mechanical systems.

Keywords:
electric motor, torsional vibrations, electromechanical coupling, wheel-rail adhesion, wheelset drivetrain dynamic

100.Witecka A., Yamamoto A., Święszkowski W., Basista M., Influence of polymer film concentration on cytocompatibility and corrosion suppression of ZM21 magnesium alloy, 7th KMM-VIN Industrial Workshop “Biomaterials: Key Technologies for Better Healthcare”, 2017-09-27/09-28, Erlangen (DE), pp.1-1, 2017
101.Pieczyska E.A., Kowalewski Z.L., Dunic V.Lj., Stress Relaxation Effects in TiNi SMA During Superelastic Deformation: Experiment and Constitutive Model, SHAPE MEMORY and SUPERELASTICITY, ISSN: 2199-384X, DOI: 10.1007/s40830-017-0123-2, No.40830, pp.1-11, 2017
Pieczyska E.A., Kowalewski Z.L., Dunic V.Lj., Stress Relaxation Effects in TiNi SMA During Superelastic Deformation: Experiment and Constitutive Model, SHAPE MEMORY and SUPERELASTICITY, ISSN: 2199-384X, DOI: 10.1007/s40830-017-0123-2, No.40830, pp.1-11, 2017

Abstract:
This paper presents an investigation of thermomechanical effects related to the phenomena of stress relaxation occurring in TiNi SMA subjected to modified program of displacement-controlled tension. The deformation data were taken from testing machine, whereas the temperature changes accompanying the exothermic/endothermic martensite forward/reverse transformation were measured by infrared camera. At the advanced stages of the transformations, the strain was kept constant for a few minutes and the SMA load and temperature were recorded continuously. As a consequence, the stress and temperature changed significantly during the loading stops. A large stress drop, caused by the transformation, was observed during the relaxation stage in both courses of the SMA loading and unloading. Moreover, the non-uniform temperature distribution, reflecting macroscopically inhomogeneous transformation, lapsed while the strain was kept constant, yet restarted at the end of the relaxation stop and developed at the reloading stage. Along with the experimental results, the mechanical and thermal responses induced by the transformation were obtained by 3D coupled thermomechanical numerical analysis, realized in partitioned approach. Latent heat production was correlated with an amount of the martensitic volume fraction. The stress and temperature drops recorded during the experiment were satisfactorily reproduced by the model proposed for the SMA thermomechanical coupling

Keywords:
TiNi shape memory alloy, Superelasticity, Stress relaxation, Temperature change, Thermomechanical couplings, 3-D model

102.Nowak Z., Pęcherski R.B., Maj P., Niestabilność plastycznego płynięcia w stopie Inconel 718. Badania doświadczalne Serrated flow in Inconel 718 alloy. Experimental investigations, OMIS'2017, XII Konferencja NAukowa ODKSZTAŁCALNOŚĆ METALI I STOPÓW, 2017-11-21/11-24, Łańcut (PL), pp.47-48, 2017
Nowak Z., Pęcherski R.B., Maj P., Niestabilność plastycznego płynięcia w stopie Inconel 718. Badania doświadczalne Serrated flow in Inconel 718 alloy. Experimental investigations, OMIS'2017, XII Konferencja NAukowa ODKSZTAŁCALNOŚĆ METALI I STOPÓW, 2017-11-21/11-24, Łańcut (PL), pp.47-48, 2017

Abstract:
Badania doświadczalne efektu Portevin - Le Chatelier w Inconelu 718 przeprowadzono na płaskich próbkach. Do pomiarów zastosowano metodę cyfrowej korelacji obrazu (DIC), która jest efektywna i praktyczna dzięki bezkontaktowym pomiarom i dużej dokładności w ustalaniu charakterystycznych cech przestrzenno-czasowych deformacji próbki. Określenie takich cech zlokalizowanych pasm ścinania jest konieczne do zaproponowania modelu konstytutywnego dla metali wykazujących ten typ plastycznej niestabilności. Opracowany model konstytutywny pozwoli na numeryczne symulacje w pełnej skali 3D fizycznych testów z użyciem programu ABAQUS. Głównym celem pracy jest przedstawienie możliwości wykorzystania pomiarów uzyskanych techniką cyfrowej korelacji obrazu do wykrywania i charakteryzowania przestrzenno-czasowych cech efektu PLC w dostępnym komercyjnie stopie Inconel 718.
An experimental investigation of the Portevin–Le Chatelier effect in the Inconel 718 alloy is undertaken in this study through flat specimen geometries. Measurements based on digital image correlation (DIC) is an effective and practical optical technique due to the advantages of easy operation, non-contact, full field optical measurement, high accuracy and high computational efficiency for investigating the PLC effect and its spatio-temporal characteristics. The localization band characteristics are required to develop the constitutive relations for metals exhibiting this type of plastic instability, based on available material tests. The constitutive model can be used in full-scale 3D numerical simulations of the physical tests using the explicit solver of the finite element code ABAQUS. The objective of this paper is to show how DIC techniques are readily able to detect and characterize spatio-temporal features of the PLC behaviour of a commercial available Inconel 718 alloy.

Keywords:
stop Inconel 718, efekt Portevin-Le Chatelier, cyfrowa korelacja obrazu, Inconel 718 alloy, Portevin-Le Chatelier effect, Digital Image Correlation (DIC)

103.Olaszek P., Świercz A., Sala D., Kokot M., System monitorowania łukowego wiaduktu kolejowego na linii wysokiej prędkości, WDM'17, WROCŁAWSKIE DNI MOSTOWE - Mosty. Przemiany w projektowaniu i technologiach budowy, 2017-11-28/11-29, Wrocław (PL), pp.481-488, 2017
Olaszek P., Świercz A., Sala D., Kokot M., System monitorowania łukowego wiaduktu kolejowego na linii wysokiej prędkości, WDM'17, WROCŁAWSKIE DNI MOSTOWE - Mosty. Przemiany w projektowaniu i technologiach budowy, 2017-11-28/11-29, Wrocław (PL), pp.481-488, 2017

Abstract:
The article presents the railway bridge structures monitoring system, which takes advantage of the
dynamic response measurement and evaluation method. The monitoring system is focused on steel
structures with the spans exceeding 30 m. The elaboration of the method which uses inclinometers
together with an accelerometer for indirect displacement measurement under the dynamic load is the
main achievement of the project.

Keywords:
monitoring, railway bridges, inclinometer, accelerometer

104.Węglewski W., Basista M., Bochenek K., The influence of microstructure on thermal residual stress and fracture toughness of nickel aluminide-alumina composites – experiment and numerical model, ECerS2017, 15th Conference & Exhibition of the European Ceramic Society, Budapest, 2017-07-09/07-13, Budapest (HU), No.357, pp.1-1, 2017
105.Basista M., Micro-CT based modeling of residual stresses and crack propagation in metalceramic composites, 21. Symposium Verbundwerkstoffe und Werkstoffverbunde, 2017-07-05/07-07, Bremen (DE), pp.1-1, 2017
106.Postek E., Sadowski T., Impact Models of WC-Co Composite, CERMODEL 2017Modelling and Simulation Meet Innovation in Ceramics Technology, 2017-07-26/07-28, Trento (IT), pp.1-1, 2017
107.Bochenek K., Basista M., Morgiel J., Węglewski W., Towards the improvement of fracture toughness of NiAl intermetallics for aerospace applications, ICCE‐25, 25th Annual International Conference on Composites or Nano Engineering, 2017-07-16/07-22, Rome (IT), pp.1-2, 2017
108.Mikułowski G., Suwała G., Knap L., Holicki-Szulc J., Adaptive techniques for suppresion of forced vibrations, SMART 2017, 8th Conference on Smart Structures and Materials, 2017-06-05/06-08, Madrid (ES), pp.166-175, 2017
Mikułowski G., Suwała G., Knap L., Holicki-Szulc J., Adaptive techniques for suppresion of forced vibrations, SMART 2017, 8th Conference on Smart Structures and Materials, 2017-06-05/06-08, Madrid (ES), pp.166-175, 2017

Abstract:
Adaptive structures, equipped with so-called structural fuses (based on fast
responding piezo-devices), able to connect/disconnect instantly selected structural interface,
allows effective protection against resonance induction via externally forced vibrations. The
presented case study demonstrates haw forced vibrations with modifiable frequencies can be
smoothly received, if structural fuses are properly activated/deactivated when the external
excitation approaches the structural eigen frequencies.

Keywords:
Adaptive structures, forced vibrations, avoiding resonance, structural fuses

109.Chikahiro Y., Ario I., Adachi K., Shimizu S., Pawłowski P., Graczykowski C., Holnicki-Szulc J., Fundamental study on dynamic property of deployable emergency bridge using scissors mechanism, Footbridge Berlin 2017, 6th International Footbridge Conference, 2017-09-06/09-08, TU Berlin (DE), DOI: 10.24904/footbridge2017.09352, pp.1-6, 2017
Chikahiro Y., Ario I., Adachi K., Shimizu S., Pawłowski P., Graczykowski C., Holnicki-Szulc J., Fundamental study on dynamic property of deployable emergency bridge using scissors mechanism, Footbridge Berlin 2017, 6th International Footbridge Conference, 2017-09-06/09-08, TU Berlin (DE), DOI: 10.24904/footbridge2017.09352, pp.1-6, 2017

Abstract:
The paper presents a new type of emergency bridge, which can be quickly constructed in case of damages
after a natural disaster. The concept of the bridge is based on the application of scissor-type mechanism,
which provides its rapid deployment. In case of deployable structures apart from static analysis of different
configurations of expansion, it is very important to investigate the dynamic behavior of the system. High compliance and flexibility of the scissors-type bridge may influence user's comfort and safety in case of heavy dynamic loads such as human induced impacts, wind gusts or earthquakes. Up to now, the authors constructed several types of the experimental MBs. The presented research reviews fundamental numerical and experimental results for the Mobile Bridge 4.0. Experimental testing included strain and acceleration measurements in free and forced loading conditions. From these results, it was possible to estimate basic mechanics characteristics, that is statics and dynamic property, of the bridge. The conducted research allows for a better and safer design of the structure of the Mobile Bridge.

Keywords:
Deployable Bridge; Scissors-type bridge; Emergency Bridge; Dynamic property; Natural frequency; Acceleration measurement

110.Chikahiro Y., Ario I., Adachi K., Shimizu S., Pawłowski P., Graczykowski C., Holnicki-Szulc J., Fundamental study on dynamic property of deployable emergency bridge using scissors mechanism, Footbridge Berlin 2017, 6th International Footbridge Conference, 2017-09-06/09-08, TU Berlin (DE), pp.1-6, 2017
Chikahiro Y., Ario I., Adachi K., Shimizu S., Pawłowski P., Graczykowski C., Holnicki-Szulc J., Fundamental study on dynamic property of deployable emergency bridge using scissors mechanism, Footbridge Berlin 2017, 6th International Footbridge Conference, 2017-09-06/09-08, TU Berlin (DE), pp.1-6, 2017

Abstract:
The paper presents a new type of emergency bridge, which can be quickly constructed in case of damages
after a natural disaster. The concept of the bridge is based on the application of scissor-type mechanism,
which provides its rapid deployment. In case of deployable structures apart from static analysis of different
configurations of expansion, it is very important to investigate the dynamic behavior of the system. High compliance and flexibility of the scissors-type bridge may influence user's comfort and safety in case of heavy dynamic loads such as human induced impacts, wind gusts or earthquakes. Up to now, the authors constructed several types of the experimental MBs. The presented research reviews fundamental numerical and experimental results for the Mobile Bridge 4.0. Experimental testing included strain and acceleration measurements in free and forced loading conditions. From these results, it was possible to estimate basic mechanics characteristics, that is statics and dynamic property, of the bridge. The conducted research allows for a better and safer design of the structure of the Mobile Bridge.

Keywords:
Deployable Bridge; Scissors-type bridge; Emergency Bridge; Dynamic property; Natural frequency; Acceleration measurement

111.Orłowska A., Graczykowski C., Gałęzia A., Manufacturing and properties of pre-stressed GFRP composites, MECHCOMP3, 3rd International Conference on Mechanics of Composites, 2017-07-04/07-07, School of Engineering and Architecture, University of Bologna, Italy (IT), pp.48-48, 2017
Orłowska A., Graczykowski C., Gałęzia A., Manufacturing and properties of pre-stressed GFRP composites, MECHCOMP3, 3rd International Conference on Mechanics of Composites, 2017-07-04/07-07, School of Engineering and Architecture, University of Bologna, Italy (IT), pp.48-48, 2017

Abstract:
The concept of increasing strength capacity of structural elements by introducing preliminary stresses, counteracting the exploitation stresses, is known for years. Large number of applications of pre-stressed materials in civil engineering proves that proper compression of material can effectively increase the strength of structural elements. Because of the rapid development of composite materials, and growing demand for light materials with particularly high stiffness and strength properties, the pre-stressed FRP composites application in industry seems to be a question of time. This assumption is confirmed by increasing number of publications concerning the problem of mechanical characteristics for such materials.
This paper presents the results of preliminary research on the pre-stressing of the FRP composite structures, while the term pre-stress indicates initial tensile stress applied to the fibres embedded in selected layers of the composite material. Manufacturing process and shape forming possibilities as well as short-term static and dynamic behaviour of the pre-stressed composites are discussed. Presented results are achieved by the use of the experimental methods (three-point bending tests and Experimental Modal Analysis) and experimentally verified Finite Element Method model of pre-stressed structure.

112.Chikahiro Y., Ario I., Pawlowski P., Graczykowski C., Nakazawa M., Holnicki-Szulc J., Ono S., Dynamics of the scissors-type Mobile Bridge, EURODYN 2017, X International Conference on Structural Dynamics, 2017-09-10/09-13, Rome (IT), pp.199-199, 2017
113.Graczykowski C., Pawłowski P., Mathematical Modelling of Adaptive Skeletal Structures for Impact Absorption and Vibration Damping, EURODYN 2017, X International Conference on Structural Dynamics, 2017-09-10/09-13, Rome (IT), pp.123-123, 2017
114.Popławski B., Mikułowski G., Mróz A., Sekuła K., Jankowski Ł., A decentralized strategy of structural reconfiguration in mitigation of vibrations, EURODYN 2017, X International Conference on Structural Dynamics, 2017-09-10/09-13, Rome (IT), pp.114-114, 2017
115.Zieliński T.G., Jankowski Ł., Opiela K., Deckers E., Modelling of poroelastic media with localised mass inclusions, SAPEM'2017, SAPEM'2017 - 5th Symposium on the Acoustics of Poro-Elastic Materials, 2017-12-06/12-08, Le Mans (FR), pp.1-2, 2017
116.Barglik J., Ducki K., Kukla D., Mizera J., Mrówka-Nowotnik G., Sieniawski J., Smalcerz A., Comparison of Single and Consecutive Dual Frequency Induction Surface Hardening of Gear Wheels, VIII International Scientific Colloquium Modelling for Materials Processing, 2017-09-21/09-22, Riga (LV), DOI: 10.22364/mmp2017.27, pp.185-190, 2017
Barglik J., Ducki K., Kukla D., Mizera J., Mrówka-Nowotnik G., Sieniawski J., Smalcerz A., Comparison of Single and Consecutive Dual Frequency Induction Surface Hardening of Gear Wheels, VIII International Scientific Colloquium Modelling for Materials Processing, 2017-09-21/09-22, Riga (LV), DOI: 10.22364/mmp2017.27, pp.185-190, 2017

Abstract:
Mathematical modeling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEMbased professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand

117.Słowicka A.M., Stone H.A., Ekiel-Jeżewska M.L., Periodic motions of flexible fibers in shear flow, Bulletin of the American Physical Society, ISSN: 0003-0503, Vol.62, No.14, pp.221-221, 2017
118.Graczykowski C., Orłowska A., Modelling and design procedure of prestressed composite materials, MECHCOMP3, 3rd International Conference on Mechanics of Composites, 2017-07-04/07-07, School of Engineering and Architecture, University of Bologna, Italy (IT), pp.154-154, 2017
Graczykowski C., Orłowska A., Modelling and design procedure of prestressed composite materials, MECHCOMP3, 3rd International Conference on Mechanics of Composites, 2017-07-04/07-07, School of Engineering and Architecture, University of Bologna, Italy (IT), pp.154-154, 2017

Abstract:
The paper introduces the concept of eccentrical prestressing of fiber reinforced polymer materials in order to improve their mechanical properties and global mechanical behaviour. Prestressing is here understood as application of the initial tensile stress to the fibres embedded in selected external layers of the composite material. The objective of prestressing is to increase stiffness of the composite and to obtain desired response to applied external loading. The main objective of this research work is to develop a comprehensive approach to analysis of prestressed composites, which includes analytical and numerical modelling of the static behaviour, optimal composite design, as well as, simulation of dynamic response. Initially, we derive simple and effective analytical model of prestressed composite based on models of individual prestressed plies and their homogenization. The analytical model is used to reveal beneficial influence of prestress on strain and stress distribution in particular plies and resulting increase of the composite stiffness. Further, three options for the FEM-based numerical modelling of prestressed composites are proposed and thoroughly compared with each other. Developed analytical and numerical models are used to propose methods of prestressed composite design in which optimization of prestressing forces is used to minimize required composite thickness or fiber volume fraction. Eventually, FEM simulations are applied to assess the influence of prestress force magnitude on natural frequencies and modal shapes of eccentrically prestressed composite beams of various fibre volume fraction. The final part of the paper summarizes the potential advantages of the prestressed composites and unveils their superiority in comparison to the standard ones. Potential applications of prestressed composite materials in civil engineering and aerospace industry are briefly discussed. In addition, challenges related to design and manufacturing of structures made of prestressed composite materials are presented.

119.Faraj R., Graczykowski C., Holnicki-Szulc J., Knap L., Seńko J., Adaptable pneumatic shock-absorber, SMART 2017, 8th Conference on Smart Structures and Materials, 2017-06-05/06-08, Madrid (ES), pp.1-8, 2017
Faraj R., Graczykowski C., Holnicki-Szulc J., Knap L., Seńko J., Adaptable pneumatic shock-absorber, SMART 2017, 8th Conference on Smart Structures and Materials, 2017-06-05/06-08, Madrid (ES), pp.1-8, 2017

Abstract:
Pneumatic dampers are still an attractive subject of research in both modelling and experimental testing. Progress in the field of sensors and actuators allows to construct more and more efficient absorbers and dampers based on active or semi-active control algorithms. However, passive and semi-passive solutions are also developed because of their lower costs and simplicity. This paper presents adaptable pneumatic shock-absorber that allows to obtain optimal impact absorption and energy dissipation by a single reconfiguration performed at the beginning of the process. The absorber is composed of two cylinders including at least one narrow rectangular slot and adequate number of outflow vents precisely shaped for certain impact scenarios. During operation of the device the air is released through overlapping slots and selected vents, which provides constant value of the generated force. As a result, the shock-absorber works as a passive device but provides minimal value of the reaction force in similar manner as semi-active system equipped with fully controllable mechanical valve. The paper presents the results of numerical simulations of adaptable shock-absorber operation and attempts of demonstrator construction aimed at conducting experimental verification of the concept.

Keywords:
Adaptable, Semi-passive, Impact Absorption, Pneumatic Shock-absorber

120.Pieczyska E.A., Staszczak M., Golasiński K., Maj M., Tobushi H., Kuramoto S., Furuta T., Investigation of Shape Memory Alloys, Polymers and Gum Metals for Biomedical Applications, Materials Science and Nanoscience 2-d Global Congress and Expo, 2017-09-25/09-27, Valencia (ES), pp.1-1, 2017
121.Pieczyska E.A., Investigation of shape memory materials conducted in IPPT PAN (Poland) in cooperation with Japan (1990-2016), International Workshop on Advances in Shape Memory Materials, 2017-03-27/03-29, Aichi Institute of Technology, Nagoya (JP), pp.13-14, 2017
122.Kowalewski Z.L., Ustrzycka A., Szymczak T., Fatigue Damage Analysis of Power Engineering Materials Using ESPI Method, ACAM9, 9TH Australasian Congress on Applied Mechanics, 2017-11-27/11-29, UNSW Sydney (AU), pp.1-8, 2017
Kowalewski Z.L., Ustrzycka A., Szymczak T., Fatigue Damage Analysis of Power Engineering Materials Using ESPI Method, ACAM9, 9TH Australasian Congress on Applied Mechanics, 2017-11-27/11-29, UNSW Sydney (AU), pp.1-8, 2017

Abstract:
In most cases, fatigue damage has a local character and it is based on damage development leading to generation of cracks appearing around structural defects or geometrical notches. An identification of these areas and their subsequent monitoring requires a full-field displacement measurements performed on the objects surfaces. This paper presents an attempt to use the Electronic Speckle Pattern Interferometry (ESPI) method for fatigue damage evaluation and its monitoring on specimens made of the P91 steel and aluminide coated nickel super-alloys. In this work, also a development of fatigue damage was investigated using destructive and non-destructive methods in materials commonly applied in power engineering or automotive industry. The fatigue tests for a range of different materials were interrupted for selected number of cycles in order to assess a damage degree. As destructive methods the standard tensile tests were carried out after prestraining due to fatigue. Subsequently, an evolution of the selected tensile parameters was taken into account for damage identification. The ultrasonic or magnetic techniques were used as the non-destructive methods for damage evaluation. In the final step of the experimental programme microscopic observations were performed. The results show that ultrasonic and magnetic parameters can be correlated with those coming from destructive tests. It is shown that good correlation of mechanical and selected non-destructive parameters identifying damage can be achieved for the materials tested

Keywords:
Fatigue, damage, optical methods, non-destructive techniques

123.Bukowicki M., Ekiel-Jeżewska M.L., Symmetric pair of elongated particles settling at low Reynolds number regime, Bulletin of the American Physical Society, ISSN: 0003-0503, Vol.62, No.14, pp.250-250, 2017
124.Rojek J., Nosewicz S., Maździarz M., Kowalczyk P., Wawrzyk K., Modelling of sintering at atomistic, microscopic and macroscopic scales, Komplastech 2017, XXIV International Conference on Computer Methods in Materials Technology, 2017-01-15/01-18, Zakopane (PL), pp.126-128, 2017
125.Lumelskyj D., Rojek J., Numeryczne wyznaczenie początku lokalizacji odkształcenia w procesie tłoczenia blach na przykładzie próby tłoczności Nakazimy, FiMM 2017, X Jubileuszowa Konferencja, Fizyczne i Matematyczne Modelowanie Procesów Wytwarzania , 2017-05-21/05-23, Jabłonna (PL), pp.1-1, 2017
126.Rojek J., Nosewicz S., Chmielewski M., Coupling micro- and macroscopic levels in a sintering model, VII International Conference on Coupled Problems in Science and Engineering, 2017-06-12/06-14, Rhodes Island (GR), pp.1-1, 2017
127.Rojek J., Lumelskyj D., Nosewicz S., Romelczyk B., An elastoplastic contact model for spherical discrete elements, ICCCM 2017, International Conference on Computational Contact Mechanics, 2017-07-05/07-07, Lecce (IT), pp.1-1, 2017
128.Rojek J., Nosewicz S., Maździarz M., Kowalczyk P., Wawrzyk K., Multiscale modelling of powder sintering processes, COMPLAS 2017, XIV International Conference on Computational Plasticity. Fundamentals and Applications, 2017-09-05/09-07, Barcelona (ES), pp.1-1, 2017
129.Rojek J., Nosewicz S., Lumelskyj D., Romelczyk B., Bochenek K., Chmielewski M., Simulation of low-pressure powder compaction using an elastoplastic discrete element model, PARTICLES 2017, V International Conference on Particle-Based Methods. Fundamentals and Applications., 2017-09-26/09-28, Hannover (DE), pp.1-1, 2017
130.Gruziel M., Thyagarajan K., Dietler G., Szymczak P., Ekiel-Jeżewska M.L., Dynamics of knotted flexible loops settling under a constant force in a viscous fluid, Bulletin of the American Physical Society, ISSN: 0003-0503, Vol.62, No.14, pp.81-81, 2017
131.Trombley C., Ekiel-Jeżewska M.L., Stable Systems of Charged Sedimenting Particles, Bulletin of the American Physical Society, ISSN: 0003-0503, Vol.62, No.14, pp.575-575, 2017
132.Bławzdziewicz J., Adamczyk Z., Ekiel-Jeżewska M.L., Streaming current for particle-covered surfaces: simulations and experiments, Bulletin of the American Physical Society, ISSN: 0003-0503, Vol.62, No.14, pp.424-424, 2017
133.Pierini F., Nakielski P., Pawłowska S., Piechocka I., Zembrzycki K., Kowalewski T.A., Development and applications of atomic force microscopy combined with optical tweezers (AFM/OT), AFM BioMed, 8th AFM BioMed Conference, 2017-09-04/09-08, Kraków (PL), pp.103-103, 2017
Pierini F., Nakielski P., Pawłowska S., Piechocka I., Zembrzycki K., Kowalewski T.A., Development and applications of atomic force microscopy combined with optical tweezers (AFM/OT), AFM BioMed, 8th AFM BioMed Conference, 2017-09-04/09-08, Kraków (PL), pp.103-103, 2017

Abstract:
Atomic force microscopy (AFM) is an evolution of scanning tunnelling microscopy that immediately gained popularity thanks to its ability to analyse nanomaterials. Initially, AFM was developed for nanomaterials imaging purposes, however the development of new features made it the most commonly used tool for studying the biophysical properties of biological samples. On the other hand, atomic force microscopy has limited use for examining sub-piconewton forces. Few techniques have been developed to measure forces below the AFM limit of detection. Among them, optical tweezers (OT) stand out for their high resolution, flexibility, and because they make it possible to accurately manipulate biological samples and carry out biophysics experiments without side effects thanks to their non-invasive properties.
The combination of AFM with other techniques in the last decades has significantly extended its capability. The improvement of the AFM force resolution by developing a hybrid double probe instrument based on the combination of AFM and OT has great potential in cell or molecular biology. [1]
We outline principles of atomic force microscopy combined with optical tweezers (AFM/OT) developed by our team underlying the techniques applied during the design, building and instrument use stages. We describe the experimental procedure for calibration of the system and we prove the achievement of a higher resolution (force: 10 fN – spatial: 0.1 nm – temporal: 10 ns) than the stand alone AFM.
We show the use of the hybrid equipment in a number of different biophysics experiments performed employing both AFM and OT probes. The presented studies include the demonstration of simultaneous high-precision nanomanipulation and imaging, the evaluation of single biomolecule mechanical properties and the single cell membrane activation and probing. Finally, we show the further potential applications of our AFM/OT.

Keywords:
AFM, Optical Tweezers

134.Ekiel-Jeżewska M., Jak żyli nauczyciele w II Rzeczypospolitej?, Mińskie Zeszyty Muzealne, ISSN: 2299-3827, Vol.5, pp.171-176, 2017
135.Dłużewski P., Tensor form of Vegards law for crystals of low symmetry, ICMM5, 5th International Conference on Material Modeling, 2017-06-14/06-16, Rome (IT), pp.1-1, 2017
136.Kiełczyński P., Application of ultrasonic methods for the investigation of physicochemical parameters of edible oils, 25th Jubilee International Scientific Conference, Progress in Technology of Vegetable Fats, 2017-05-31/06-02, Rynia (PL), pp.37-38, 2017
Kiełczyński P., Application of ultrasonic methods for the investigation of physicochemical parameters of edible oils, 25th Jubilee International Scientific Conference, Progress in Technology of Vegetable Fats, 2017-05-31/06-02, Rynia (PL), pp.37-38, 2017

Abstract:
The presentation includes an overview of the ultrasonic methods used to investigate the physicochemical properties of edible oils in the high pressure range.
Using ultrasonic waves we can determine (relatively easily) a number of physicochemical parameters of edible oils in the range of high pressures.
On the other hand, the determination of these high pressure parameters using classical measurement methods (e.g., calorimetry, IRF spectroscopy) is very difficult, practically impossible. The knowledge of these physicochemical parameters of oils is important due to the increasingly widespread use of high-pressure food preservation and processing methods.
The most important physicochemical parameters of oils include: 1) adiabatic and isothermal compressibility; 2) thermal expansion coefficient; 3) specific heat at constant pressure 4) surface tension; 5) viscosity and 6) thermal pressure coefficient. The knowledge of these physicochemical parameters of oils high pressures for various temperature values is essential in the design and optimization of high-pressure technological processes of food preservation and food processing.
Particularly difficult (using classical measurement methods) is to measure the viscosity of oils under high pressure. The application of the ultrasonic surface wave method of Love or Bleustein-Gulyaev type (developed at the Institute of Fundamental Technological Research of the Polish Academy of Sciences) solves this problem, allowing determination of oil viscosity for pressures above 200 MPa.
An interesting phenomenon that we can investigate by ultrasonic methods are the high-pressure phase transitions in edible oils. Using ultrasonic methods, high pressure phase transformations in many edible oils (e.g., in olive oil, in rapeseed oil, and in camelina sativa oil) and in their components, such as TAG (triacylglycerol) and DAG (diacylglycerol), were detected and investigated.
It is practically impossible to investigate these high pressure phase transformations in edible oils using classical measurement methods. Numerous documented advantages of ultrasonic methods in the high pressure range were the motivation to perform the presented study.

Keywords:
Ultrasonic methods, Physicochemical properties of oils

137.Kiełczyński P., Love Surface Wave Biosensors, 12th TOIN International Symposium on Biomedical Engineering, 2017-11-11/11-11, Yokohama (JP), pp.21-23, 2017
Kiełczyński P., Love Surface Wave Biosensors, 12th TOIN International Symposium on Biomedical Engineering, 2017-11-11/11-11, Yokohama (JP), pp.21-23, 2017

Abstract:
In this presentation I will address a fascinating example of a beneficiary interdisciplinary research. To be more specific, I will consider mutual interactions between the biosensor technology and seismology, two vital domains of research with huge practical importance in the life of modern Japanese society. I would like to convey a message that developments made in one scientific (engineering) domain can be very useful in another field of research, and vice-versa. Such mutual influence of different branches of science (engineering) can significantly accelerate progress in the considered domains of R&D activities. In this presentation I will focus on one type of acoustic (ultrasonic) sensors, i.e., those employing Love surface waves, first discovered in seismology in 1911 by the British mathematician A. E. H. Love. Since the ultrasonic sensors employing Love surface waves emerged some 80 years later, in the paper published by the author in 1989, it is not surprising that many theoretical and experimental techniques were first developed in seismology and then transferred to the sensor technology. The mathematical formalism describing seismic Love waves and those used in biosensor technology is in principle the same, i.e., it uses the theory of the Sturm-Liouville problem, deeply rooted in functional analysis, in particular the spectral theory of compact operators and Hilbert space. Seismic Love waves can travel thousands of kilometers around the surface of the Earth and have the frequency range ~0.01-10 Hz. On the other hand, those used in biosensor technology are of much higher frequencies (~50-500 MHz) but travel accordingly shorter distances (~5-50 mm) in man-made waveguides. It should be noticed that seismic Love surface waves are main contributors to devastating consequences in aftermath of earthquakes. On the other hand, Love wave biosensors offer a unique possibility for measurements of a large number of very important properties of biological materials.

Keywords:
Love waves, Sensors, Biosensors, Chemosensors, Viscosity sensors

138.Dłużewski P., Wierzbicki R., Tauzowski P., Kret S., Kaleta A., Sadowski J., 3D strain field and STEM contrast modeling of core shell nanowirers containing magnetic nanoprecipitations , EUROMAT 2017 , European Congress and Exhibition on Advanced Materials and Processes, 2017-09-17/09-22, Thessaloniki (GR), pp.1-1, 2017
139.Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., The influence of rheological parameters of viscoelastic liquids on the propagation characteristics of ultrasonic Love waves, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), pp.415-415, 2017
Kiełczyński P., Szalewski M., Balcerzak A., Wieja K., The influence of rheological parameters of viscoelastic liquids on the propagation characteristics of ultrasonic Love waves, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), pp.415-415, 2017

Abstract:
Progress in materials engineering has led to development of new materials with improved functional characteristics. One of the new types of
materials introduced into industrial practice are plastics and polymers. These materials exhibit rheological (viscoelastic) properties, which combine
simultaneously the properties of liquids and solids. Due to their attractive features, such as low specific weight, high resistance to chemical agents,
cost effectiveness etc. these materials are widely used in chemical, automotive, aviation and space industry. Thus, it is very important to develop
new, robust and accurate methods to measure the rheological parameters (viscosity η, elasticity μ and density ρ) of plastics and polymers. The
conventional mechanical methods used so far to this end are outdated, time consuming, and cumbersome. To overcome this problems, the authors
propose the use of ultrasonic methods that employ surface Love waves, what is a novelty.

Keywords:
Love waves, Rheological parameters, Rheological models, Polymers

140.Dyniewicz B., Bajer C.I., Lightweight bridges for fast moving loads, XXV French-Polish Seminar on Mechanics, 2017-05-15/05-16, Bourges (FR), pp.14, 2017
141.Bajkowski J.M., Dyniewicz B., Bajer C.I., Experimental beam structure with magnetically controlled damping blocks, XXV French-Polish Seminar on Mechanics, 2017-05-15/05-16, Bourges (FR), pp.6, 2017
142.Kielczynski P., Ptasznik S., Szalewski M., Balcerzak A., Wieja K., Rostocki A.J., Investigation of regular and anomalous behavior of liquid media under high pressure using ultrasonic methods, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), pp.417-417, 2017
Kielczynski P., Ptasznik S., Szalewski M., Balcerzak A., Wieja K., Rostocki A.J., Investigation of regular and anomalous behavior of liquid media under high pressure using ultrasonic methods, 2017 IEEE, 2017 IEEE International Ultrasonics Symposium, 2017-09-06/09-09, Washington, DC (US), pp.417-417, 2017

Abstract:
Background, Motivation and Objective
In many industrial technological processes, liquids are subjected to high pressures, e.g., in the high pressure food preservation. Similarly, in modern fuel
injection systems for diesel engines, biofuel is subjected to a pressure up to 300 MPa. In such conditions, in liquids, phase transitions can occur that
substantially increase the density and liquid viscosity. This can be very detrimental for the engine or the technological equipment. Thus, it is important to
determine at what pressures and temperatures phase transitions occur. Conventional mechanical methods for measuring physicochemical properties of
liquids at these extreme conditions do not operate. By contrast, ultrasonic techniques are very suitable for measurements of physicochemical properties of
liquids at high pressure, since they are non-destructive and can be fully automated. The aim of this work is to study the high-pressure physicochemical
properties of liquids (exemplified by a camelina sativa - false flax oil) using novel ultrasonic methods.

Keywords:
High pressure, Biofuels, Viscosity, Phase transitions

143.Kucharski S., Stupkiewicz S., Petryk H., Size effect in indentation tests: experimental and numerical investigations, EUROMAT 2017 , European Congress and Exhibition on Advanced Materials and Processes, 2017-09-17/09-22, Thessaloniki (GR), No.D4-H-TUE-PM1, pp.1-2, 2017
144.Kucharski S., Stupkiewicz S., Petryk H., Size effect observed in spherical indentation test of single crystal copper, Nanomechanical Testing in Materials Research and Development VI, 2017-10-01/10-06, Dubrovnik (HR), pp.1-1, 2017
Kucharski S., Stupkiewicz S., Petryk H., Size effect observed in spherical indentation test of single crystal copper, Nanomechanical Testing in Materials Research and Development VI, 2017-10-01/10-06, Dubrovnik (HR), pp.1-1, 2017

Keywords:
indentation size effect, single crystal, spherical indentation, numerical simulation

145.Trawinski Z., Hilgertner L., Examinations of the Degree of Atherosclerosis by Means of Input Vascular Impedance., OSA 2017, LXIV Open Seminar on Acoustics, 2017-09-11/09-15, Piekary Śląskie (PL), Vol.42, No.3, pp.555-555, 2017
Trawinski Z., Hilgertner L., Examinations of the Degree of Atherosclerosis by Means of Input Vascular Impedance., OSA 2017, LXIV Open Seminar on Acoustics, 2017-09-11/09-15, Piekary Śląskie (PL), Vol.42, No.3, pp.555-555, 2017

Abstract:
The input vascular impedance was determined using ultrasound continuous wave Doppler flow meter and a system for tracking arterial wall movements. The study was conducted in a control group (30 volunteers) and in four groups (10 patients in each group). Patients were grouped according to the criteria ofatherosclerotic stage, which was the degree of arterial stenosis: 20–49%, 50–69%, 70–89%, and 90–99% and occlusion, based on ultrasound or duplex tests. The results of Student’s t-test showed the statistically significance of the sparation of longitudinal resistance Ro results from the control group and sequentially four groups with a defined degree of atherosclerotic carotid artery at a 95% confidence level with significance level from p < 5.2E−3 for 20–49% - for the receiver operating curve (ROC), the area under curve (AUC) = 0.76; p < 8.6E−9 for the stenosis 50-69% - for the ROC curve AUC = 0.913, p < 6.3E−9 for the stenosis 70–89% for ROC curve AUC = 0.94, to p < 8.1E−10 for stenosis above 90% and occlusion, for ROC curve AUC = 0.97. After combining data for patients with internal carotid artery stenosis from 50–89% the results of Student’s t-test showed the statistical significance of the separation of the longitudinal resistance results Ro derived from the control group and the combined group with a confidence level of 95% at significance level p < 2.8E−10, for ROC curve AUC = 0.942.

Keywords:
Vascular input impedance, common carotid artery, ultrasound.

146.Sajkiewicz P., Dulnik J., Kołbuk-Konieczny D., Denis P., The effect of solvent-polymer interactions on cellular response of electrospun PCL/gelatin and PCL/collagen fibers, ESB 2017, 28th European Conference on Biomaterials, 2017-09-04/09-08, Ateny (GR), pp.1, 2017
147.Nowicki A., Trawiński Z., Gambin B., Secomski W., Szubielski M., Parol M., Olszewski R., Measurements of Flow Mediated Dilation and Shear Rate in the Radial Artery Using 20 MHz Ultrasonic System in Patients with Coronary Artery Disease., XXI Międzynarodowy Kongres Polskiego Towarzystwa Kardiologicznego. , 2017-09-21/09-23, Katowice. (PL), pp.1-1, 2017
Nowicki A., Trawiński Z., Gambin B., Secomski W., Szubielski M., Parol M., Olszewski R., Measurements of Flow Mediated Dilation and Shear Rate in the Radial Artery Using 20 MHz Ultrasonic System in Patients with Coronary Artery Disease., XXI Międzynarodowy Kongres Polskiego Towarzystwa Kardiologicznego. , 2017-09-21/09-23, Katowice. (PL), pp.1-1, 2017

Abstract:
A novel high-frequency scanning system, with a 20-MHz linear array transducer combined with 20-MHz pulsed Doppler, was introduced to evaluate the degree of radial artery flow-mediated dilation (FMD) and shear rate (SR)-normalized FMD (FMD/SR) after 5 min of reactive hyperaemia. In group I, comprising 27 healthy volunteers, FMD was 15 ± 4.8%, and in group II, comprising 17 patients with coronary artery disease, FMD was significantly smaller, being equal to 4.6 ± 4%. FMD/SR was equal to 5.365 ± 4.835·10-4 in group I and 1.3 ± 0.89·10-4 in group II. Statistically significant differences between the two groups were confirmed by Wilcoxon-Mann-Whitney test for FMD and FMD/SR (p-values < 0.01). AUCs of ROC curves for FMD and FMD/SR were greater than 0.9. The results confirm the usefulness of the proposed measurements of radial artery FMD and SR in differentiation of normal subjects from those with atherosclerotic lesions.

Keywords:
flow mediated vasodilation, radial artery, shear rate, reactive hyporaemia, endothelium, pulsed Doppler, ultrasonography.

148.Walenta Z.A., Słowicka A.M., Structure of shock waves in noble gases under high density conditions, ISSW31, The 31st International Symposium on Shock Waves, 2017-07-09/07-14, Nagoya (JP), No.SBM000360, pp.1-6, 2017
Walenta Z.A., Słowicka A.M., Structure of shock waves in noble gases under high density conditions, ISSW31, The 31st International Symposium on Shock Waves, 2017-07-09/07-14, Nagoya (JP), No.SBM000360, pp.1-6, 2017

Abstract:
In the present paper we show the dependence of the shock structure in a dense, noble gas on each of the three non-dimensional parameters: non-dimensional initial density, non-dimensional initial temperature and non-dimensional shock velocity. It will also be demonstrated, that the length scale, most suitable for measuring the thickness of the shock wave in a dense gas, is the sum of the mean free path (calculated the same way as for a dilute gas) and the diameter of a single gas molecule.

149.Marszałek A., Burczyński T., Fuzzy Portfolio Diversification with Ordered Fuzzy Numbers, 16th International Conference, ICAISC 2017, 2017-06-11/06-15, Zakopane (PL), pp.279-291, 2017
Marszałek A., Burczyński T., Fuzzy Portfolio Diversification with Ordered Fuzzy Numbers, 16th International Conference, ICAISC 2017, 2017-06-11/06-15, Zakopane (PL), pp.279-291, 2017

Abstract:
In this paper, we consider a multi-objective portfolio diversification problem under real constraints in fuzzy environment, where the objective is to minimize the variance of portfolio and maximize expected return rate of portfolio. The return rates of assets are modeled using concept of Ordered Fuzzy Candlesticks, which are Ordered Fuzzy Numbers. The use of them allows modeling uncertainty associated with financial data based on high-frequency data. Thanks to well-defined arithmetic of Ordered Fuzzy Numbers, the estimators of fuzzy-valued expected value and covariance can be computed in the same way as for real random variables. In an empirical study, 20 assets included in the Warsaw Stock Exchange Top 20 Index are used to compare considered fuzzy model with crisp mean-variance model

Keywords:
Ordered fuzzy number, Kosinski’s fuzzy number, Ordered fuzzy candlestick, Fuzzy portfolio diversification, Fuzzy returns, Multi-objective optimization, Financial high-frequency data

150.Burczyński T., Mrozek A., Kuś W., Design of New Flat Nanomaterials Based on Carbon, NanoWorld Conference, 2017-04-03/04-05, Boston (US), pp.1, 2017
151.Długosz A., Pokorska I., Glinicki M.A., Jaskulski R., Evolutionary computation in identification of thermophysical properties of hardening concrete, CMM-2017, 22nd International Conference on Computer Methods in Mechanics, 2017-09-13/09-16, Lublin (PL), pp.1-2, 2017
Długosz A., Pokorska I., Glinicki M.A., Jaskulski R., Evolutionary computation in identification of thermophysical properties of hardening concrete, CMM-2017, 22nd International Conference on Computer Methods in Mechanics, 2017-09-13/09-16, Lublin (PL), pp.1-2, 2017

Abstract:
The evolutionary computation procedures in identification of thermophysical properties of hardening concrete in massive structures are presented. Heat of cement hydration, thermal conductivity and specific heat are determined for purpose of modelling temperature evolution in massive concrete elements. The knowledge of temperature fields is very important due to a link with undesired thermal stresses, which can cause a weakening of the structure because of thermal cracking. The proposed method is based on point temperature measurements in a cylindrical mould and the numerical solution of the inverse heat transfer problem by means of finite element method and evolutionary computation

Keywords:
heat of cement hydration, inverse heat transfer problem, early age concrete, evolutionary algorithm, finite element method, thermophysical properties of concrete

152.Mrozek A., Kuś W., Burczyński T., Inverse problem for design of new carbon-based 2D materials with predifined mechanical properties, ECCOMAS International Conference IPM 2017 on Inverse Problems in Mechanics of Structure and Materials, 2017-05-31/06-02, Rzeszów-Krasiczyn (PL), pp.1-2, 2017
153.Brandt A.M., Jeszcze o habilitacji, PAUZA AKADEMICKA, ISSN: 1689-488X, Vol.X, No.402, pp.1-1, 2017
154.Glinicki M.A., Exposed Aggregate Concrete for Highway Pavements - experimental Study on the Durability Performance, ISCC 2017, The 9th International Symposium on Cement and Concrete, 2017-10-31/11-03, Wuhan (CN), pp.89-89, 2017
155.Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A., Petrograficzna identyfikacja kruszyw podatnych na wystąpienie reakcji alkalicznej w betonie, VIII Konferencja Naukowa ENERGIA I ŚRODOWISKO, 2017-09-25/09-27, Szczyrk (PL), pp.50-50, 2017
Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A., Petrograficzna identyfikacja kruszyw podatnych na wystąpienie reakcji alkalicznej w betonie, VIII Konferencja Naukowa ENERGIA I ŚRODOWISKO, 2017-09-25/09-27, Szczyrk (PL), pp.50-50, 2017

Keywords:
kruszywa łamane, reakcja AAR, analiza petrograficzna

156.Glinicki M.A., Projektowanie betonu osłonowego na trwałość w warunkach eksploatacji energetycznych reaktorów jądrowych, VIII Konferencja Naukowa ENERGIA I ŚRODOWISKO, 2017-09-25/09-27, Szczyrk (PL), pp.13-13, 2017
Glinicki M.A., Projektowanie betonu osłonowego na trwałość w warunkach eksploatacji energetycznych reaktorów jądrowych, VIII Konferencja Naukowa ENERGIA I ŚRODOWISKO, 2017-09-25/09-27, Szczyrk (PL), pp.13-13, 2017

Keywords:
beton osłonowy, elektrownia jądrowa, osłony radiologiczne, projektowanie, trwałość

157.Garbacik A., Glinicki M.A., Adamski G., Założenia systemu klasyfikacji i oceny zgodności krajowych kruszyw z punktu widzenia reaktywności alkalicznej, VIII Konferencja Naukowa ENERGIA I ŚRODOWISKO, 2017-09-25/09-27, Szczyrk (PL), pp.53-53, 2017
Garbacik A., Glinicki M.A., Adamski G., Założenia systemu klasyfikacji i oceny zgodności krajowych kruszyw z punktu widzenia reaktywności alkalicznej, VIII Konferencja Naukowa ENERGIA I ŚRODOWISKO, 2017-09-25/09-27, Szczyrk (PL), pp.53-53, 2017

Keywords:
reaktywność alkaliczna kruszyw, kruszywa mineralne, klasyfikacja krajowych kruszyw

158.Farutin A., Piasecki T., Słowicka A.M., Misbah C., Wajnryb E., Ekiel-Jeżewska M.L., Accumulation of vesicles and flexible fibers in unbounded Poiseuille flow, FLOWING MATTER 2017, 2017-01-23/01-27, Porto (PT), pp.37, 2017
159.Ekiel-Jeżewska M.L., Cichocki B., Wajnryb E., Translational and rotational Brownian motion of particles of complex shapes, 30th Marian Smoluchowski Symposium on Statistical Physics, 2017-09-03/09-08, Kraków (PL), pp.12, 2017
160.Ekiel-Jeżewska M.L., Cichocki B., Wajnryb E., Brownian motion of colloidal particles with arbitrary shapes, Dynamics of Interfaces in Complex Fluids and Complex Flows, 2017-02-28/03-03, Erlangen (DE), pp.20-21, 2017
161.Popławski B., Mikułowski G., Jankowski Ł., Semi-active damping of forced vibrations utilizing controllable truss-frame nodes, ICAST2017, The 28th International Conference on Adaptive Structures and Technologies, 2017-10-08/10-11, Kraków (PL), pp.1, 2017
162.Olszewski R., Dobkowska-Chudon W., Wrobel M., Karlowicz P., Dabrowski A., Krupienicz A., Targowski T., Nowicki A., Is Acoustocerebrography a new noninvasive method for early detection of the brain changes in patients with hypertension ?, ESC Congress 2017, European Society of Cardiology Congress 2017, 26-30 August, Barcelona, Spain, 2017-08-26/08-30, Barcelona (ES), DOI: 10.1093/eurheartj/ehx501.P190, No.38 1, pp.36-36, 2017
Olszewski R., Dobkowska-Chudon W., Wrobel M., Karlowicz P., Dabrowski A., Krupienicz A., Targowski T., Nowicki A., Is Acoustocerebrography a new noninvasive method for early detection of the brain changes in patients with hypertension ?, ESC Congress 2017, European Society of Cardiology Congress 2017, 26-30 August, Barcelona, Spain, 2017-08-26/08-30, Barcelona (ES), DOI: 10.1093/eurheartj/ehx501.P190, No.38 1, pp.36-36, 2017

Abstract:
Background: Hypertension (HT) is the leading cause of global disease burden and overall health loss. The brain is one of the main target organs affected by HT. HT is a potentially modifiable risk factor that leads to the formation of large vessel macroangiopathy, small vessel disease, microangiopathy, and microhemorrhages. Early detection of the brain changes (BC) gives a chance to receive appropriate treatment and protection from irreversible damage. Acoustocerebrography (ACG) is a set of techniques to capture the states of human brain tissue, and its changes on its molecular and cellular level. It is based on noninvasive measurements of various parameters obtained by analyzing an ultrasound pulse emitted across the human's skull. The main idea of this method relies in the relation between the tissue density, bulk modulus, and speed of propagation, for ultrasound waves in this medium. In our previous studies we showed that ACG is an effective method for detecting white matter lesions compared to the Magnetic Resonance Imaging. Additionally we showed that ACG allows to obtain a differentiated signal originates from atrial fibrillation (AF) patients and high-risk patients wit AF and HT.

Aim: The aim of the study was early detection of the BC in patients with HT using ACG.

Methods: The study included 136 female and 98 male patients (age 43.6±15.7 years) who were surveyed in the clinical research. The patients were divided into two groups: group I (patients with HT) n=33, and control group II (patients without HT) n=201. Phase and amplitude of all frequency components of the received signals from the brain path were extracted and compared to the phase and amplitude of the transmitted pulse. By doing so, the time of flight and the attenuation of each frequency component were calculated. Additionally, a fast Fourier transformation (FFT) was performed and its features were extracted.

Results: After introducing a machine learning technique, the ROC plot with an AUC of 0.929 with sensitivity 0.879 and specificity 0.831 was obtained (Fig. 1).
Conclusion: ACG is new promising method, which allows for early detection of change in the brain in the patients with HT.

163.Young T., Numerical analysis of N -electron atomic statefunctions using local basis sets, WSEAS TRANSACTIONS on MATHEMATICS, ISSN: 1109-2769, Vol.16, pp.412-420, 2017
Young T., Numerical analysis of N -electron atomic statefunctions using local basis sets, WSEAS TRANSACTIONS on MATHEMATICS, ISSN: 1109-2769, Vol.16, pp.412-420, 2017

Abstract:
This contribution presents the numerical analysis of Hartree-Fock’s method of computing electron atomic statefunctions using Galerkin’s finite element method. The underlying theory and computational implementation are presented in some detail for the first time and highly accurate energies are presented for free neutral atoms, ions, and for the spatially confined He atom. The method of using local basis sets is shown to be competitive with global basis sets of the Slater and modified Slater types in terms of accuracy and use.

Keywords:
Atomic physics, Finite element method, Numerical analysis, Quantum confinement

164.Burczyński T., Mrozek A., Kuś W., Computational Intelligent Design of 2D Nanostructures Based on Carbon, Journal of the Serbian Society for Computational Mechanics, ISSN: 1820-6530, DOI: 10.24874/jsscm.2017.11.01.09, Vol.11, No.1, pp.94-96, 2017
Burczyński T., Mrozek A., Kuś W., Computational Intelligent Design of 2D Nanostructures Based on Carbon, Journal of the Serbian Society for Computational Mechanics, ISSN: 1820-6530, DOI: 10.24874/jsscm.2017.11.01.09, Vol.11, No.1, pp.94-96, 2017

Abstract:
The pap er describes an application of the hybrid intelligent algorithm to optimal searching for new, stable atomic arrangements of 2D graphene -like carbon lattices. The proposed approach combines the parallel evolutionary algorithm and the conjugated -gradient optimization technique. The main goal is to find stable arrangements of carbon atoms under certain imposed condi tions such as density, shape and size of the unit cell and also predefined mechanical properties. The nanostructure is considered a discrete atomic model and interactions between atoms are modeled using the AIREBO potential, especially developed for carbon . The parallel approach is used in computations. Validation of the obtaine d results and examples of new models of the new grapheme -like materials are presented

Keywords:
Hybrid intelligent algorithm, 2D nanostructures, new grapheme-like materials

165.Mrozek A., Kuś W., Burczyński T., Modelling of molybdenum-based 2D materials, CMM-2017, 22nd International Conference on Computer Methods in Mechanics, 2017-09-13/09-16, Lublin (PL), No.1922, pp.03002-1-03002-8, 2017
Mrozek A., Kuś W., Burczyński T., Modelling of molybdenum-based 2D materials, CMM-2017, 22nd International Conference on Computer Methods in Mechanics, 2017-09-13/09-16, Lublin (PL), No.1922, pp.03002-1-03002-8, 2017

Abstract:
The flat, two dimensional materials play important role in the research and industrial applications in the last 15 years. The new materials with flat atomic structures are discovered almost every month. The focus of the paper is on the discrete modellingof the single layer molybdenum disulphide based material (SLMoS2). Two methods, based on the molecular statics and molecular dynamics of estimation of materials properties and numerical simulations at the nanolevel are described and discussed.

166.Proniewska K., Pręgowska A., Modern health diagnostic supported by biostatistic and information theory, Journal of Modern Engineering, ISSN: 2157-8052, Vol.1, No.1, pp.16-19, 2017
Proniewska K., Pręgowska A., Modern health diagnostic supported by biostatistic and information theory, Journal of Modern Engineering, ISSN: 2157-8052, Vol.1, No.1, pp.16-19, 2017

Abstract:
Technical development and fast growth of computer-aided systems create a unique possibility for medical industry to expand, especially in fields like e-Health, m-Health and remote monitoring in chronic diseases treatment. Based on recent electronics, telecommunications and IT development and taking into account application possibilities and limitations, new diagnostic tools will be introduced in everyday practice. Combining vital signal measurement with eHealth systems allows people to monitor and document their medical results over time. Moreover, it provides the opportunity for consultation with doctors and their social networks at any time, and anywhere, and in this manner, will assist health experts. The wide methods of Biostatistics, Information Theory and Artificial Intelligence are implemented in e-and m-Health solutions. The achievements of Biostatistics encompass the design of biological experiments, like collection, summarization, and analysis of data from eHealth programs, which lead to trends in interpretation of data from patient's monitoring. Combination of these complementary methods of data interpretation will have very promising reflection on adaptive design approach of the Health programs.

Keywords:
mobile healthcare, telemedicine, e-and m-Health, modern healthcare Information Theory, Biostatistic

167.Ranachowski Z., Lewandowski M., Schabowicz K., Logoń D., Analysis of Acoustic Emission Signal Generated in Mechanically Loaded Reinforced and Non-Reinforced Concrete Specimens, OSA 2017, LXIV Open Seminar on Acoustics, 2017-09-11/09-15, Piekary Śląskie (PL), DOI: 10.1515/aoa-2017-0059, No.42_3, pp.552-552, 2017
168.Kowalewski P.K., Olszewski R., Kwiatkowski A., Gałązka-Świderek N., Cichoń K., Paśnik K., Life with a Gastric Band. Long-Term Outcomes of Laparoscopic Adjustable Gastric Banding—a Retrospective Study, Obesity Surgery, ISSN: 0960-8923, DOI: 10.1007/s11695-016-2435-2, Vol.27, pp.1250-1253, 2016
Kowalewski P.K., Olszewski R., Kwiatkowski A., Gałązka-Świderek N., Cichoń K., Paśnik K., Life with a Gastric Band. Long-Term Outcomes of Laparoscopic Adjustable Gastric Banding—a Retrospective Study, Obesity Surgery, ISSN: 0960-8923, DOI: 10.1007/s11695-016-2435-2, Vol.27, pp.1250-1253, 2016

Abstract:
Background: Laparoscopic adjustable gastric banding (LAGB) is the third most popular bariatric procedure worldwide. Various authors present ambivalent long-term follow up results. Methods: We revised records of the patients who underwent LAGB between 2003 and 2006 along with history of additional check-ins. Patients with outdated details were tracked with the national health insurance database and social media (Facebook). An online survey was sent. The patients who did not have their band removed were included in this study. We calculated the percent total weight loss (%TWL) and percent excess weight loss (%EWL), along with changes in body mass index (ΔBMI). Satisfactory weight loss was set at >50% EWL (for BMI = 25 kg/m(2)). Since eight patients gained weight, we decided to include negative values of %TWL, %EWL, and ΔBMI. Results: One hundred seven patients underwent LAGB from 2003 to 2006. The mean follow-up time was 11.2 (±1.2) years. Eleven percent of patients were lost to follow up (n = 12). There was one perioperative death. Fifty-four of the patients (n = 57) had their band removed. Thirty-seven patients still have the band (39%) and were included in the study. The mean %EWL was 27% (-56-112%) and %TWL was 11% (-19-53%). Twelve patients achieved %EWL > 50% (32%). Thiry-two patients still suffer from obesity, with BMI over 30 kg/m(2). Eight patients (22%) gained additional weight. Patients with %EWL > 50% suffered less from gastroesophageal reflux disease symptoms than those with EWL < 50% (p < 0.05). Conclusions: Out of 107 cases, only 11.2% of patients with gastric band (n = 12) achieved satisfactory %EWL. Twenty-two percent of patients regained their weight or even exceeded it. Overall results suggest that LAGB is not an effective bariatric procedure in long term observation.

Life with a Gastric Band. Long-Term Outcomes of Laparoscopic Adjustable Gastric Banding—a Retrospective Study (PDF Download Available). Available from: https://www.researchgate.net/publication/309486095_Life_with_a_Gastric_Band_Long-Term_Outcomes_of_Laparoscopic_Adjustable_Gastric_Banding-a_Retrospective_Study [accessed Dec 05 2017].

Keywords:
Laparoscopy, Bariatric surgery, LAGB, Gastric band, Long term follow-up

(40p.)
169.Balta H., Będkowski J., Govindaraj S., Majek K., Musialik P., Serrano D., Alexis K., Siegwart R., De Cubber G., Integrated Data Management for a Fleet of Search-and-rescue Robots, Journal of Field Robotics, ISSN: 1556-4959, DOI: 10.1002/rob.21651, Vol.34, No.3, pp.539-582, 2016
Balta H., Będkowski J., Govindaraj S., Majek K., Musialik P., Serrano D., Alexis K., Siegwart R., De Cubber G., Integrated Data Management for a Fleet of Search-and-rescue Robots, Journal of Field Robotics, ISSN: 1556-4959, DOI: 10.1002/rob.21651, Vol.34, No.3, pp.539-582, 2016

Abstract:
Search-and-rescue operations have recently been confronted with the introduction of robotic tools that assist the human search-and-rescue workers in their dangerous but life-saving job of searching for human survivors after major catastrophes. However, the world of search and rescue is highly reliant on strict procedures for the transfer of messages, alarms, data, and command and control over the deployed assets. The introduction of robotic tools into this world causes an important structural change in this procedural toolchain. Moreover, the introduction of search-and-rescue robots acting as data gatherers could potentially lead to an information overload toward the human search-and-rescue workers, if the data acquired by these robotic tools are not managed in an intelligent way. With that in mind, we present in this paper an integrated data combination and data management architecture that is able to accommodate real-time data gathered by a fleet of robotic vehicles on a crisis site, and we present and publish these data in a way that is easy to understand by end-users. In the scope of this paper, a fleet of unmanned ground and aerial search-and-rescue vehicles is considered, developed within the scope of the European ICARUS project. As a first step toward the integrated data-management methodology, the different robotic systems require an interoperable framework in order to pass data from one to another and toward the unified command and control station. As a second step, a data fusion methodology will be presented, combining the data acquired by the different heterogenic robotic systems. The computation needed for this process is done in a novel mobile data center and then (as a third step) published in a software as a service (SaaS) model. The SaaS model helps in providing access to robotic data over ubiquitous Ethernet connections. As a final step, we show how the presented data-management architecture allows for reusing recorded exercises with real robots and rescue teams for training purposes and teaching search-and-rescue personnel how to handle the different robotic tools. The system was validated in two experiments. First, in the controlled environment of a military testing base, a fleet of unmanned ground and aerial vehicles was deployed in an earthquake-response scenario. The data gathered by the different interoperable robotic systems were combined by a novel mobile data center and presented to the end-user public. Second, an unmanned aerial system was deployed on an actual mission with an international relief team to help with the relief operations after major flooding in Bosnia in the spring of 2014. Due to the nature of the event (floods), no ground vehicles were deployed here, but all data acquired by the aerial system (mainly three-dimensional maps) were stored in the ICARUS data center, where they were securely published for authorized personnel all over the world. This mission (which is, to our knowledge, the first recorded deployment of an unmanned aerial system by an official governmental international search-and-rescue team in another country) proved also the concept of the procedural integration of the ICARUS data management system into the existing procedural toolchain of the search and rescue workers, and this in an international context (deployment from Belgium to Bosnia). The feedback received from the search-and-rescue personnel on both validation exercises was highly positive, proving that the ICARUS data management system can efficiently increase the situational awareness of the search-and-rescue personnel.

(35p.)
170.Ryś M., Constitutive Modelling of Damage Evolution and Martensitic Transformation in 316L Stainless Steel, ACTA MECHANICA ET AUTOMATICA, ISSN: 1898-4088, DOI: 10.1515/ama-2016-0020, Vol.10, No.2, pp.125-132, 2016
Ryś M., Constitutive Modelling of Damage Evolution and Martensitic Transformation in 316L Stainless Steel, ACTA MECHANICA ET AUTOMATICA, ISSN: 1898-4088, DOI: 10.1515/ama-2016-0020, Vol.10, No.2, pp.125-132, 2016

Abstract:
n this work, the constitutive model, derived with the use of thermodynamic of irreversible processes framework is presented. The model is derived under the assumption of small strains. Plastic strain induced martensitic phase transformation is considered in the austenitic matrix where the volume fraction of the martensite is reflected by a scalar parameter. The austenitic matrix is assumed as the elastic-plastic material and martensitic phase is assumed as randomly distributed and randomly oriented inclusions. Both phases are affected by damage evolution but there is no distinction in the model between damage in austenite and martensite

Keywords:
Constitutive Modelling, Dissipative Materials, Phase Transformation, Damage Evolution

(14p.)
171.Jeznach O., Gajc M., Kłos A., Orliński K., Pawlak D.A., Krok-Borkowicz M., Rumian Ł., Pietryga K., Reczyńska K., Pamuła E., The effect of titanium dioxide addition on physical and biological properties of Na2O-B2O3-P2O5 and CaO-Na2O-P2O5 glasses, ENGINEERING OF BIOMATERIALS / INŻYNIERIA BIOMATERIAŁÓW, ISSN: 1429-7248, Vol.19, No.134, pp.2-7, 2016
Jeznach O., Gajc M., Kłos A., Orliński K., Pawlak D.A., Krok-Borkowicz M., Rumian Ł., Pietryga K., Reczyńska K., Pamuła E., The effect of titanium dioxide addition on physical and biological properties of Na2O-B2O3-P2O5 and CaO-Na2O-P2O5 glasses, ENGINEERING OF BIOMATERIALS / INŻYNIERIA BIOMATERIAŁÓW, ISSN: 1429-7248, Vol.19, No.134, pp.2-7, 2016

Abstract:
Two types of phosphate glasses 50Na2O-20B2O3-30P2O5 (NBP) and 30CaO-20Na2O-50P2O5 (CNP) with different content of TiO2 (0, 3 and 5 mol%) have been prepared by melt-quenching process. TiO2 was added to increase glass network stability. Physical properties of glasses were investigated by density measurements, differential scanning calorimetry and degradation in phosphate buffered saline (PBS). Biological performance of glasses in a direct contact with osteoblast-like MG-63 cells was analysed with the use of resazurin test and live-dead staining. The results show that TiO2 addition increased density, glass transition temperature (Tg) and melting temperature (Tm) of both types of glasses. In the case of NBP glasses presence of TiO2 resulted in their fast degradation in PBS and acidification of cell culture medium. As a consequence such glasses did not support cell adhesion and growth, but they can be considered for e.g. drug delivery systems. On the other hand addition of TiO2 to CNP glasses resulted in enhanced cell adhesion and viability. Particularly positive results were found for CNP glass containing 5% TiO2, so it can be a good candidate as a scaffold material for bone tissue engineering.

Keywords:
phosphate glasses, bioactive glasses, titanium dioxide, tissue engineering

(7p.)
172.Dziekoński C., Dera W., Frąś L., Jarząbek D.M., Precise force sensors for micro and nanotensile tests., SOLMECH 2016, 40th Solid Mechanics Conference, 2016-08-29/10-02, Warszawa (PL), pp.1, 2016
173.Dera W., Dziekoński C., Jarząbek D.M., The measurement of viscosity of thin polymer films, SolMech 2016, 40th Solid Mechanics Conference, 2016-08-29/09-02, Warszawa (PL), pp.1, 2016
174.Nowicki A., Secomski W., Trawiński Z., Olszewski R., Estimation of Radial Artery Reactive Response using 20 MHz Ultrasound., 10th EAA International Symposium on Hydroacoustics, 2016-05-17/05-16, Jastrzębia Góra (PL), No.Archives of Acoustics, v. 41, No. 2., pp.356-357, 2016
Nowicki A., Secomski W., Trawiński Z., Olszewski R., Estimation of Radial Artery Reactive Response using 20 MHz Ultrasound., 10th EAA International Symposium on Hydroacoustics, 2016-05-17/05-16, Jastrzębia Góra (PL), No.Archives of Acoustics, v. 41, No. 2., pp.356-357, 2016

Abstract:
Preceding atherosclerosis is endothelial dysfunction. There is therefore interest in the application of non-invasive clinical tools to assess endothelial function. There are commercially available ultrasound scanners to estimate Brachial Artery Reactive Response BARR by measuring the flow-mediated vasodilatation (FMD) of the brachial artery using 10–12 MHz linear array probes; however the precision in estimating of artery dilation does not exceeds 0.2 mm, far beyond the required one. We have introduced a high frequency scanning schemes; 25–35 MHz encoded (Golay) wobbling type imaging with- out Doppler (uScan developed in our lab, thick film wide bandwidth transducer, 50 microns axial resolution). In the second approach we have used 20 MHz linear scanning with 20 MHz pulsed Doppler attached to the linear array. Instead of brachial artery we have examined the radial artery where Radial Artery Reactive Response RARR was measured. The radial artery FMD were normalized using AUC of shear rate at the radial artery wall. The precision of the radial artery diameter measurements is over two times better using 20 MHz US instead of 7.5 MHz used for brachial artery FMD. The measured initial internal radial artery diameter was in range of 1.59–2.35 mm, the maximum diameter 2.01–2.60 mm was observed 40 to 55 seconds after releasing the cuff. In a limited number (14) of examined young, healthy patients the FMDSR were in the range from 7.8
to 9.9 in arbitrary units. In older patients with minor cardiac history the normalized FMDSR was clearly lower, 6.8 to 7.6.

Keywords:
thick film transducers, atherosclerosis, flow mediated vasodilation.

175.Kucharski S., Starzyński G., Flattening of loaded rough surfaces: normal contact versus sliding contact, CMIS 2016, Contact Mechanics International Symposium, 2016-05-11/05-13, Warszawa (PL), pp.52-53, 2016
176.Jarząbek D.M., Chmielewski M., The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites, SolMech 2016, 40th Solid Mechanics Conference, 2016-08-29/09-02, Warszawa (PL), No.P229, pp.1-2, 2016
177.Mróz Z., Kucharski S., Anisotropic friction and wear rules with account for anisotropy evolution, CMIS 2016, Contact Mechanics International Symposium, 2016-05-11/05-13, Warszawa (PL), No.P044, pp.64-65, 2016
178.Paczelt I., Mróz Z., Kucharski S., Baksa A., Analysis of wear processes for monotonic or periodic sliding and loading conditions, SolMech 2016, 40th Solid Mechanics Conference, 2016-08-29/09-02, Warszawa (PL), pp.1-2, 2016
179.Żywczyk Ł., Moskal A., Gradoń L., Numerical simulation of deep-bed water filtration, SEPARATION and PURIFICATION TECHNOLOGY, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2015.10.003, Vol.156, pp.51-60, 2015
Żywczyk Ł., Moskal A., Gradoń L., Numerical simulation of deep-bed water filtration, SEPARATION and PURIFICATION TECHNOLOGY, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2015.10.003, Vol.156, pp.51-60, 2015

Abstract:
A two-dimensional simulator based on network model has been employed to design structure of filter composed of a few layers. The complex structure of the filter was represented by system of cylindrical channels connected via nodes, which represent basic quantities of the filter structure, like porosity or permeability. Performance of monolayer, multilayer and gradient filters was compared. Results show that depending on the number of layers, their porosities, the sequence of each layer aligned in the structure and channel diameter distribution significantly influence the amount of particles collected by the particular structure. Evolution of pressure drop, collection efficiency of particles and quality factors are the aspects, which should be tackled, to design an optimal filter structure

Keywords:
Deep bed-water filtration, Network model, DLVO, Brownian dynamics algorithm

(40p.)
180.Żywczyk Ł., Moskal A., Modelling of deposition of flexible fractal-like aggregates on cylindrical fibre in continuum regime, JOURNAL of AEROSOL SCIENCE, ISSN: 0021-8502, DOI: 10.1016/j.jaerosci.2014.12.002, Vol.81, pp.75-89, 2015
Żywczyk Ł., Moskal A., Modelling of deposition of flexible fractal-like aggregates on cylindrical fibre in continuum regime, JOURNAL of AEROSOL SCIENCE, ISSN: 0021-8502, DOI: 10.1016/j.jaerosci.2014.12.002, Vol.81, pp.75-89, 2015

Abstract:
A new mathematical model of aggregate composed of N primary spherical particles has been created. The aggregate structure is modelled as an elastic body, capable of undergoing stretching, bending and twisting, during its movement in fluid. An aggregate is defined as a system of spherical particles joined together by springs, and the stiffness of structure is maintained by potential energy functions. Aggregate movement has been tracked in a Kuwabara cell model for three different values of velocity in continuum regime. The deposition efficiency of aggregates on a cylindrical collector has been related to the fractal dimension of aggregates, velocity of air and spring constant, which determine the magnitude of deformation of the aggregate structure. It was found that fractal dimension, velocity of air and imposed parameters of oscillations constants, strongly influence the deposition efficiency of aggregates

Keywords:
harmonic oscillator equation, potential energy functions, fractal-like aggregates, fractal dimension

(35p.)
181.Kossecka E., The effect of structure and thickness on periodic thermal capacity of building components, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, Vol.LIII, No.3, pp.527-539, 2007
Kossecka E., The effect of structure and thickness on periodic thermal capacity of building components, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, Vol.LIII, No.3, pp.527-539, 2007

Abstract:
Thermal capacity of building partitions and their internal thermal structure, that is location of materials of different thermal conductivity, density and specific heat, have an influence on dynamics of the heat transfer processes, caused by external and internal thermal excitations. Dynamic thermal characteristics of building components, which determine the periodic heat transfer processes, are admittances, transmittances and periodic thermal capacities. In this paper, properties of the periodic heat capacity of interior and exterior building partitions are examined: its dependence on structure, thickness of masonry layers, surface film resistances and period of temperature variations, and also its asymptotic values for high thickness and low frequency. For wall assemblies composed of lightweight materials, and also for massive walls of very low thickness, approximate proportionality takes place. For heavy structures, the dependence becomes curvilinear, and for very thick walls tends to the constant value, attaining maximum for a comparatively low thickness which is approximately twice the periodic penetration depth. For exterior walls, dependence on the thermal mass factor, and also on thickness of the interior massive layer, has a similar character. Maximum periodic heat capacity for walls with insulation outside appears for thickness of the masonry layer of only 10 – 12 cm, which is approximately value of the periodic penetration depth.

Keywords:
heat transfer, building walls, dynamic thermal characteristics, frequency response, periodic heat capacity

182.Kossecka E., Kośny J., Three-dimensional conduction z-transfer function coefficients determined from the response factors, ENERGY AND BUILDINGS, ISSN: 0378-7788, DOI: 10.1016/j.enbuild.2004.06.026, Vol.37, pp.301-310, 2005
Kossecka E., Kośny J., Three-dimensional conduction z-transfer function coefficients determined from the response factors, ENERGY AND BUILDINGS, ISSN: 0378-7788, DOI: 10.1016/j.enbuild.2004.06.026, Vol.37, pp.301-310, 2005

Abstract:
A method of derivation of the conduction z-transfer function coefficients from response factors, for three-dimensional wall assemblies, is described. Results of the conduction z-transfer function coefficients calculations are presented for clear walls and separated details which are listed in ASHRAE research project 1145-TRP: ‘‘Modeling Two- and Three-Dimensional Heat Transfer Through Composite Wall and Roof Assemblies in Hourly Energy Simulation Programs’’. Resistances, three-dimensional response factors and so-called structure factors, have been computed using the finite-difference computer code HEATING 7.2. The z-transfer function coefficients were then derived from a set of linear equations, constituting relationships with the response factors, which were solved using the minimum-error procedure. Test simulations show perfect compatibility of the heat flux calculated using three-dimensional response factors and three-dimensional ztransfer function coefficients, derived from the response factors.

Keywords:
Heat transfer, Thermal response, z-transfer function, Simulation, Building envelope

183.Kossecka E., Kośny J., Correlations between time constants and structure factors of building walls, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, Vol.I, No.1, pp.175-188, 2004
Kossecka E., Kośny J., Correlations between time constants and structure factors of building walls, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, Vol.I, No.1, pp.175-188, 2004

Abstract:
Two methods are proposed of the wall specimen time constant estimation, for the hot box apparatus testing. Directions of the American standard ASTM C 1363-97 are discussed. First method assumes numerical calculation of the response factors and deriving time constant from their ratios. The second one makes use of the approximate relation between the time constant and the product of resistance, capacity and the structure factor. Correlations between time constants and structure factors are examined.

184.Kossecka E., Kośny J., Z-transfer function coefficients for simulation of three-dimensional heat transfer in building walls, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, Vol.XLIX, No.4, pp.545-558, 2003
Kossecka E., Kośny J., Z-transfer function coefficients for simulation of three-dimensional heat transfer in building walls, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, Vol.XLIX, No.4, pp.545-558, 2003

Abstract:
A method of derivation of the conduction z-transfer function coefficients from response factors, for three-dimensional wall assemblies, is described.Results of the conduction z-transfer function coefficients calculations are presented for clear walls and separated details which are listed in ASHRAE research project 1145-TRP: “Modeling Two- and Three-Dimensional Heat Transfer Through Composite Wall and Roof Assemblies in Hourly Energy Simulation Programs”. Resistances, three-dimensional response factors and so-called structure factors, have been computed using the finite-difference computer code HEATING 7.2. The z-transfer function coefficients were then derived from a set of linear equations, constituting relationships with the response factors, which were solved using the minimum-error procedure.Test simulations show perfect compatibility of the heat flux calculated using three-dimensional response factors and three-dimensional z-transfer function coefficients, derived from the response factors.

185.Kossecka E., Kośny J., Influence of insulation configuration on heating and cooling loads in a continuously used building, ENERGY AND BUILDINGS, ISSN: 0378-7788, Vol.34, pp.321-331, 2002
Kossecka E., Kośny J., Influence of insulation configuration on heating and cooling loads in a continuously used building, ENERGY AND BUILDINGS, ISSN: 0378-7788, Vol.34, pp.321-331, 2002

Abstract:
This paper is focused on the energy performance of buildings containing massive exterior building envelope components. The effect of mass and insulation location on heating and cooling loads is analyzed for six characteristic wall configurations. Correlations between structural and dynamic thermal characteristics of walls are discussed. A simple one-room model of a building exposed to periodic temperature changes is analyzed to illustrate the effect of material configuration on the ability of a wall to dampen interior temperature swings. Whole-building dynamic modeling using DOE-2.1E is employed for the energy analysis of a one-story residential building with various exterior wall configurations for six different US climates. The best thermal performance is obtained when massive material layers are located at the inner side and directly exposed to the interior space. # 2002 Elsevier Science B.V. All rights reserved.

Keywords:
Building heat transfer, Structure factors, Frequency response, Thermal stability, Dynamic thermal performance

186.Kossecka E., The effect of structure on dynamic thermal characteristics of multilayer walls, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, Vol.XLII, No.3, pp.351-369, 1996
Kossecka E., The effect of structure on dynamic thermal characteristics of multilayer walls, ARCHIVES OF CIVIL ENGINEERING, ISSN: 1230-2945, Vol.XLII, No.3, pp.351-369, 1996

Abstract:
The effect of internal thermal structure on dynamic characteristics of multilayer walls is analyzed. Mathematical basis constitute the integral formulae for the heat flow across the surfaces of the wall. The notion of structure factors is introduced and the conditions they impose on response factors are derived, using the Laplace transform method. Simple examples of walls, representing different types of thermal resistance and capacity distribution, are analyzed to illustrate general relations between the structure factors and the response factors.