Tabela A z publikacjami w czasopismach wyróżnionych w Journal Citation Reports (JCR) 
Tabela B z publikacjami w czasopismach zagranicznych i krajowych, wyróżnionych na liście MNSzW
Publikacje konferencyjne indeksowane w bazie Web of Science Core Collection
Inne publikacje w pozostałych czasopismach i wydawnictwach konferencyjnych
Afiliacja IPPT PAN

1.Kubissa W., Glinicki M.A., Influence of internal relative humidity and mix design of radiation shielding concrete on air permeability index, CONSTRUCTION AND BUILDING MATERIALS, ISSN: 0950-0618, DOI: 10.1016/j.conbuildmat.2017.04.177, Vol.147, pp.352-361, 2017
Kubissa W., Glinicki M.A., Influence of internal relative humidity and mix design of radiation shielding concrete on air permeability index, CONSTRUCTION AND BUILDING MATERIALS, ISSN: 0950-0618, DOI: 10.1016/j.conbuildmat.2017.04.177, Vol.147, pp.352-361, 2017

Abstract:
The permeation properties of concrete are strongly influenced by the degree of saturation of capillary pores. Test results of the Autoclam air permeability index (API) of radiation shielding concrete are presented. Concrete specimens were made with CEM I and CEM III/A cements and special aggregates for radiation shielding: crushed barite, magnetite, serpentine and amphibolite. Two procedures of accelerated drying with simultaneous measurement of moisture distribution in the specimens were proposed. The specimens were tested at different RH levels from a fully saturated state to an oven dried state. The linear relationship between the API and RH was obtained. Effects of heavyweight and hydrogen-bearing aggregates on air permeability index were revealed.

Keywords:
Autoclam air permeability, Relative humidity, Heavyweight aggregate, Barite, Magnetite, Serpentine, Radiation shielding concrete, Slag cement

(40p.)
2.Bollero A., Rial J., Villanueva M., Golasiński K.M., Seoane A., Almunia J., Altimira R., Recycling of Strontium Ferrite Waste in a Permanent Magnet Manufacturing Plant, ACS Sustainable Chemistry & Engineering, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.6b03053, Vol.5, No.4, pp.3243-3249, 2017
Bollero A., Rial J., Villanueva M., Golasiński K.M., Seoane A., Almunia J., Altimira R., Recycling of Strontium Ferrite Waste in a Permanent Magnet Manufacturing Plant, ACS Sustainable Chemistry & Engineering, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.6b03053, Vol.5, No.4, pp.3243-3249, 2017

Abstract:
Residues resulting from the manufacture of strontium ferrite magnets have been recycled for further use in magnet fabrication instead of disposal as waste. The quality of the recycled ferrite powder has been tested and compared to that of the new starting ferrite material. The magnetic properties of the recycled powder not only match those of the starting material acquired by the company for the production of magnets but exceed them. A coercivity value 3.5 times larger than that of the new starting ferrite powder, accompanied by a 25% increase in remanence, makes this material a new and improved ferrite product to re-enter the production chain in the factory with an extended applications range. This improvement is proven to be due to tuning of the morphology and microstructure through processing and subsequent heat treatment. The use of processing conditions in the same range as those typically used in the preparation of ferrite powders and magnets, in combination with the superior magnetic quality of the resulting powders, makes this method a suitable path to guarantee sustainability and an efficient use of resources in permanent magnet companies.

Keywords:
Ferrites, Permanent magnets; Recovery; Recycling; Sustainability

(40p.)
3.Pieczyska E.A., Staszczak M., Kowalczyk-Gajewska K., Maj M., Golasiński K., Golba S., Tobushi H., Hayashi S., Experimental and numerical investigation of yielding phenomena in a shape memory polymer subjected to cyclic tension at various strain rates, POLYMER TESTING, ISSN: 0142-9418, DOI: 10.1016/j.polymertesting.2017.04.014, Vol.60, pp.333-342, 2017
Pieczyska E.A., Staszczak M., Kowalczyk-Gajewska K., Maj M., Golasiński K., Golba S., Tobushi H., Hayashi S., Experimental and numerical investigation of yielding phenomena in a shape memory polymer subjected to cyclic tension at various strain rates, POLYMER TESTING, ISSN: 0142-9418, DOI: 10.1016/j.polymertesting.2017.04.014, Vol.60, pp.333-342, 2017

Abstract:
This paper presents experimental and numerical results of a polyurethane shape memory polymer (SMP) subjected to cyclic tensile loading. The goal was to investigate the polymer yielding phenomena based on the effects of thermomechanical coupling. Mechanical characteristics were obtained with a testing machine, whereas the SMP temperature accompanying its deformation process was simultaneously measured in a contactless manner with an infrared camera. The SMP glass transition temperature was approximately 45oC; therefore, when tested at room temperature, the polymer is rigid and behaves as solid material. The stress and related temperature changes at various strain rates showed how the SMP yield limit evolved in subsequent loading-unloading cycles under various strain rates. A two-phase model of the SMP was applied to describe its mechanical response in cyclic tension. The 3D Finite Element model of a tested specimen was used in simulations. Good agreement between the model predictions and experimental results was observed for the first tension cycle.

Keywords:
Shape memory polymer, Tension cyclic loading, Thermomechanical coupling, Yield limit, Thermoelastic effect, Constitutive model

(40p.)
4.Guzik M.N., Golasiński K.M., Pedrosa F.J., Jenuš P., Bollero A., Hauback B.C., Deledda S., Influence of ultra-short cryomilling on the microstructural andmagnetic properties of cobalt ferrite, JOURNAL OF ALLOYS AND COMPOUNDS, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2017.05.290, Vol.721, pp.440-448, 2017
Guzik M.N., Golasiński K.M., Pedrosa F.J., Jenuš P., Bollero A., Hauback B.C., Deledda S., Influence of ultra-short cryomilling on the microstructural andmagnetic properties of cobalt ferrite, JOURNAL OF ALLOYS AND COMPOUNDS, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2017.05.290, Vol.721, pp.440-448, 2017

Abstract:
The impact of ultra-short milling at liquid nitrogen temperatures on structural and magnetic properties of cobalt ferrite (CoFe2O4) powders has been explored for the first time. Cryomilling for only up to 9 min increases the coercivity of the isotropic powder from 139 to 306 kA/m (1.74–3.85 kOe) and results in its modifications comparable with milling for hours at room temperature. A thermal treatment of processed CoFe2O4 enables further optimization of powder magnetic properties and leads to a high value of energy product (13.5 kJ/m3) for the sample treated at 600 °C. Systematic studies, comprising analysis of structural and microstructural properties, based on synchrotron powder X-ray diffraction, scanning and transmission electron microscopy demonstrate the high efficiency of cryomilling in reduction of crystallite sizes and formation of lattice strain in the processed cobalt ferrite samples.

Keywords:
Cryomilling, Cobalt ferrite, Magnetic properties

(35p.)
5.Piotrowski L., Chmielewski M., Kowalewski Z.L., The Dominant Influence of Plastic Deformation Induced Residual Stress on the Barkhausen Effect Signal in Martensitic Steels, JOURNAL OF NONDESTRUCTIVE EVALUATION, ISSN: 0195-9298, DOI: 10.1007/s10921-016-0389-x, Vol.36, No.10, pp.1-8, 2017
Piotrowski L., Chmielewski M., Kowalewski Z.L., The Dominant Influence of Plastic Deformation Induced Residual Stress on the Barkhausen Effect Signal in Martensitic Steels, JOURNAL OF NONDESTRUCTIVE EVALUATION, ISSN: 0195-9298, DOI: 10.1007/s10921-016-0389-x, Vol.36, No.10, pp.1-8, 2017

Abstract:
The paper presents the results of investigation of the influence of plastic deformation on the magnetic properties of martensitic steel (P91 grade). The properties of the hysteresis loops as well as of the Barkhausen effect (BE) signal are analysed for both tensile and compressive loading up to ε=10% of plastic deformation. The choice of the steel and of the deformation range is unique, since for such combination one can expect high residual stresses (both compressive and tensile) in the material that does not exhibit saturation of the BE intensity as a function of elastic stress. The obtained relationships show that for the low level of deformation the dislocation density changes may play a dominant role, yet for higher deformation level the residual stress becomes a dominant factor. It leads to the strong decrease of the BE signal for tensile deformation and an increase for the case of compression. It agrees well with the assumption that the tensile plastic deformation results in the compressive stresses appearance in the soft (magnetically active) sub-regions of the material whereas for the compression one can expect a residual stress of a tensile nature in those areas. Both deformation modes result in the increase of coercivity of the samples, yet the increase observed for the tensile deformation is significantly higher since both the residual compressive stress and increase of dislocation density have a strong effect on the material coercivity. The change of the hysteresis loops steepness agrees well with the notion of the dominant role of residual stresses too.

Keywords:
Barkhausen effect, Plastic deformation, Residual stress, Magnetic hysteresis, Coercivity

(35p.)
6.Makowska K., Piotrowski L., Kowalewski Z.L., Prediction of the Mechanical Properties of P91 Steel by Means of Magneto-acoustic Emission and Acoustic Birefringence, JOURNAL OF NONDESTRUCTIVE EVALUATION, ISSN: 0195-9298, DOI: 10.1007/s10921-017-0421-9, Vol.36, No.2, pp.43/1-43/10, 2017
Makowska K., Piotrowski L., Kowalewski Z.L., Prediction of the Mechanical Properties of P91 Steel by Means of Magneto-acoustic Emission and Acoustic Birefringence, JOURNAL OF NONDESTRUCTIVE EVALUATION, ISSN: 0195-9298, DOI: 10.1007/s10921-017-0421-9, Vol.36, No.2, pp.43/1-43/10, 2017

Abstract:
The paper describes an application of non-destructive volumetric magnetic and ultrasonic techniques for evaluation of the selected mechanical parameter variations of P91 steel having direct influence on its suitability for further use in critical components used in power plants. Two different types of deformation processes were carried out. First, a series of the P91 steel specimens was subjected to creep and second, one to plastic deformation in order to achieve the material with an increasing strain level up to 10%. Subsequently, non-destructive and destructive tests were performed. Magnetic methods based on measurements of magnetoacoustic emission and magnetic hysteresis loop changes as well as the ultrasonic method based on acoustic birefringence measurements, were applied. Finally, the static tensile tests were carried out in order to evaluate the mechanical parameters. It is shown that some relationships between the selected parameters coming from the non-destructive and destructive tests may be formulated.

Keywords:
Creep, Plastic deformation, Acoustic birefringence, Magnetoacoustic emission, Magnetic hysteresis loop

(35p.)
7.Hoffman J., Chrzanowska J., Mościcki T., Radziejewska J., Stobiński L., Szymański Z., Plasma generated during underwater pulsed laser processing, APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2017.01.185, pp.1-6, 2017
Hoffman J., Chrzanowska J., Mościcki T., Radziejewska J., Stobiński L., Szymański Z., Plasma generated during underwater pulsed laser processing, APPLIED SURFACE SCIENCE, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2017.01.185, pp.1-6, 2017

Abstract:
The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m−3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

Keywords:
Underwater laser processing, Pulsed laser ablation in liquid, Laser induced plasma, Numerical modelling

(35p.)
8.Łazarska M., Woźniak T.Z., Ranachowski Z., Trafarski A., Domek G., Analysis of acoustic emission signals at austempering of steels using neural networks, METALS AND MATERIALS INTERNATIONAL, ISSN: 1598-9623, DOI: 10.1007/s12540-017-6347-z, pp.1-8, 2017
Łazarska M., Woźniak T.Z., Ranachowski Z., Trafarski A., Domek G., Analysis of acoustic emission signals at austempering of steels using neural networks, METALS AND MATERIALS INTERNATIONAL, ISSN: 1598-9623, DOI: 10.1007/s12540-017-6347-z, pp.1-8, 2017

Abstract:
Bearing steel 100CrMnSi6-4 and tool steel C105U were used to carry out this research with the steels being austempered to obtain a martensitic-bainitic structure. During the process quite a large number of acoustic emissions (AE) were observed. These signals were then analysed using neural networks resulting in the identification of three groups of events of: high, medium and low energy and in addition their spectral characteristics were plotted. The results were presented in the form of diagrams of AE incidence as a function of time. It was demonstrated that complex transformations of austenite into martensite and bainite occurred when austempering bearing steel at 160 °C and tool steel at 130 °C respectively. The selected temperatures of isothermal quenching of the tested steels were within the area near to MS temperature, which affected the complex course of phase transition. The high activity of AE is a typical occurrence for martensitic transformation and this is the transformation mechanism that induces the generation of AE signals of higher energy in the first stage of transition. In the second stage of transformation, the initially nucleated martensite accelerates the occurrence of the next bainitic transformation.

Keywords:
microstructure, phase transformation, dislocation, ultrasonics, alloys

(30p.)
9.Żołek N., Ranachowski Z., Ranachowski P., Jóźwiak-Niedźwiedzka D., Kúdela Jr. S., Dvorak T., Statistical assessment of the microstructure of barite aggregate from different deposits using x-ray microtomography and optical microscopy, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0104, Vol.62, No.2, pp.697-702, 2017
Żołek N., Ranachowski Z., Ranachowski P., Jóźwiak-Niedźwiedzka D., Kúdela Jr. S., Dvorak T., Statistical assessment of the microstructure of barite aggregate from different deposits using x-ray microtomography and optical microscopy, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0104, Vol.62, No.2, pp.697-702, 2017

Abstract:
Two different barite ore (barium sulfate BaSO4) specimens from different localizations were tested and described in this paper. Analysis of the microstructure was performed on polished sections, and on thin sections using X-ray microtomography (micro-CT), and optical microscopy (MO). Microtomography allowed obtaining three-dimensional images of the barite aggregate specimens. In the tomograms, the spatial distribution of the other polluting phases, empty space as well as cracks, pores, and voids – that exceeded ten micrometers of diameter-were possible to visualize. Also, the micro-CT allowed distinguishing between minerals of different density, like SiO2 and BaSO4. Images obtained and analyzed on thin sections with various methods using the optical microscopy in transmitted light delivered additional information on the aggregate microstructure, i.e. allow for estimation of the different kinds of inclusions (like the different density of the minerals) in the investigated specimens. Above methods, which were used in the tests, completed each another in order to supply a set of information on inclusions’ distribution and to present the important differences of the barite aggregate specimens microstructure.

Keywords:
barite ore, barite aggregate, microstructure, optical microscopy, thin sections analysis, X-ray tomography

(30p.)
10.Mackiewicz M., Mikulski J.L., Wańkowicz J., Kucharski S., Ranachowski P., Ranachowski Z., Study of composite insulator sheds subjected to wheel test, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0101, Vol.62, No.2, pp.679-686, 2017
Mackiewicz M., Mikulski J.L., Wańkowicz J., Kucharski S., Ranachowski P., Ranachowski Z., Study of composite insulator sheds subjected to wheel test, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0101, Vol.62, No.2, pp.679-686, 2017

Abstract:
The paper presents investigation of the properties of the surface and the material stiffness – flexibility of series of samples taken from the sheds of the composite insulators. The insulators were previously subjected to wheel test. The wheel test and 1000 h salt fog test are regarded as alternative examination of the material resistance to the effects of electrical surface discharges. There were investigated two series of the samples of the composite insulators sheds. Examined specimens, made of HTV silicone rubber, were taken from the sheds of medium-voltage composite insulators of two different manufacturers. Insulators of both types passed the 1000 h salt fog test without reservation. Meanwhile, the wheel test can provide a basis for better distinguishing between physical properties of the tested materials. In the case of the insulators of one of the manufacturers the wheel test result was negative. Cross puncture effect of the sheds took place in several places. In addition, sheds were covered with dark coating of varying thicknesses. The results of the study indicated a significantly stronger influence of electrical and temperature factors on the sheds under investigations during the wheel test than in the case of the 1000 h salt fog test. It can be stated that these tests cannot be considered as alternative and it seems that wheel test enables better distinguishing between properties of the materials.

Keywords:
composite insulators, silicone rubber, wheel test, electrical surface discharges, tracking and erosion

(30p.)
11.Łazarska M., Woźniak T.Z., Ranachowski Z., Ranachowski P., Trafarski A., The application of acoustic emission and artificial neural networks in an analysis of kinetics in the phase transformation of tool steel during austempering, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0089, Vol.62, No.2, pp.603-609, 2017
Łazarska M., Woźniak T.Z., Ranachowski Z., Ranachowski P., Trafarski A., The application of acoustic emission and artificial neural networks in an analysis of kinetics in the phase transformation of tool steel during austempering, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.1515/amm-2017-0089, Vol.62, No.2, pp.603-609, 2017

Abstract:
During the course of the study it involved tool steel C105U was used. The steel was austempered at temperatures of 130°C, 160°C and 180°C respectively. Methods of acoustic emission (AE) were used to investigate the resulting effects associated with transformations and a large number of AE events were registered. Neural networks were applied to analyse these phenomena. In the tested signal, three groups of events were identified of: high, medium and low energy. The average spectral characteristics enabled the power of the signal spectrum to be determined. After completing the process, the results were compiled in the form of diagrams of the relationship of the AE incidence frequency as a function of time. Based on the results, it was found that in the austempering of tool steel, in the first stage of transformation midrib morphology is formed. Midrib is a twinned thin plate martensite. In the 2nd stage of transformation, the intensity of the generation of medium energy events indicates the occurrence of bainite initialised by martensite. The obtained graphic of AE characteristics of tool steel austempering allow conclusions to be drawn about the kinetics and the mechanism of this transformation.

Keywords:
carbon steel, austempering, lower bainite, acoustic emission (AE), neural networks

(30p.)
12.Wójcik J., Lewandowski M., Żołek N., Grating Lobes Suppression by Adding Virtual Receiving Subaperture in Synthetic Aperture Imaging, Ultrasonics, ISSN: 0041-624X, DOI: 10.1016/j.ultras.2016.12.013, Vol.76, pp.125-135, 2017
Wójcik J., Lewandowski M., Żołek N., Grating Lobes Suppression by Adding Virtual Receiving Subaperture in Synthetic Aperture Imaging, Ultrasonics, ISSN: 0041-624X, DOI: 10.1016/j.ultras.2016.12.013, Vol.76, pp.125-135, 2017

Abstract:
A method of suppression of grating lobes is presented, analyzed, and verified. The method is based on creating a Virtual Receiving Subaperture (VRS) by adding virtual transducer elements not existing in the physical layout of the receiver. The VRS channels are filled with data based on signals from real channels. The analytical model of the synthetic aperture imaging system’s impulse response is presented to describe the properties of the VRS. The model shows a reduction of the receiving grating lobes’ amplitude (with a comparison to the main lobe’s amplitude) by a magnitude equal to the number of receiving transducer elements. It is shown that effective properties of the entire system with a VRS are similar to a system with a pitch in the receiving aperture that is twice as small. The numerical calculations of the impulse response show a doubling of the signal to noise ratio, which results in a reduction of the receiving grating lobes. For experimental validation, the generalized Plane Wave Imaging with and without the VRS is compared with a basic synthetic transmit aperture (STA) imaging. The experiment confirmed that the use of a VRS allows for visualizat ion of the objects in a medium in which they are not imaged without a VRS or are visualized with a lower contrast. The reduction of grating lobes attained using the proposed method is at the level of 15dB in the visualization of the superficial cyst.

Keywords:
Grating lobes, Image quality, Synthetic aperturę, Virtual subaperture

(30p.)
13.Golasiński K.M., Pieczyska E.A., Staszczak M., Maj M., Furuta T., Kuramoto S., Infrared thermography applied for experimental investigation of thermomechanical couplings in Gum Metal, Quantitative InfraRed Thermography Journal, ISSN: 1768-6733, DOI: 10.1080/17686733.2017.1284295, pp.1-8, 2017
Golasiński K.M., Pieczyska E.A., Staszczak M., Maj M., Furuta T., Kuramoto S., Infrared thermography applied for experimental investigation of thermomechanical couplings in Gum Metal, Quantitative InfraRed Thermography Journal, ISSN: 1768-6733, DOI: 10.1080/17686733.2017.1284295, pp.1-8, 2017

Abstract:
Results of initial investigation of thermomechanical couplings in innovative β-Ti alloy called Gum Metal subjected to tension are presented. The experimental set-up, consisting of testing machine and infrared camera, enabled to obtain stress–strain curves with high accuracy and correlate them to estimated temperature changes of the specimen during the deformation process. Both ultra-low elastic modulus and high strength of Gum Metal were confirmed. The infrared measurements determined average and maximal temperature changes accompanying the alloy deformation process, allowed to estimate thermoelastic effect, which is related to the alloy yield point. The temperature distributions on the specimen surface served to analyse strain localization effects leading to the necking and rupture.

Keywords:
Gum Metal, thermomechanical coupling, nonlinear elasticity, yield point, infrared camera

(25p.)
14.Kukla D., Brynk T., Pakieła Z., Assessment of Fatigue Resistance of Aluminide Layers on MAR 247 Nickel Super Alloy with Full-Field Optical Strain Measurements, Journal of Materials Engineering and Performance, ISSN: 1059-9495, DOI: 10.1007/s11665-017-2767-7, pp.1-12, 2017
Kukla D., Brynk T., Pakieła Z., Assessment of Fatigue Resistance of Aluminide Layers on MAR 247 Nickel Super Alloy with Full-Field Optical Strain Measurements, Journal of Materials Engineering and Performance, ISSN: 1059-9495, DOI: 10.1007/s11665-017-2767-7, pp.1-12, 2017

Abstract:
This work presents the results of fatigue tests of MAR 247 alloy flat specimens with aluminides layers of 20 or 40 µm thickness obtained in CVD process. Fatigue test was conducted at amplitude equal to half of maximum load and ranging between 300 and 650 MPa (stress asymmetry ratio R = 0, frequency f = 20 Hz). Additionally, 4 of the tests, characterized by the highest amplitude, were accompanied with non-contact strain field measurements by means of electronic speckle pattern interferometry and digital image correlation. Results of these measurements allowed to localize the areas of deformation concentration identified as the damage points of the surface layer or advanced crack presence in core material. Identification and observation of the development of deformation in localization areas allowed to assess fatigue-related phenomena in both layer and substrate materials.

Keywords:
aluminide layer, fatigue testing, full-field optical strain measurements, super nickel alloy

(20p.)
15.Kúdela Jr. S., Švec P., Bajana O., Orovčík L., Ranachowski P., Ranachowski Z., Saffil alumina fibers reinforced dual-phase Mg-Li and Mg-Li-Zn alloys, KOVOVE MATERIALY-METALLIC MATERIALS, ISSN: 0023-432X, DOI: 10.4149/km 2017 3 195, Vol.55, pp.195-203, 2017
Kúdela Jr. S., Švec P., Bajana O., Orovčík L., Ranachowski P., Ranachowski Z., Saffil alumina fibers reinforced dual-phase Mg-Li and Mg-Li-Zn alloys, KOVOVE MATERIALY-METALLIC MATERIALS, ISSN: 0023-432X, DOI: 10.4149/km 2017 3 195, Vol.55, pp.195-203, 2017

Abstract:
The gas pressure infiltration technique was used to prepare Saffil alumina fibers reinforced Mg-Li and Mg-Li-Zn matrix composites with a dual-phase matrix structure. There was investigated the effect of variable Li content (6.2–10.3 wt.% Li) and Zn alloying (∼ 1.5 wt.% Zn) on the proof stress Rp0.2 of prepared composites. Rp0.2 values increased monotonously with rising fraction of Saffil fibers (5, 10 and 15 vol.%) reaching the maximum of about 250 MPa for Mg-Li matrix composites. Rp0.2 values of Mg-Li-Zn matrix composites were lower. Strengthening effect of Saffil fibers was promoted by the displacement redox reaction with Mg-Li and Mg-Li-Zn melts in which only Li significantly participated. Zn alloying retarded the displacement redox reaction. Too extensive reaction, however, resulted in the fiber damage and the drop in composite strength.

Keywords:
Mg-Li alloys, Saffil fibers, metal matrix composites, short-fiber strengthening, reactive wetting, displacement reactions

(20p.)