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Abstract

Positron emission tomography (PET) is one of the medical imaging
methods enabling determination of images representing the glucose
metabolism in vivo. It is used to observe and diagnose body dis-
eases, especially cancerous lesions in the human tissue. Together with
other tomography techniques delivering morphologic and anatomic
imagery, it greatly improves the medical diagnosis correctness and
overall time to diagnosis.

With all their benefits PET devices are still very expensive and
therefore their availability is limited. J-PET is a joint effort of many
sciences and scientists to create more affordable PET device based
on plastic scintillators, unique geometry, dedicated electronics and
modern computing techniques.

This work describes derivation of a statistical model for J-PET
device, together with accompanying simulation and image recon-
struction algorithms. Additionally, it introduces the reader to PET
operational and image reconstruction principles, and also serves as
a brief guide to computer science specific subjects of parallelization,
vectorization and computational accelerator architectures.

The description starts with a formulation of image reconstruction
solutions for two specific 2D subproblems – 2D barrel of detectors
with simulated system matrix, and 2D two-strip scanner with analytic
approximation kernel. These two methods are later merged into a
complete solution for 3D J-PET scanner. Each method is provided
with a generic and general-purpose computing on graphics processing
units (GPGPU) accelerated implementation. Finally, each implemen-
tation is benchmarked and its image reconstruction performance is
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tested against subset of National Electrical Manufacturers Association
(NEMA) standard measures.

The presented material comes from three years of research, stud-
ies, discussions and programming conducted by me at Jagiellonian
University in Krakow in J-PET project. J-PET simulation and image re-
construction tools are a tangible result of my effort. These tools helped
us to establish understanding on J-PET unique geometry and make
important decisions throughout the project. Thanks to the original
algorithms employing parallel computing on GPU devices, our device
is able to deliver imaging results almost instantly.

Nevertheless, my work represents just a small but vital fraction
of the whole process required to make J-PET device functional – an
image reconstruction taking use of the whole information provided
by the other device components. Making this unique PET scanner
would not be possible without the amazing collaboration of the whole
team and leveraging and combining modern technologies from many
sciences.
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Abstrakt

Pozytonowa tomografia emisyjna (PET) jest jedną z technik obra-
zowania medycznego, która pozwala generować obraz reprezentujący
metabolizm glukozy w organizmie. Jest ona używana do obserwacji
i diagnozowania chorób, a w szczególności zmian nowotworowych.
Wraz z innymi technikami tomografii dostarczającymi obrazy mor-
fologiczne i anatomiczne, PET znacznie polepsza poprawność i czas
stawiania diagnozy medycznej.

Ze wszystkimi swoimi zaletami urządzenia PET są niestety na-
dal bardzo drogie, a w związku z tym ich dostępność jest ograni-
czona. Projekt J-PET to połączony wysiłek wielu nauk i naukowców
w celu stworzenia bardziej przystępnego tomografu PET bazującego
na plastikowych scyntylatorach, unikalnej geometrii, specjalizowanej
elektronice oraz nowoczesnych technikach obliczeniowych.

Rozprawa opisuje wyprowadzenie modelu statystycznego dla to-
mografu J-PET, wraz z towarzyszącymi mu algorytmami symulacji
i rekonstrukcji obrazu. Dodatkowo wprowadza ona czytelnika w
zasady działania PET i rekonstrukcji obrazu, oraz służy jako krótki
przewodnik po specyficznej dla informatyki problematyce zrównole-
glania, wektoryzacji i architektur akceleratorów obliczeniowych.

Opis ten zaczyna się od stworzenia rozwiązań dla dwóch spe-
cyficznych dwuwymiarowych podproblemów – dwuwymiarowej
beczki z symulowaną macierzą systemową oraz dwuwymiarowego
dwupaskowego tomografu z przybliżonym analitycznie jądrem. Te
dwie metody później łączą się w kompletne rozwiązanie dla trójwy-
miarowego tomografu J-PET. Obie metody posiadają generyczną i
zoptymalizowaną dla akceleratorów GPGPU (z ang. general-purpose
computing on graphics processing units) implementację. Każda z tych
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implementacji została przetestowana pod względem szybkości oraz
wydajności i jakości z użyciem podzbioru miar standardu NEMA (z
ang. National Electrical Manufacturers Association).

Prezentowany materiał jest wynikiem trzech lat badań, dyskusji
i programowania prowadzonego przeze mnie na Uniwersytecie Ja-
giellońskim w projekcie J-PET. Narzędzia do symulacji i rekonstrukcji
J-PET są namacalnym rezultatem mojej pracy. Te narzędzia pozwoliły
nam zrozumieć właściwości unikalnej geometrii tomografu J-PET oraz
podjąć istotne decyzje w czasie trwania projektu. Dzięki zastosowaniu
obliczeń równoległych na urządzeniach GPU, nasz tomograf jest w
stanie dostarczyć wyniki prawie natychmiastowo.

Tym niemniej moja praca reprezentuje tylko małą, aczkolwiek
istotną część całego procesu potrzebnego do stworzenia działającego
urządzenia J-PET – rekonstrukcję obrazu korzystającą z informacji
dostarczanych przez inne moduły tomografu. Stworzenie tego uni-
kalnego urządzenia nie byłoby możliwe bez niezwykłej współpracy
całego zespołu J-PET oraz bez zastosowania nowoczesnych technolo-
gii z wielu dziedzin nauki.
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Symbols and abbreviations

e emission (event)

E unobserved directly data (set of events)

ẽ response to event (measurement)

Ẽ scan (set of responses)

T̃ measured time

z̃u measured hit position along upper detector scintillator

z̃d measured hit position along lower detector scintillator

∆l̃ distance difference between emission point and hit points

R distance between scintillators

t tube of response (TOR)

u detector index, e.g. upper detector in TOR

d other detector index, e.g. lower detector in TOR

D all detectors set

T all tubes of response set

i 2D pixel

j other 2D pixel, e.g. inner loop pixel

I 2D image pixel space

v 3D voxel

w other 3D voxel, e.g. inner loop voxel

V 3D image voxel space

ρ emission density map image

p point, e.g. origin of gamma quanta emission
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θ angle of emission direction

P probability or probability density

s sensitivity

E mean (expected value)

L likelihood

` log-likelihood

PET positron emission tomography

J-PET Jagiellonian PET

TOR tube of response

TOF time of flight

ML maximum likelihood

EM expectation maximization

LM list mode

NRMSE normalized root mean square error

CPU central processing unit

GPU graphics processing unit

GPGPU general-purpose computing on graphics processing units

SIMD single instruction multiple data

MIMD multiple instructions multiple data

SIMT single instruction multiple threads

FLOP floating point operation

FLOPS floating point operations per second
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Chapter 1.

Introduction to PET tomography and
J-PET scanner

Advancement in the medical sciences is an important factor in improving life ex-
pectancy and quality. Being able to understand our bodies, prevent and treat common
diseases is an ultimate goal of many sciences and scientists. In order to reach this goal
we need to constantly develop better instruments that provide means of observation
of biological processes in living subjects – necessary to gain further understanding of
the phenomena driving these processes. Starting on invention of a microscope, find-
ing of X-rays and using them for imaging, molecular imaging and position emission
tomography (PET) is a next step in this advancement.

PET devices are nowadays available in many medical facilities and used for detect-
ing cancer, brain or heart tumors. PET imaging belongs to a wider group of molecular
imaging techniques and it is one if its modalities. Molecular imaging itself was derived
from radio-pharmacology in order to better understand living body processes at cel-
lular level. It can be perceived as fusion of molecular biology with in vivo imaging.
Because living body molecules do not emit signals intrinsically, different techniques
and methods have to be applied in order to make them emit signals that can be
registered by medical instruments.

We can distinguish four major modalities of molecular imaging, depending on how
signal is made to be emitted by the molecules:

• Magnetic resonance imaging (MRI)

Strong magnetic field (B0) is used to align the spin of the body’s atoms. Then
short radio frequency pulse (B1) is emitted towards the body, as a consequence

1



2 Introduction to PET tomography and J-PET scanner

some of the atoms loose their alignment emitting back the radio signals registered
by MRI device and processed into slice images.

In general MRI measures water or fluid characteristics of the tissue and is used
most often for imaging anatomical structures, providing better results than com-
puted tomography (CT) especially in terms of image sensitivity. This is visible in
comparison to CT brain imaging, where skull bone absorbs most of the X-rays,
making difficult to produce detailed image of the enclosed brain.

MRI-specific probes have been developed, so MRI can also be used for imag-
ing molecular processes, but this is still limited comparing to other modalities,
especially PET.

• Optical imaging

Uses the light as a source of a signal. The light is a product of either an absorption,
reflectance, fluorescence or bioluminescence. The infra-red light absorption can be
used for example to “observe” brain neural activity, since the absorption depends
on the chemicals present in the active areas. The main problem of this method is
that the light does not penetrate the tissue well enough, so it is both hard for the
light to escape in order to reach the instrument detecting signal and even reach
the observed tissue in order to reflect or to provoke fluorescence.

• Positron emission tomography (PET)

Radionuclide tracer injected into the body emits positrons, that annihilate with
the body’s matter electrons. Pair of gamma quanta is emitted in the place of
each annihilation. These gamma rays, traveling in almost parallel opposite
direction, interact with scintillators that emit visible light transformed next by
photomultipliers into electric signals registered by electronics.

The major drawback of PET comparing to other modalities, especially MRI, is its
low spatial resolution. This is usually a consequence of a small number of events
being registered by PET scanners, mostly due to the limits of radioisotope tracers
activity considered to be safe and limited time of the examination.

Image reconstruction methods and algorithms can be also considered as a limiting
factor. While it is possible to employ some extra information gathered during the
measurement process, such as time of flight (TOF) [1] or even do precise signal
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shape matching [2] in order to reduce time errors, this implies substantially more
computations to be done.

• Single photon emission computed tomography (SPECT)

SPECT devices detect gamma emission similarly to PET, however SPECT radio-
tracers injected to the body are direct gamma radiation emitters. Moreover,
instead of detecting coincidences, SPECT devices use a rotating gamma camera
with a collimator to detect single gamma quanta coming from one direction and
build a set of 2D projection images. Like in computed tomography (CT), these
projections are used to produce the final 3D image. This makes SPECT operation
principle different from PET and closer to CT.

At the time being computed tomography (CT) is not considered as a molecular
imaging, since the CT method as-is does not produce molecular activity image and so
far no molecular activity agents were developed for CT.

1.1. PET principles and conventional PET scanners

The positron emission tomography (PET) works by estimating the radioactive fluid
density (tracer) from the measurements of the γ quanta emitted from an annihilation
of the positron produced by the beta plus (β+) decay. The two quanta are emitted
simultaneously and almost back-to-back. This emission is called an event. γ quanta
travel through the detectors surrounding the measured subject, usually a patient.
Some of these quanta interact with scintillators belonging to the individual detectors –
this is called a hit.

Upon interaction, scintillators emit visible light that later reaches photo-multipliers
(PMT) attached to the scintillators. Each PMT transforms arriving photons into an
electric charge that is transferred as an electric signal to the attached electronics.
Appearance of some signal on PMTs belonging to a single detector pair within given
time period is called a coincidence and this time period is called a time slot. The detector
pair yields a tube of response (TOR) – a subspace spanned by these two detectors passing
through the emission point.

The coincidence electric signal is processed by electronics and their readout for this
coincidence is called a response. During single examination, responses are collected
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into a complete scan data. Conventional PET scan consists of a number of coincidences
detected on each TOR. Modern PET scanners may use time of flight (TOF) information
to improve resolution. This information carries relative time information about arrival
of the signal to each PMT, that can be used to determine position of the emission
within the detector. Currently all PET scanners perform the measurements using the
non-organic scintillating crystals and the spatial resolution is determined by the crystal
size which can be as small as few millimeters across.

PET technique has its roots in early 1950s, when Gordon Brownell and Charles
Burnham of Massachusetts General Hospital conducted first demonstration of annihi-
lation radiation for medical imaging use. This was an inspiration for the concept of
emission tomography used to visualize functional processes in the body – presented
by David E. Kuhl, Luke Chapman and Roy Edwards in the late 1950s. This concept
was realized as the first single-plane PET scanner called head-shrinker.

The first 3D PET scanner called PC-I was completed in 1969 as a two 2-dimensional
arrays of scintillators [3]. The cylindrical array of detectors soon replaced 2D arrays [4]
and it is used until today.

1.2. Radiopharmaceutical tracers

Together with developing first devices, there was a need to create radiopharmaceutical
tracers for PET that could be administered safely to human subjects. The first one
was labeled 2-fluorodeoxy-D-glucose (2FDG) and it was administered in 1979 at
the University of Pennsylvania [5]. At the time non-PET device was used to show
concentration of the tracer. However, later this substance was used in development of
conventional PET scanners.

2FDG is a glucose analog, that uses modified glucose molecule having −OH hy-
droxyl group replaced by radioactive fluorine 18F. Fluorine is produced in a cyclotron
and has 109.8 minute half-life, that makes it effective for administration within a single
day. As a glucose analog 2FDG is absorbed by high glucose consuming cells such as
brain, kidney and what is most important cancer cells presenting abnormally high
glucose consumption, they appear as brightest spots on PET image. Therefore 2FDG
distribution in the body represents very well glucose consumption by the cells and an
overall cellular activity.
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1.3. Physics of PET

When radio-emitter probe decays in β+ process, it emits a positron (anti-electron)
which annihilates with surrounding matter electron after traveling short distance
– up to few millimeters long. This distance depends on the type of the tissue and
can vary producing different measurement errors as described in [6]. Two gamma
quanta (γ) with the energy of 511keV are emitted almost back-to-back as a result of this
annihilation. This high energy lets the gamma photons easily escape the surrounding
matter of the measured subject. However the same reason makes them quite hard to
interact with plastic scintillators used in J-PET, that are less dense than crystal ones,
and e.g. for 2 cm thick plastic scintillator the detection efficiency amounts to about
only 18%.

It is also possible that gamma quanta scatter with either subject matter or scintillator
matter, causing the change of direction and some energy loss. Such scatter fraction may
represent substantial part of overall number of detected quanta and may negatively
impact on a reconstruction image quality. Since the scattered quanta have lower energy
than 511keV there are some techniques developed [7, 8] to measure and filter detector
responses originating from such scattering.

Gamma quanta hitting detectors’ scintillators surrounding the subject cause them
to scintillate visible light photons. Conventional PET scanners use scintillation crystals,
usually inorganic high-Z GSO, LSO or BGO crystals. They are cut into the form of
small cubes and glued together to form arrays or matrices.

Usually few thousand photons are emitted isotropically for 511keV gamma quan-
tum as a result of the scintillation. Depending on emission angle some of the light
escapes and the rest undergoes internal reflection. This process is depicted in Figure 1.2
for case of J-PET scanner.

Some fraction of these photons reach photodetector, usually photo-multiplier tube
(PMT), attached to one or more faces of the scintillator. The light photons are converted
then to electrons in photo-electric process, which are next amplified and converted into
more electrons in an electric field of PMT. Finally, the energy of each photon arriving
to PMT is observable as a charge on the PMT connectors.

From this point the analog boards connected to PMTs analyze these electric signals
using discriminators to detect time of arrival of the photons. The rise time of signals is
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equal to about one nanosecond (10−9 s), and in case of J-PET scanner multi-threshold
discriminators are set to detect the arrival time with the precision of tens of picoseconds
(10−12 s). Such pre-processed signal is then supplied to the electronics and finally
arrives in a form of a binary data to the image reconstruction.

1.4. Novel plastic scintillator J-PET scanner

zz

yy

xx

(a) J-PET strip scanner

zz

yy

xx

(b) Classic crystal PET scanner

Figure 1.1.: PET scanners comparison

J-PET scanner is a novel tomography device using plastic polymer in place of
conventional crystal scintillators. The concept of TOF-PET detector based on organic
scintillators appeared in 2011 [9–12], showing that organic scintillators are more
suitable for TOF than crystal ones, while at the same time being much cheaper and
easier to manufacture. Plastic scintillators can also receive much larger form than
scintillation crystals, that could be used to enlarge field of view of the device without
affecting its complexity [13].

Idea behind J-PET operation differs from conventional tomography devices. J-PET
is meant not only to replace the expensive scintillator crystals, but also to reduce overall
device construction complexity. Multiple conventional scintillators along z axis are
replaced with a single scintillator strip in J-PET. This significantly reduces the number
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of PMTs, cables and electronic boards in the device that has an inevitable impact
on production costs. Using the single long scintillator strip requires employment of
advanced time of flight (TOF) techniques from the very beginning, as a position of
an emission along z axis (Figure 1.1) can only be reconstructed from the precise TOF
information.

1.4.1. Advantages of plastic scintillators over crystal counterparts

While lower production costs is the most important advantage of plastic scintillators,
there are couple of others worth to mention:

1. Polymer plastic has better light transfer properties than crystals

Polymers absorb internally much less light emitted by scintillation from gamma
radiation. As a result enough light reaches PMTs in order to produce precise
readouts when using long polymer scintillator strips. Long crystal scintillators
would simply absorb all of the light before it had a chance to reach PMTs.

2. Reduced complexity of the whole device

Because series of crystal scintillators along z axis is replaced by a single plastic
scintillator strip, overall device complexity is reduced. Especially in the case of the
large field of view, the device needs far less photo-multipliers that turn photons
into electric signals and far less cables that carry these signals to electronic circuit
boards. Finally, the device response space is reduced too, as number of detector
pairs where signal coincidence can appear in is substantially smaller.

3. Complexity invariance to the length of the scintillator and the length of the
scanner along z axis

Changing the length of the scintillator and effectively the length of the whole
device along z axis has no impact on the complexity of the J-PET scanner. Unlike
J-PET, conventional scanners need extra scintillators, photomultipliers and cables
in order to enlarge their field of view (FOV) along z axis.

However increasing the length of scintillators in the J-PET scanner has an impact
on spatial resolution along z axis [14]. This is because longer scintillator produces
less distinct readouts on attached photomultipliers, affecting time measurement
precision. Therefore one needs to find a balance between the resolution and the
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field of view, when defining specific device geometry configuration, e.g. when
resolution along z is important, shorter scintillator strips can be used, when
resolution along z is less important, very long strips can be used to create the
whole body PET scanner.

4. Ability to operate together with computed tomography (CT) solutions

Plastic scintillators absorb CT radiation much less than crystals, therefore J-PET
scanner can be coupled with CT device, operating in the area not covered by
PMTs and cables, in order to provide perfectly aligned PET and CT imagery from
single medical examination [15].

1.4.2. J-PET scanner principles

J-PET scanner operational principles are similar to classic scanners, except that the
exact time information plays crucial role for J-PET. Classic crystal matrix scanners
can optionally use TOF to improve the quality and the resolution of a reconstructed
image, but they can operate as well in less computationally demanding bin-mode, that
relies only on counting signals on TORs. J-PET however requires TOF information to
perform an image reconstruction along z axis and to produce full 3D image.

In general J-PET device scan Ẽ records information about signal coincidences
represented by responses ẽk belonging to the response spaceR

Ẽ = {ẽ1, ẽ2, . . . , ẽN} ⊂ R (1.1)

Responses are denoted with tilde to emphasize that they represent measured
information that is a subject to measurement errors explained in detail in Chapter 3.

Each response contains an information about scintillator pair indices (TOR) denoted
later in this work with t = (u, d), where u stands for “up” and d stands for “down”, and
information about photons’ time of arrival on each of the photomultipliers attached to
the scintillators denoted with T̃ul, T̃ur, T̃dl, T̃dr

ẽ = (u, d, T̃ul, T̃ur, T̃dl, T̃dr) (1.2)

where indices l and r indicate left and right side of the scintillator strip, respectively as
shown in Figure 1.2. Time to position conversion is explained in detail in Chapter 6.
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Figure 1.2.: J-PET scanner principles

1.4.3. Signal and time of flight (TOF) sampling

Aside of its unique geometry and scintillators J-PET detector consist of specialized
electronics being able to measure time with great precision. Exact description of these
electronics are beyond the scope of this work. The interested reader is referred to [16]
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and the PhD thesis of Dr. Korcyl [17] for the details. J-PET project also tries to employ
additional methods to improve the TOF and position resolution based on the shape of
registered signals [2].

Current prototype electronics are able to measure signals with a precision of about
30 ps (picoseconds, 30 ∗ 10−12 s) [18] combining analog discriminator circuits with fast
FPGA electronics. Yet the time spread due to the light transport along scintillators
and small photon statistics results, in case of the present J-PET prototype, in the TOF
resolution of about 125 ps (σ) [19] corresponding to 1.6 cm along the scintillator and
2.7 cm between the scintillators.

In addition, it was shown recently in [14] that the physical limitation for the TOF
resolution with the J-PET method amounts to 50 ps for the 50 cm long axial field of
view. Still 50 ps represents about 1 cm of distance between the scintillators, so it is
impossible to produce high resolution image without employing statistical methods,
e.g. maximum likelihood expectation maximization (MLEM) described in Chapter 3.

Later in this work we will assume TOF resolution of 1 cm along and 2 cm between
the scintillators, which is a small but expected improvement to the current proto-
type electronics’ resolution, as such accuracy was already obtained for single strip
measurements, as shown in [14].

1.5. Overview of this work

This work describes a statistical model of J-PET scanner and a set of algorithms
and software tools used to create J-PET simulation and reconstruction tools being a
functional part of the complete J-PET scanner device. Many of the presented algorithms
employ existing well known methods, such as MLEM. Such methods however provide
only generic templates for a specific application. In order to use them, J-PET scanner
statistical model was developed and validated using Monte-Carlo simulations. Finally,
the whole implementation was optimized in terms of the performance for modern
massively parallel architectures.

This dissertation is organized into eight chapters. The first three chapters serve
as an introduction to the subject of Positron Emission Tomography, J-PET device
and parallel computing. Chapter 2 introduces the reader to the parallelization and
vectorization which is key aspect of this work and single-instruction multiple-threads
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(SIMT) programming paradigm specific to NVIDIA CUDA GPGPU environment.
Chapter 3 describes PET image reconstruction theory and principles necessary to
understand mathematical methods used in J-PET image reconstruction.

Description of my research begins in Chapter 4, treating about a simulation of 2D
barrel detector geometry. Conducting simulations of the barrel geometry was the first
and important research phase that was necessary to constitute understanding and the
geometrical and mathematical model, and effectively make important decisions about
geometry of the first prototypes. Chapter 5 is a continuation that describes methods of
2D image reconstruction for the 2D barrel detector.

Chapter 6 represents an original approach for image reconstruction based solely
on time of flight (TOF) information in 2D strip detector. The 2D strip detector being
subject of this chapter has specific geometry unlike existing detectors or 2D barrel. In
order to be able to perform image reconstruction for 2D strip detector we had to create
a specific statistical model that describes probability of detecting emission within the
two scintillator strip detector’s field of view, including time measurement errors that
have serious impact on the detector’s response.

Chapter 7 is a completion of my research combining models and developed algo-
rithms for 2D subproblems into a full solution for 3D J-PET scanner image reconstruc-
tion. Included performance and image quality statistics expressed according to the
industry standards can be used to compare J-PET with other PET tomography devices.

Final Chapter 8 contains the conclusions and opens the discussion about the future
directions for development of the project and its image reconstruction methods. Cur-
rently J-PET project is in a prototype phase and there is still a long road ahead to make
the J-PET device ready for commercial production.

Since the source code for the programs forming J-PET simulation and image recon-
struction tools is an inherent element of my research, this dissertation is supplied with
appendices containing description how to obtain, build and run the programs and
also how to visualize and analyze the output data produced by the programs.
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1.6. Current state-of-the-art of PET image reconstruction

PET tomography and image reconstruction methods were constantly developed dur-
ing over 40 years. Starting from the invention of PET radiopharmaceuticals in 1970s [5],
followed by setting the foundations for PET image reconstruction statistical methods
in 1980s [20, 21] and list-mode reconstruction proposed in 1990s [1].

The more advanced methods and the more precise models needed more advanced
computing techniques. The last 10 years have brought many applications of new
computing platforms for PET tomography, beginning with an employment of com-
putational clusters [22] and SIMD instructions [23]. Today, the usage of GPU and
computing accelerators is de-facto standard in modern PET scanner devices [24–32].

Nowadays, many of PET tomographs take advantage of time of flight information
to improve the resulting image quality and resolution [32–39]. However, since most
of the described methods apply to conventional crystal scintillator PET devices, they
can be only partially applicable to J-PET specific scintillators and geometry. Therefore,
it was necessary to develop dedicated statistical model and algorithms for J-PET
tomograph, which is the subject of this work, presented in the next chapters.



Chapter 2.

Parallelization, vectorization and
computational accelerators

Producing computer hardware capable of performing enormous amount of com-
putations is no longer an issue today. Today’s mobile phones hold the power of
supercomputers from the decade ago, modern desktop computers contain compo-
nents capable of performing breathtaking 1012 operations per second. This power has
to be yet tamed and mastered, and it is not easily available. The peak performance which
is used to describe and advertise theoretical computing power of a specific device is
not necessarily reachable for real use. What is worse, there are couple of new problems
that did not exist while ago – the costs of electricity running the hardware and the
problems of heat dissipation.

While this work do not address these two problems, it tries to help to solve the
other – taming the power of the computing devices built using new parallel and vector
architectures.

2.1. Modern computational accelerators

Throughout this work we will consider graphics processing units (GPU) and general-
purpose computing on graphics processing units (GPGPU) devices to be equivalent of
modern computational accelerators. This is simply because modern computational
accelerators are either GPU devices such as NVIDIA GeForce series, AMD Radeon, or
were derived from GPU architecture, such as Intel Xeon Phi that was originally set
to be GPGPU device codenamed Larrabee. This is visible on TOP 500 supercomputer

13
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list [40], where strongest two supercomputers at the time of this writing are hybrids
using Xeon Phi and NVIDIA GPU solutions.

The GPU origin of the modern computational accelerators is very convenient in
the context of PET image reconstruction, which is a subject of this work. Especially
when it comes to the spatially coalescent memory access that can be provided by GPU
hardware texture units, or geometry manipulation using trigonometric functions that
are hardware optimized and inherent to GPU.

2.2. Moore’s law myths and facts

Almost everyone who had a contact with computer science had heard about Moore’s
law. However, just a few remember its message in the original form, that the number
of transistors in a dense integrated circuit doubles approximately every two years.
Most of us rather think of it, as the performance of computers doubling in every two
years. Moreover, many think that existing software will run twice as fast when buying
new machine every two years. This has been true for almost twenty years, but recently
this is not working anymore. Here is why.

We need to get back to the original Moore’s message. It is all about the number of
transistors in silicon. The law still works, but doubling number of transistors does not
have immediate impact on existing software solutions.

Until the end of twentieth century, the computer chips were improving their
performance mostly by increasing their clock frequencies and reducing fabrication
process down to tens of nanometers. However, due to subtle nanoscale effects we can
no longer raise frequencies without emitting large waste of heat.

Therefore today the raising number of transistors is reflected in new processor
cores, wider vectors and new computing units, while the frequency is capped to
around 1–4 Ghz.

2.3. O(n) in context of computational accelerators

Understanding algorithms and their complexity is a foundation of computer science.
However these algorithms do not run in the vacuum. They run on real hardware,
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having its limitation coming straight from number of transistors and the architecture.
Choosing best algorithm in terms of computational and memory complexity is still
important, but has to be done in the context of the real hardware.

Lower complexity algorithm is not necessarily better than higher complexity algo-
rithm in all of the cases. That depends, among others, on the data size. We can imagine
some higher complexity algorithm that performs much better for a data that fits into
available computer memory. The point where lower complexity algorithm’s curve
takes over the higher complexity’s one may be far beyond available device memory as
shown in Figure 2.1.
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Figure 2.1.: Algorithm complexity in context of available memory

Lets take an example of well known and universally used quicksort classic algo-
rithm in context of parallel computers. It turns out that it does not perform best on
parallel hardware, but some less known algorithms, such as merge sort, perform better.
In case of quicksort its “divide and conquer” strategy requiring recursive execution
stack handling, affecting memory complexity, is a weakness on parallel machines.
Memory access is a limiting factor on parallel architectures, providing much higher
compute throughput than memory bandwidth. Therefore parts of algorithm that
require memory access are often a performance bottleneck.

Aside the memory complexity, some algorithms are just inherently susceptible
to parallelization, whether others are inherently resistant. Usually such resistance
comes from the sequential nature of some algorithms. This leads us to Amdahl’s law,
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that states that inherent sequential part seq of the every parallel algorithm limits the
speedup S of that algorithm relative to N number of processors

S(N, seq) =
N

seq ∗ N + (1− seq)
(2.1)

When we look on the number of processors of modern GPUs, that often reaches
thousands, Amdahl’s law is even more visible. Therefore when choosing or creating
an algorithm we must ensure that its sequential part is minimal as possible, otherwise
it will not scale well on massively parallel modern devices.

2.4. Compute-bound and memory-bound problems

Modern processors and computing accelerators are usually described by two values
– a peak performance expressed as elementary floating point operations per second
(FLOPS) and a memory bandwidth, expressed as a number of bytes that can be
transferred from or to the memory. We need to understand that these are inviolable
hardware limits.

The elementary arithmetic operations such as an addition, subtraction or mul-
tiplication can be usually executed within one cycle of the processor, therefore the
peak FLOPS can be expressed as a product of the processor clock frequency and the
number of available arithmetic-logic units (ALU). There are many other operations,
such a transcendental functions, that have their own hardware instructions, but are
not elementary and cannot be equated with FLOP. On the other hand, many modern
processors offer fused multiply-add (FMA) that can multiply two operands then add
third one within one cycle. In most of the cases peak FLOPS is expressed with FMA
giving factor of 2 boost. Unfortunately not all algorithms can fully or even partially
utilize FMA, therefore half of the peak performance is often a limit.

Roofline model [41] describes and explains the relation between the peak perfor-
mance and the memory bandwidth limits. This model relies on definition of parameter
Q that represents a ratio of a number of elementary arithmetic operations to a num-
ber of elements needed to be transferred from or to the memory. This parameter is
expressed either in FLOP/element or FLOP/byte and is specific to the algorithm. The
algorithm performance Pmax is limited by both peak performance Ppeak and a product
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of Q parameter and memory bandwidth Bmem of the device or computing architecture

Pmax(Q) = min{Ppeak, Q ∗ Bmem} (2.2)

We can find Qdev constant for which Ppeak = Qdev ∗ Bmem, specific to the device
and representing ratio where memory bandwidth is balanced by the peak computing
performance. The higher Qdev means that every algorithm must perform more opera-
tions for a single element loaded from the memory in order to take advantage of the
processor’s computing power.

The model can be also visualized as an intersection of two half planes representing
computing performance and memory bandwidth limits as shown in Figure 2.2. Using
this model we can distinguish memory bound algorithms with Q ≤ Qdev – lying in the
left blue region, loading too much data and compute bound algorithms with Q ≥ Qdev –
lying in the right red region, performing more operations that is necessary to balance
memory bandwidth.

0 1 2 4 6 8
0

50

100

150

200

250

bandwidth

Qdev = 4

memory bound compute bound

FLOP/element

F
L
O
P
S

peak performance
memory bandwidth cap

Figure 2.2.: Roofline model with Qdev = 4

As shown in Table 2.1, processors with a high peak performance have usually
large Qdev factor. This means that the strongest processors and accelerators need
substantially more operations (FLOP) to be performed for a single loaded memory
element than the weaker models. This implies another important observation that
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algorithms that are compute bound on weaker units may be memory bound on the
stronger ones. This means that the whole optimization process has to be done always
in the context of a particular device or device architecture.

Device Ppeak (SP) Bmem Qdev

Intel i5-4258U1 76 GFLOPS 26 GB/s 12 FLOP/element

Intel Core i7-4770K2 224 GFLOPS 26 GB/s 34 FLOP/element

Intel Xeon E5-1650v32 307 GFLOPS 51 GB/s 24 FLOP/element

Intel Xeon E5-2699v33 662 GFLOPS 68 GB/s 39 FLOP/element

Intel Xeon Phi 3120A2 2006 GFLOPS 240 GB/s 33 FLOP/element

GeForce GTX 980 Ti2 5632 GFLOPS 336 GB/s 67 FLOP/element
1Mobile processor of my MacBook Pro
2Processors and accelerators available in our workstations
3Strongest CPU available currently from Intel

Table 2.1.: Theoretical peak performance (single precision), memory bandwidth and Qdev
parameter for few example modern processors

There exists another memory related limiting factor, not taken into account in the
Roofline-model – memory access latency, describing the delay, expressed usually as a
number of cycles, between issuing the memory access instruction and executing it. In
other words, saying how long we need to wait for the data transfer to start, rather than
how quick data is transferred – described by memory bandwidth.

Memory access instructions are usually pipelined, therefore the latency can be
hidden, e.g. using several hardware threads utilizing a single memory unit. However
in some specific cases device schedulers are unable to hide latency, that appears as a
degraded performance, worse than the implied by the available memory bandwidth.

2.4.1. Estimation of efficiency using Roofline-model

Roofline model can be used to estimate efficiency of the existing algorithm and make
the survey of possible room for improvement. In order to do that we need to

1. Estimate number of operations performed by the algorithm, e.g. in the single
cycle of the main algorithm’s loop – this determines y position on the roofline
model Figure 2.2.
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2. Estimate number of elements (e.g. floating point numbers) loaded and stored
from and to memory within single cycle of the main algorithm’s loop.

3. Calculate Qalg ratio of the number of operations (point 1) to the number of
elements (point 2). This gives us x position and the whole (x, y) algorithm
position on the roofline model Figure 2.2.

4. Find the point (x, y′) lying on the memory bandwidth or the peak performance
limit boundary above (x, y).

The y′ − y difference represents possible improvement of the algorithm. The usual
reason that the original algorithm lies under the boundary is incomplete paralleliza-
tion e.g. due to branch divergence [42], incomplete use of the available pipelining,
unhidden memory latency or in-coalescent memory access.

2.5. Parallel computing models

Parallel computing is generally described as a type of computing involving multiple
operations at once. There exist many different parallel computing models realizing
this definition and many classifications of them. One significant of these is Flynn’s
taxonomy [43] – a classification of algorithms and computer architectures depending
on how the computer hardware instructions are executed and what are their operands.
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SISD single instruction, single data – equivalent of sequential processing, where single
processor is executing single instruction operating on single value or memory
address.

MISD multiple instruction, single data – a processing where many processors or units
operate on single value or memory address. Such model is not very popular and
may be used to realize fault-tolerance.

MIMD multiple instruction, multiple data – a fully parallel processing where many
independent processors or units operate on own values or memory addresses.

CPU 1 CPU 2

CPU 3 CPU 4

Program

Control Unit ALU Control Unit ALU

Control Unit ALU Control Unit ALU

Figure 2.4.: MIMD processing

SIMD multiple instruction, multiple data – also called vector processing, where single
instruction operate on multiple values or memory addresses, forming a vector of
data. This can be perceived as a constrained MIMD model, where all units must
execute same instruction at a given time.

CPU

Program Control
Unit

ALU 1 ALU 2 ALU 3 ALU 4

Figure 2.5.: SIMD processing

Most of the modern processors are hybrid of MIMD and SIMD, depicted in Fig-
ure 2.6. Such a hybrid architecture is a result of economic calculation – making all
available arithmetic-logic units (ALU) operate in full MIMD manner would raise num-
ber of transistors and energy consumption. On the other hand, SIMD-only architecture
using long vector operands, not providing any means of independent processing, is
problematic for the programmers and compilers, as most of the algorithms cannot be
completely vectorized for SIMD processing.
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Figure 2.6.: Modern processor architecture (MIMD and SIMD hybrid)

Many modern processors often offer, in some extent, simultaneous multithreading
(SMT) [44, 45] – a hardware thread support, e.g. Intel’s hyper-threading (HT), as an
addition to their MIMD architecture to better utilize available computing units. For
example, two hardware threads running on the same core may utilize its resources
better, because when one thread stalls on memory access unit (MU), the other one may
use ALU.

2.5.1. SIMT CUDA processing model

Compute Unified Device Architecture (CUDA) parallel computing platform introduced in
2007 by NVIDIA offers a new single instruction, multiple threads (SIMT) architecture and
simple scalar-like parallel programming model that unifies SIMD, SMT and MIMD.
Rather than operating directly on SIMD vector registers as in Algorithm 1, the code
is expressed in scalar manner and then scheduled across large number of hardware
threads, each having unique thread identifier threadIdx as shown in Algorithm 2.

Algorithm 1 SIMD memory add algorithm

function ADDSIMD(r[], a[], b[], n)
for i← 1 to n step 4 do

~a← vec4load(a, i)
~b← vec4load(b, i)
~r ← vec4add(~a,~b)
vec4store(r, i,~r)

end for
end function

Each group of 32 threads with consequent threadIdx identifiers forms one warp,
depicted in Figure 2.5, which is executed in SIMD fashion – all threads within a warp
execute the same instruction at given time. In fact a warp is an equivalent of a vector
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Algorithm 2 CUDA SIMT scalar-like memory add algorithm

function ADDCUDA(r[], a[], b[])
i← blockDim.x ∗ blockIdx.x + threadIdx.x
r[i]← a[i] + b[i]

end function

from traditional SIMD architectures, yet it is not expressed explicitly as in Algorithm 1.
Several warps form a block of threads, which runs on single GPU core with its warps
scheduled in SMT fashion – one warp is active, other warps are waiting. When one
warp stalls, e.g. on memory access, the other may be made active to use idle ALU and
fill the pipeline. Finally, several blocks are run on multiple GPU cores (SMX) in MIMD
fashion.
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Figure 2.7.: CUDA SIMT architecture

CUDA SIMT offers hardware branch divergence support within a warp, explained
by us in detail in [46], so given a predicate, some warp threads for which the predicate
is true, execute instruction in the conditional block, where others not, unlike in other
SIMD architectures where single SIMD instruction always operates on all vector
register elements. Some recent SIMD architectures, such as Intel AVX-512, introduce
explicit mask registers and an additional vector instructions mask operand which can
hold predicate mask, but the branch divergence and convergence still has to be done
explicitly, either automatically by the compiler or manually by the programmer.
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Finally, CUDA SIMT offers a scattered memory location access support, e.g. r[ f (i)]←
a[g(i)] + b[h(i)], where f , g and h denote any function of thread index. The hardware
optimizes such accesses, so they are done with a minimum number of hardware
memory read or store operations. This is again unlike most of the conventional SIMD
architectures, requiring all read or stored vector elements lie in consequent memory
locations. This is partially addressed in AVX-512, offering hardware gather and scatter
instructions – still however representing an explicit approach.

Altogether SIMT model is easier to program for than explicit SIMD models. Opti-
mizing algorithms for SIMT usually means reducing a number of incoherent (scattered)
memory accesses, effectively reducing a number of hardware atomic memory opera-
tions, thus improving the algorithm’s memory throughput, and reducing a number of
divergent conditional blocks, causing less warp hardware vector elements to be idle.

2.6. Implicit and explicit parallel programming models

It is important to leverage both parallelism and vector computing properties of the
hardware, otherwise the computing solution is less cost effective as some computing
units are either idle or draining power regardless of not performing any operations.
Only algorithms utilizing both SIMD and MIMD computer architecture properties are
able to reach the peak performance of the computer illustrated in Figure 2.8.

Along with many SIMD and MIMD architectures, there exist many specific pro-
gramming models, either provided by the vendors or defined by some standards.
Below the most popular ones were named, together with a distinction whether they
are explicit – programmer must explicitly use vector instructions and special pragmas
to achieve full parallelism, or implicit – programmer writes scalar-like sequential code
that is implicitly parallelized and vectorized by the compiler or a hardware device
scheduler.

We also make a distinction between parallelization and vectorization. Both are
meant to leverage parallel computing, however parallelization is generally speaking –
making the algorithm run on multiple cores using multiple threads, while vectoriza-
tion is making the algorithm use the computer SIMD vector instructions and units.
Therefore both represent same purpose, but different realization.
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Figure 2.8.: Combined parallel and vector computing performance

2.6.1. Explicit parallelization with OpenMP

OpenMP standard defines a compiler extension and special compiler pragmas used to
annotate source code in order to instruct the compiler to parallelize given program-
ming language constructs such as loops or blocks of code, as shown in Algorithm 3.

Algorithm 3 OpenMP multi-threaded add algorithm

function ADDOPENMP(r[], a[], b[], n)
#pragma omp parallel for . schedule loop iterations across available cores
for i← 1 to n do

r[i]← a[i] + b[i]
end for

end function

2.6.2. Explicit vectorization with OpenMP

Version 4 of the OpenMP standard introduces new SIMD pragmas to mark chunks
of code that can be subject to the vectorization as shown in Algorithm 4. This looks
like a great extension, but in practice these constructs are just suggestions or hints to
the compiler that may be often unable to perform vectorization regardless of use of
these annotations. Moreover, where possible compilers often perform automatic vec-
torization regardless of OpenMP SIMD pragmas. Therefore these pragmas serve their
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purpose only when they carry an extra information letting the compiler relax some
assumptions about data dependence, making the automatic vectorization possible.

Algorithm 4 Hybrid OpenMP multi-threaded SIMD add algorithm

function ADDOPENMP(r[], a[], b[], n)
#pragma omp parallel for . schedule loop iterations across available cores
for i← 1 to n step 4 do

#pragma omp simd . turn inner loop into single vector instruction
for j← 1 to 4 do

r[i + j]← a[i + j] + b[i + j]
end for

end for
end function

2.6.3. Compiler automatic vectorization

While modern compilers do not offer automatic parallelization they try to leverage
vectorization where possible. Tight loops containing few arithmetical operations with
no conditional clauses are perfect candidates for automatic vectorization.

Mathematics behind these automatic optimizations evolved recently. Polyhedral
model is best example of this evolution [47]. It describes a topology of a loop iteration
space including all pre and post conditions and offers means to divide this space into
subspaces than can be a subject of an independent parallel execution. Polyhedral
frameworks such as Cloog [48] offer new optimizations to the compilers especially in
combination of APIs such as OpenMP. Unfortunately these frameworks are usually not
included by default in compiler distributions, mostly because they noticeably degrade
compile time, while not really guarantying performance improvements.

2.6.4. Explicit vectorization with SIMD intrinsics

Using intrinsics is a last resort to vectorize code that cannot be vectorized otherwise,
especially when your code contains conditional clauses and larger loop bodies that
cannot be comprehended by the compiler with its limited look-ahead or look-behind
capabilities.
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Intrinsics are however architecture and device dependent and are against generic
programming practices. Using intrinsics require deep understanding of the platform
and hardware architectures. They also make the code obscure and often unreadable.

2.6.5. Explicit vectorization using meta-programming

Luckily there is a good and feasible alternative to intrinsics. Many vendors offer
some platform independent abstractions over intrinsics. For purpose of φ4 project [49]
we have created our own Vector wrapper type that hide intrinsics into intuitive and
generic C++ syntax.

This approach gave us the best results for CPU vectorization in φ4 project, far better
than compiler automatic vectorization or OpenMP SIMD constructs. Using Vector class
utilizing C++ operator customization and templates let us vectorize significant parts
of the code without degrading readability of the code.

Moreover, our Vector class offered some means of branch divergence handling
based on masks – something that was previously exclusive to CUDA SIMT model.

2.6.6. CUDA’s SIMT implicit parallelization and vectorization

As described previously, CUDA SIMT model offers unique approach to parallelization
and vectorization, which uses a concise scalar-like syntax with an implicit thread
handling. Parallelization and vectorization of CUDA programs is executed at hardware
level, where the scheduler plays a vital role grouping threads into warps and blocks,
unlike other programming models where multi-threading and vectorization must be
done either at source code level and/or hardware instruction level.

2.6.7. OpenCL and SPIR implicit parallelization and vectorization

OpenCL is a direct response to NVIDIA’s CUDA. It is an effort for a SIMT-like pro-
gramming paradigm open standard. It is actively developed by AMD and Intel. Intel
has recently introduced many additions to its processors’ SIMD instruction sets, e.g.
AVX-512, to make the implicit model realizable easier on x86 platforms. NVIDIA is
also providing support OpenCL, however not for the recent versions of the standard.
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2.6.8. Lessons learned from φ4 Monte-Carlo simulation

Prior conducting my research in J-PET project I had an opportunity to design algo-
rithms for Monte-Carlo simulations of the φ4 lattice field theory [49]. The problem
space was represented by a 2D lattice of elements that were randomly altered by some
kernel. This project was a great playground for trying several explicit and implicit
parallelization and vectorization techniques.

It turned out that the implicit SIMT mode, present in CUDA and OpenCL, delivered
best results for massively parallel architectures, such as GPUs, while the explicit
parallelization and vectorization was more laborious, yet not rendering equally good
results in terms of performance. This gave us an intuition for J-PET project to use
SIMT paradigm for compute intensive tasks.

For the purposes of φ4 simulation we have developed an efficient random number
generator (RNG) [49] derived from Tausworthe algorithm. We use this RNG also for
the purposes of J-PET detector simulation presented in Chapter 4.
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Chapter 3.

PET image reconstruction theory and
principles

The objective of PET image reconstruction is to determine a distribution of the emitter
in a given subject. In particular case the subject may be a living body and the emitter
may be a radio-tracer injected prior to the examination. In such case the output image
will represent a distribution of the radio-tracer in the patient’s body.

So the problem can be defined as follows – given a scan

Ẽ = {ẽ1, ẽ2, . . . , ẽN} ⊂ R (3.1)

a set of measurement responses ẽk belonging to PET scanner response space R, we
want to find the emission density

ρ(p) : R3 → R = emissions/second (3.2)

that yielded some unobserved directly emission events

E = {e1, e2, . . . , eM} ⊂ R3 ×R3,

ek = (pk,~rk) pk ∈ R3, ~rk ∈ R3
(3.3)

that were observed indirectly through their manifestation Ẽ, where pk denotes emission
point,~rk denotes emission direction vector. Some of these events may not be detected
by the PET scanner at all, therefore N ≤ M and #Ẽ ≤ #E.

29
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Since we want to make this problem computable, we will limit the problem to finite
discrete voxel space V and a discrete emission density map representation

ρ(v) : V → R,

V = {0, . . . ,Vx} × {0, . . . ,Vy} × {0, . . . ,Vz},
v = (vx, vy, vz) ∈ V

(3.4)

where v is a voxel belonging to discrete 3-dimensional image space V of size Vx,Vy,Vz.

In order to be able to determine ρ(v) first we need to find a model that lets us
transform emission ek ∈ R3 × R3 into response of detector – τ(pk,~rk) = ẽk ∈ R.
The sought τ transform depends on a geometry, physics of the scanner and other
components properties such as precision of the electronics.

Ideally, if τ was just a function τ : R3 ×R3 → R, then image reconstruction would
be a problem of finding τ−1. Unfortunately due to several types of uncertainties and
errors, listed below, defining such function unambiguously is not possible, hence τ

can be perceived as a random function.

scintillator hit position uncertainty – each detector made of a scintillator and two
photomultipliers is unable to distinguish exact place where the gamma quanta hit
the scintillator along the secant made of the gamma ray. The scanner measures
just the time, so the distance to the hit point, but this information is not sufficient
to ascertain hit position along the secant – red line segment in Figure 3.1.

Figure 3.1.: Scintillator hit position uncertainty
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scintillator interaction uncertainty – there is no guarantee that the gamma quantum
traversing the scintillator will interact with it at all. This interaction is described
by an attenuation law probabilistic model explained later in this work.

tube of response emission position uncertainty – even when using precise TOF in-
formation the scanner is unable to distinguish an exact place crosswise the TOR
made of two scintillators. This error is specific to x− y plane and it is relative
to width of TOR – red line segment in Figure 3.2, which is in turn relative to
dimensions of the scintillators and their arrangement in the scanner.

ps

Figure 3.2.: Emission point uncertainty across TOR

time measurement errors or electronics errors – as explained previously J-PET scanner
requires TOF information in order to reconstruct the position of the emission. This
time information is measured separately for each event by specialized electronics.
Even if we were able to reach an amazing tens of picoseconds precision, such
precision still implies errors that have negative impact on reconstructed image
resolution.

Considering what is above, we can instead express τ in terms of P(ẽ | v) – a proba-
bility that detected emission from voxel v was measured as ẽ

P(ẽ | v) = P(ẽ∩ v)
P(v)

def
=

P(ẽ∩ v)
s(v)

(3.5)
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where s(v) def
= P(v) denotes sensitivity – a probability of registering any emission

originating from voxel v and P(ẽ∩ v) denotes an unconditional probability of an
emission from voxel v measured as ẽ. This measure is inherent to given detector and
its geometry. Image space region where s(v) is non-zero is called field of view (FOV).

Such representation forms a statistical model that can include the geometry and
the errors of the scanner. Such definition can be considered independent from ρ, thus
expressing only “transfer” probability between R3 ×R3 event space andR response
space.

In the next sections we will introduce image reconstruction methods that rely on P.
Later in this work we will present how to construct P statistical model for PET and
particularly for J-PET scanner.

3.1. Naive point-to-point reconstruction

Point-to-point reconstruction is a most straightforward, performant, but also a naive
method of image reconstruction simply ignoring existence of uncertainties and errors.
Therefore these uncertainties and errors are transferred into the resulting image and
manifest as noise and blur.

ps

Figure 3.3.: Naive reconstruction mapping
(ps – true emission point, white dot – point assumed by naive reconstruction)
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This reconstruction method postulates well defined τ−1 : Ẽ → R3 that simply
transforms all responses into some emission points. Since such τ−1 must ignore
uncertainties, thus as shown in Figure 3.3 all responses having their real emissions
points lying in a specific TOR, denoted with a star, are mapped into points, denoted
with a circle, lying on the single line segment spanned by centers of TOR scintillators.
Even if there were no time measurement errors, the naive reconstruction would still
suffer from the geometric errors.

3.2. Back-projection

Back-projection is the simplest image reconstruction method using a statistical model
to compute an output image. For each image voxel v its emission density ρ(v) is
computed as a sum of probabilities of each event

ρ(v) = ∑
ẽ∈Ẽ

P(ẽ | v) (3.6)

Effectively each response is back-projected onto the voxels according to the proba-
bility of registering a given response under the condition that the registered event was
emitted from a given voxel.

This method however does not correctly solve the problem, because the output
image ρ is blurred and does not correspond to the true source emission density that
yielded Ẽ response, neither maximizes P

(
Ẽ | ρ

)
. It is just a very rough approximation

of the correct density and may be a subject for further processing, such as image
sharpening or filtering, constituting another method – filtered back-projection (FBP) [50].

3.3. Maximum Likelihood Expectation Maximization

(MLEM)

Expectation maximization [51–53] is an iterative method of finding maximum likelihood
(ML) estimate [54] from observed data Ẽ, e.g. scan. The goal of EM is to find model
parameter ρ for which the observed data is most likely i.e. P

(
Ẽ | ρ

)
is a maximum.
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The likelihood is a measure used to evaluate agreement between candidate set of
statistical model parameters ρ, e.g. an emission density image, and an observation Ẽ,
e.g. a set of photo-multiplier signal arrival time readouts.

Assuming Ẽ is constant, the likelihood is a function of ρ

L(ρ) = P
(

Ẽ | ρ
)

(3.7)

When working with exponential family P, which is the case of PET, where the
emission is modeled as Poisson process, we introduce log likelihood defined as

`(ρ) = ln L(ρ) (3.8)

Upon each iteration EM algorithm is set to find new ML estimate ρ(t+1) satisfying

`(ρ(t+1)) ≥ `(ρ(t)) (3.9)

Since ln(x) is strictly increasing convex function, ρ value maximizing L maximizes
` as well.

In order to make finding ML estimate tractable, EM introduces missing complete
data E related to measurement Ẽ with

P
(

Ẽ | ρ
)
= ∑
{E:τ(E)=Ẽ}

P
(

Ẽ |E, ρ
)

P(E | ρ) (3.10)

Without going into details, explained in [51–53], finding EM iteration ρ(t+1) ML
estimate can be reduced, under the assumption that ρ > 0, to

ρ(t+1) = arg max
ρ

{
∑
E

P
(

E | Ẽ, ρ(t)
)

ln P
(

Ẽ |E, ρ
)

P(E, ρ)

}
(3.11)

Taking into account missing unobserved data E makes the maximization more
convenient and simplified and can be applied to PET model postulating well defined
P(ẽ | v) “transfer” probability for each response ẽ ∈ Ẽ and voxel v pair that can be
used to compute P

(
Ẽ |E, ρ

)
and finally seek ρ parameter specific to P(E | ρ) image

space distribution.
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3.3.1. MLEM for PET image reconstruction

First application of MLEM to PET [20, 21] assumed bin-mode, where the scan was a
histogram of coincidence counts in TORs, thus

E =
{

e def
= n(v) : v ∈ V

}
,

Ẽ =
{

ẽ def
= n∗(t) : t ∈ T

} (3.12)

where n(v) denotes true unobserved emission count from a given voxel and n∗(t)
denotes measured coincidence count in given TOR. Given that PET emission model is
Poisson process of independent n(v) variables with mean ρ(v)

P(n | ρ) = ∏
v

e− ρ(v) ρ(v)n(v)

n(v)!
(3.13)

n∗(t) are independent Poisson variables with mean ρ∗(t) = ∑v ρ(v)P(t|v), hence the
likelihood can given by

L(ρ) = P(n∗ | ρ) = ∏
t

e− ρ∗(t) ρ∗(t)n∗(t)

n∗(t)!
(3.14)

This together with (3.11) leads to EM iteration step for bin-mode as shown in [21]

ρ(v)(t+1) = ∑
t∈T

n∗(t) P(t | v) ρ(v)(t)

∑
w∈V

P(t |w) s(w) ρ(w)(t)
for v ∈ V (3.15)

where v, w denote voxels and s(v) denotes scanner sensitivity for voxel v.

Starting ρ(0) must be finite and greater than zero. While ρ(0) can be chosen at will,
as long as it satisfies these two constraints, all-ones ρ(0) ≡ 1 is recommended in [20,
21]. Nevertheless, choice of ρ(0) can have an impact on the result.

As shown in [53], under some circumstances MLEM can converge to different
estimates, including stationary points that are not a L maxima, e.g. saddle points
that are not necessarily ML. This usually happens when the input to MLEM method
contains not enough statistics. Particularly, in [20, 21] it was shown that #T � #V – a
number of TORs must be significantly greater than a number of voxels, in order to EM
produce correct ML estimate.
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3.4. Reconstruction modes

While original MLEM method applied to PET [20] was bin-mode reconstruction, MLEM
can be applied to other reconstruction “modes” without loss of generality.

3.4.1. Bin-mode reconstruction

Bin-mode, histogram mode, or counting mode reconstruction originally presented
in [20, 21] is not computationally demanding as the response size depends only on a
number of TORs

#Ẽbinmode ≤ #T =
#detectors (#detectors− 1)

2
(3.16)

That is why bin-mode was used exclusively for PET image reconstruction until
late 1990s, when the computer processor technology advancement provided enough
compute power to explore other possibilities.

This representation is unfortunately barely suitable for using an extra time informa-
tion. This is because n∗(t) histogram requires a discrete number of t bins. So in order
to use bin-mode for TOF reconstruction, time would need to be quantized. Depending
on the number of quantization steps, the overall number of bins can grow drastically,
increasing the number of operations in the algorithm. On the other hand, using a small
number of quantization steps (below 10) to keep the number of operations low does
not bring significant improvement to the reconstruction image quality.

3.4.2. List-mode reconstruction

Raising the number of bins in order to inject TOF information soon leads to the
situation where most of these bins are empty and the rest hold small value of 1 or 2,
making the overall number of bins greater than the number of events in a single scan.
This has led to the idea of using an event information directly in the reconstruction
rather than binning their number per TOR

Ẽ = {ẽ1, ẽ2, . . . , ẽN} ,

ẽ = (t, T̃ul, T̃ur, T̃dl, T̃dr)
(3.17)
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The working concept for 2D was demonstrated in late 1990s in [1] [55], showing that
such representation can be also modeled as Poisson process and yields EM iteration
step for list-mode

ρ(v)(t+1) = ∑
ẽ∈Ẽ

P(ẽ | v) ρ(v)(t)

∑
w∈V

P(ẽ |w) s(w) ρ(w)(t)
for v ∈ V (3.18)

which is more generic representation of equation (3.15).

Full 3D implementations for list-mode had to wait next few years for more com-
puting power available. Before 2011 there were several attempts to leverage modern
computing techniques for PET tomography, starting with use of SIMD [23], followed
by use of GPU [24, 25]. Finally, in 2011 the complete 3D image list-mode reconstruc-
tion implementations for classical crystal PET scanner were presented in [26, 27],
employing GPU via CUDA programming interface.

3.4.3. Detected emission density reconstruction

Substituting ρ(v) with ρ′(v)
s(v) in above equation (3.18) where ρ′(v) ≡ s(v) ρ(v) denotes

detected emission density yields an alternative MLEM equation

ρ(v)(t+1) = ∑
ẽ∈Ẽ

P(ẽ | v) ρ(v)(t)

∑
w∈V

P(ẽ |w) s(w) ρ(w)(t)

= ρ(v)(t) ∑
ẽ∈Ẽ

P(ẽ | v)
∑

w∈V
P(ẽ |w) s(w) ρ(w)(t)

ρ′(v)(t+1)

s(v)
=

ρ′(v)(t)

s(v) ∑
ẽ∈Ẽ

P(ẽ | v)
∑

w∈V
P(ẽ |w) ρ′(w)(t)

(3.19)

ρ′(v)(t+1) = ρ′(v)(t) ∑
ẽ∈Ẽ

P(ẽ | v)
∑

w∈V
P(ẽ |w) ρ′(w)(t)

(3.20)

This gives some basic optimization for MLEM method where ρ′ detected emission
density can be used throughout the reconstruction and can be converted to ρ once the
reconstruction is finished. For the same results as with recommended starting all-ones
ρ(0) for equation (3.18), ρ(0) ≡ s has to be used in alternative MLEM equation (3.19).
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3.5. PET interaction model

The methods above postulate existence of P(ẽ∩ v) and bound P(ẽ | v) (3.5) “transfer”
probability which represents a conditional probability that given response ẽ originates
from image voxel v. They do not define how P is calculated or represented.

In order to understand how P is calculated, intrinsic detector response function (IDRF)
has to be introduced. For an infinitely thin parallel coherent beam of gamma quanta,
emitted from a source of intensity Is – expressed as gamma quanta per second, origi-
nating from point p with direction θ, the number of photons detected by detector d
per second depends on detector’s IDRF gd function

Isgd(θ, p) (3.21)

Given that gd can be perceived as a probability of registering a single gamma ray
emitted from p in direction θ towards detector d. The value of gd depends on the
length of the secant produced by the gamma ray intersecting scintillator d.

An interaction of the gamma quantum with the scintillator – depositing energy
and causing scintillation – photons emission, can be modeled with probability density
function (PDF) of the exponential attenuation law expressing probability of an inter-
action after distance l travelled within the scintillator and dependent ls attenuation
factor constant distinctive for scintillator type s

fs(l) =
l
ls

e−
l
ls (3.22)

and corresponding cumulative distribution function (CDF) representing a probability of
an interaction with the scintillator along l long secant

Fs(l) = 1− e−
l
ls (3.23)

Having that we can express gd as a composition of Fs and secantd(θ, p) function
returning a length of the secant produced by a gamma beam emitted from point p
towards detector d in direction θ

gd(θ, p) = Fs (secantd(θ, p)) = 1− e
− secantd(θ,p)

ls (3.24)
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Assuming for the moment that detectors do not occlude each other, so single beam
cannot intersect more than one detector, we can define a probability for registering an
emission originating from point p in direction θ in TOR t = (u, d) as

P(t, p, θ) = gu(θ, p)gd(θ + π, p) (3.25)

and a probability for detecting an emission from p in TOR t

P(t ∩ p) =
π∫

−π

P(t, p, θ) dθ

=

π∫

−π

gu(θ, p)gd(θ + π, p)dθ

=

π∫

−π

(1− e−ls∗secantu(θ,p))(1− e−ls∗secantd(θ+π,p))dθ

(3.26)

Next we can determine P(t ∩ v) for voxel v integrating its points

P(t ∩ v) =
∫

p∈v

π∫

−π

gu(θ, p)gd(θ + π, p)dθ dp (3.27)

Finally we calculate the sensitivity from P(t ∩ v) as

s(v) = ∑
t∈T

P(t ∩ v) (3.28)

and the conditional probability from equation (3.5) as

P(t | v) = P(t ∩ v)
s(v)

(3.29)

This gives some intuition how P can be calculated and that secant function is a
component of P that strictly depends on the detectors geometry and their spatial
distribution in the scanner.

Unfortunately in many realistic cases we have detectors occluding each other for
certain gamma quanta trajectories originating from FOV. This requires more compli-
cated description than equation (3.26) to express the conditional probability that a
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single gamma ray not detected by one detector, may leave it and hit another one behind
the first. Such case is described in next Chapter 4 using an algorithmic approach.

3.5.1. J-PET scintillator attenuation
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Figure 3.4.: Attenuation PDF and CDF for ls = 100 mm

J-PET scintillator plastic has ls = 100 mm attenuation factor [14]. Currently used J-
PET scintillators are 19 mm thick and maximum secant length is ≈ 30 mm. This makes
PDF (3.22) and CDF (3.23) for J-PET scintillators nearly linear as shown in Figure 3.4.

3.5.2. Analytic representation of J-PET statistical model

Analytic representation expressed as a programming language function or an ex-
pression dependent only on few input variables and constants is the most desired
representation for P. It does not require any pre-computation or memory to store
the P model. However providing an exact analytic function is simply not possible,
because secant does not have well defined integral in most cases. For the simplest
case of 2D barrel with circular scintillators integral (3.26) consists of elliptical functions
composition not very suitable for computing. There were attempts to get analytic
approximation of secant for rectangular 2D scintillator shapes in [56] using piecewise
linear functions.
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In case of J-PET, analytic P approximation for 2D detector frame, representing a
plane along z axis in 3D detector, is presented in Chapter 6.

3.5.3. System matrix

System matrix is an alternative method of representing P model as a matrix of P(t | v)
values. These values may be computed with certain precision using a simulation,
e.g. Monte-Carlo method. From the reconstruction point of view, system matrix is an
external P model that can be loaded into the memory prior starting the reconstruction.

Even for a relatively small number of TORs and image voxels, system matrix may
be significantly large and storing it directly in a generic form may be problematic. As
shown in Figure 3.1 very small case of 1003 image space and 100 detectors barely fits
in the memory, while a realistic case of 2563 image space and 192 detectors, which is
default J-PET image reconstruction setup, does not fit in memory at all.

Image size No. of detectors Matrix size

1003 100 5 ∗ 109 elements
2563 192 ≈ 309 ∗ 109 elements

Table 3.1.: System matrix size depending on image size and number of detectors

Fortunately PET system matrix has less than 1% non-zero elements and it is a
perfect candidate for storing in a sparse matrix format. Method of constructing system
matrix for J-PET and its sparse format is described in next Chapter 4.

3.6. Performance measures

Starting from 1994 National Electrical Manufacturers Association (NEMA) publishes
NEMA NU-2 standard for performance measurements of PET devices. Latest version
for the time being is 2-2012 [57]. NEMA NU-2 identifies the following performance
measures

Spatial resolution measured with point spread function (PSF) full width at half-maximum
(FWHM) and full width at 10% (FW10%) for 18F point source at six locations:
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(1 cm, 0, 0), (10 cm, 0, 0), (0, 10 cm, 0), (1 cm, 0, L/4), (10 cm, 0, L/4), (0, 10 cm, L/4)
where (0, 0, 0) denotes central point and L denotes detector depth along z-axis.

Sensitivity measures ability of PET device to detect annihilation radiation, equivalent
to s defined in Section 4.4.2

Scatter fraction measures sensitivity to scattered quanta, explained in Section 1.3

SF =
Cscatter

Cscatter + Ctrue
(3.30)

where Cscatter denotes number of detected emissions coming from scattering in
the imaged object and Ctrue denotes true coincidences.

Noise equivalent counts

NEC =
Ctrue

1 + Cscatter
Ctrue

+ Crandom
Ctrue

(3.31)

where Crandom denotes number of detected random coincidences not coming from
single emission.

Image quality measures errors in image reconstruction in comparison to the reference
image of the preset phantom simulating whole body composed of several spheres
of a different activity.

In this work we will be concerned only by the spatial resolution, sensitivity and
the image quality that directly depends on image reconstruction algorithms and
the statistical model. Particularly we will present PSF FWHM and normalized root
mean square error (NRMSE), described later, for each image reconstruction method
introduced in next chapters. Other measures are subject of different works [7, 8] of our
J-PET team members.

Most of the measures in this dissertation were taken on the simulated data, some
were however done on real scans, e.g. two strip detector PSF FWHM presented
in Chapter 6. In most cases, unless explicitly noted, we will be presenting performance
measures for J-PET “big” barrel – a full scale prototype described in the next chapter.
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3.6.1. Point spread function

Point spread function (PSF) is a response of a measuring instrument or an imaging
system to a single point source. It is usually related to the spatial resolution of the
imaging system and measurement errors, where more spreading occurs for low-
resolution, high-error systems.

In case of PET, PSF is an image reconstruction of the PET scanner response to a
“point-like” emitting object. While it is easy to simulate a virtual phantom with point’s
zero-dimensions and a non-zero emission intensity, in real life a physical phantom
must have non-zero dimensions, as a radio-emitter probe e.g. 18F must have some
minimum volume to reach desired emission intensity. NEMA requires the source’s
diameter not to be greater than 1 mm.

3.6.2. PSF full width at half-maximum

Full width at half-maximum (FWHM) of function f : D → R with single maximum fmax

is a distance between two points x1, x2 ∈ D

FWHM( f ) = |x1 − x2|where f (x1) = f (x2) =
fmax

2
(3.32)

FWHM is used to effectively measure the spread of PSF. Its visual interpretation is
depicted in Figure 3.5. In case of probability distribution, FWHM is strictly related to
its standard deviation, e.g. normal (Gaussian) distribution FWHM = 2.3548 σ.

FWHM

max

max/2

Figure 3.5.: Full width half-maximum visual representation
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3.6.3. Normalized root mean square error

Normalized Mean Squared Error (NRMSE) may be used to quantify goodness of the
image reconstruction Img relative to reference image Ref

NRMSE(Ref , Img) =

√√√√√√
∑

v∈V

(
Ref (v)− Img(v)

)2

∑
v∈V

Ref (v)2 (3.33)

where ∑
v∈V

denotes sum over all voxels in Ref and Img images.

In the reconstruction quality measurements presented in this work Ref will denote
known real emission density image and Img will denote tested image reconstruction
output.



Chapter 4.

2D barrel PET simulation and system
matrix calculation

As described in previous chapter, determining P model analytically is a difficult
or even an impossible task. However, we may use different methods to estimate
P integral equation (3.26) from Section 3.5. One of such methods is Monte-Carlo
simulation. This chapter will present method of computing P for 2D PET barrel of
detectors distributed on single or multiple rings.

The problem is defined as follows: for an input scanner layout describing placement
of individual detectors in the 2D space we want to generate map of entries defined as
P(t | i), where P(t | i) is the probability that detected event originating from the pixel i
was detected by the TOR t.

We will be effectively computing approximation of P(t ∩ i) integrating P(t, p, θ)

over pixel i and angle θ. Our simulation will take also into account cases where
detectors occlude each other, opposite to simplified integral (3.26) presented in the
previous chapter. P(t | i) can be later derived from P(t ∩ i) using equation (3.29).

There exist generic simulation tools, e.g. GATE [58], suitable for performing detailed
physics simulations specific to PET devices. Our solution is however tailored for
performing simulation of two gamma quanta emission in exactly parallel back-to-back
direction and detection modeled with attenuation law PSF equation (3.22), without
taking into account scatter fraction, that can be reduced in J-PET to the similar amount
as in the typical tomographs [59]. In combination with use of GPGPU, we are able to
deliver the simulation results few orders of magnitude faster than GATE tools.

45
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4.1. Generic CPU system matrix Monte-Carlo simulation

In order to compute approximation of P(t ∩ i) integral (3.27) we perform Monte-Carlo
simulation of gamma quanta detection process described in Section 3.5.

θ
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− 1
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− 1
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1
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1
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1
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d
pi1

pi2

po1

po2
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Figure 4.1.: Monte-Carlo simulation

For each pixel i we simulate emission of given number of gamma quanta with
random direction angle θ and random emission point ps belonging to pixel i as shown
in Figure 4.1. The number of emissions must be high enough in order to provide good
approximation. We simulate at least 106 up to 100 ∗ 106 emissions.
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In order to reduce the number of operations and the overall simulation, time we
leverage eight-fold detector symmetry to calculate only 1/8 of the whole pixel grid.
Further reduction of calculations is done by observing the fact, that if either there is no
intersection on one side or Monte-Carlo toss gives negative result, we can completely
skip all the calculations for the other side of emission beam.

The simulation produces an output called by us triangular sparse matrix. Producing
full sparse matrix requires duplicating each triangular matrix entry 8 times for each
symmetry. While producing symmetric pixel entries is straightforward for each (x, y),
and consists of simply changing the sign and reversing order, e.g. (−y, x), computing
counterpart symmetric detector to d in symmetry s is slightly more complex and
requires Algorithm 5, where & denotes bitwise and operator and % denotes integer
modulo operator.

Algorithm 5 Detector symmetric d detector for given symmetry s

function RINGSYMMETRICDETECTORINDEX(d, s, Ndetectors)
if s & 1 6= 0 then

d← (Ndetectors − d) % Ndetectors
end if
if s & 2 6= 0 then

d← ((Ndetectors +
Ndetectors

2 )− d) % Ndetectors
end if
if s & 4 6= 0 then

d← ((Ndetectors +
Ndetectors

4 )− d) % Ndetectors
end if
return d

end function

We also use few methods to speed-up detector intersections resolution by given
emission beam. The first method lets us identify possible intersections at early stage
without exact polygon intersection testing. It works for single ring of detectors and
relies on dividing the detector ring into sections, each enclosing single detector as
shown in Figure 4.1. For each emission point ps and angle θ, we first determine
points intersecting inner and outer circle. With these points we can find the sections
belonging to this intersection and the order of beam traversal from the most “inner” to
the most “outer”. The number of sections is less than 3 in most of the cases. Finally,
we use exact polygon intersection calculation for each detector belonging to these few
sections to ensure we have an intersection.
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Figure 4.2.: Preliminary intersection check based on detector center to TOR distance

Nevertheless, single detector ring may be not desired layout. That is why we
have developed another method for determining intersections on generic layout of
detectors, e.g. multiple rings, depicted in Figure 4.2. This methods assumes that all
detectors can be inscribed into circles, and each such circle does not intersect with
other detectors circle. This constraint holds for J-PET scanner, where the detector
circle is effectively defined by the photo-multiplier tube having circular scintillator
attachment surface.

Assuming such detector inscription, we may perform rough test for intersection by
simply measuring the distance of the circle center point to the emission beam – area
marked red in Figure 4.2.

In order to compute this distance we first fix normal vector of emission beam

direction ~n def
= (A, B) = (sin(θ),− cos(θ)), next we determine C = ~ps ·~n. Once we
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have~n and C we can quickly compute distance of p to emission beam as

distance(p,~n, C) = ~p ·~n− C (4.1)

Such operation is very fast and consists only of 2 multiplications and 2 additions
and can be expressed as only 2 fused multiply-add (FMA) instructions present on many
architectures, including modern x86 and GPU processors.

Using this distance measurement method, we filter the detectors testing if their
circle pc center point distance to the emission beam is less than R

Dclose(θ, ps) =
{

d ∈ 0..Ndetectors : distance( ~pcd, ~nθ, cθ,ps) < Rd
}

(4.2)

All detectors failing this test cannot be intersected by the emission beam. Usually
only few detectors pass this test.

Next we need to determine the order in which the gamma ray is traversing de-
tectors, which is the order we will perform exact intersection testing and interaction
simulation in. Under assumption that all detectors are inscribed in circles that not
intersect each other, this order can be determined from the distance of the detector’s
center point pc to line perpendicular to emission beam – denoted with dashed line
in Figure 4.2.

This is explained in Figure 4.3 – if y-axis represents emission direction, for any
circle intersected by y-axis in two points, one intersection point lies above the circle
center and the second lies below. Because a and b circles are separated – not intersect
each other, therefore y(a) < y(au) < y(bd) < y(b), so circle a is intersected before
circle b only and only if circle y(a) < y(b).

We fix vector ~n⊥ def
= (−B, A) perpendicular to ~n and C⊥ = ~ps ·~n⊥ and sort the

detectors which passed previous test by measure o

o(d) def
= distance( ~pcd, ~nθ

⊥, C⊥θ,ps
) (4.3)

The sign of o(d) represents the particular gamma quanta in the quanta pair, either
“upper” or “lower”. The magnitude represents the single beam traversal order. Starting
with detectors giving lowest o(d), we determine the secant length with exact polygonal
intersection and perform interaction simulation with attenuation model (3.23).
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Figure 4.3.: Separate circle intersection order

Our exact polygon intersection test also employs use of normal~n and c and lever-
ages the fact that when intersection occurs with some face of polygon spanned by two
sibling points p(j) and p(j+1) then

sign
(

distance(p(j),~n, C)
)
6= sign

(
distance(p(j+1),~n, C)

)
(4.4)

Once we encounter an intersection, we perform the interaction simulation using
the attenuation model and the random value r ∈ [0, 1) . Next we compute logarithm
l = −ls ln(r) which gives us interaction depth l according to CDF (3.23). If l is below
the intersection secant length then hit occurs, otherwise we assume gamma quanta
did not hit the matter in the scintillator and we move to the next detector in order o(d).
This leads altogether to the Algorithms 6 and 7.

We were also exploring use of some more advanced spatial data structures such as
quad-trees or KD-trees, but they were not fitting J-PET geometry very well, moreover
using such data structures for massively parallel GPU implementation is problematic.
Nevertheless, the second method working with any geometry shows just marginal
performance drop comparing to the first tailored specifically for single ring of detectors,
when benchmarked for scanner containing 192 detectors.
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Algorithm 6 Monte-Carlo simulation for single system matrix pixel

function SMPIXELMONTECARLO(i, D, Amodel, Nemissions)
for i← 1, Nemissions do

e← random ∈ [0, π)× [pmin x, pmax x)× [pmin y, pmax y) . get random event
~n, C ← direction coef(e) . emission direction coefficients
Dclose ← {d ∈ D : distance(d,~n, C) < R} . detectors close to the beam
Du, Dd ← traverse order(Dclose,~n, C) . upper and lower detectors
for all u, d ∈ Du, Dd do . traverse them

if~n, C intersects polygon u ∧ d then
intr← {(u, ‖secant u‖), (d, ‖secant d‖)} . store intersection
Quit loop.

end if
end for
if Amodel(intr) then . interacted using attenuation model

M(u, d, i)← M(u, d, i) + 1 . update P(t ∩ i)
end if

end for
return M . return non-normalized P(t ∩ i) approximation

end function

Algorithm 7 Complete Monte-Carlo simulation for system matrix

function SMMONTECARLO(TORS, Amodel, Nemissions)
sparse← {} . create empty sparse matrix
for i ∈ I where iy ≥ ix do . 1/8 of pixels

M← SMPixelMonteCarlo(i, D, Amodel, Nemissions)
sparse← sparse ∪ {(M, i)} . merge pixel emissions

end for
end function
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4.1.1. Sparse partial system matrix representation

The output of the Monte-Carlo simulation consists of number of detected emissions
per each pixel and TOR. As shown in Table 3.1 in previous chapter, storing this as
plain matrix is not feasible. Therefore, we utilize special sparse partial system matrix
representation explained in Figure 4.4.

PETp Nx Ny Nemissions // header

u1 d1 Npixels1 // TOR1

x1,1 y1,1 Nhits1,1 // pixel

· · ·
x1,i y1,i Nhits1,i // pixel

Npixels1

u2 d2 Npixels2 // TOR2

x2,1 y2,1 Nhits2,1 // pixel

· · ·
x2,j y2,j Nhits2,j // pixel

Npixels2

· · ·
Figure 4.4.: TOR-major sparse matrix structure

(Nx × Ny – image space dimensions, Nemissions – simulated emissions)

4.1.2. Time of flight (TOF) consideration

TOF information ∆, representing measured position along TOR, may be injected into
sparse matrix format quantizing ∆ with step qstep and then treating quantized time
value ∆̂ as sub-TOR, so for TOF enabled matrix TOR can be represented by

t = (u, d, ∆̂),

∆̂ = quantize(∆, qstep) =

⌊
∆

qstep
+

1
2

⌋ (4.5)
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Our J-PET simulation tools offer optional TOF mode for simulating system matrix,
producing TOF system matrix for given qstep quantization step.

4.1.3. Temporary pixel-major storage

Sparse matrix representation is not suitable for storing temporary simulation results
produced during Algorithm 6 execution. SMPixelMonteCarlo function main loop final
update needs random access for each TOR. Therefore, we allocate space for all TORs.
This can look like a waste of space, but since we process only one pixel at the time we
need to keep only Ndetectors(Ndetectors−1)

2 values in the memory. Once values for currently
processed pixel are completed, they are merged into space-efficient sparse format.

4.2. Parallelization

Simulation can be parallelized either by running SMPixelMonteCarlo simulation for
several pixels at once or by running several simulations at once for single pixel.

The first approach is less memory space efficient, because it needs T Ndetectors(Ndetectors−1)
2

elements to be stored the memory, where T is number of parallel threads. The second is
more space efficient – required space does not depend on number of threads, however
it requires atomic memory access.

For generic CPU implementation we have chosen to use first approach, as modern
CPUs do not have massive number of physical threads, so T is relatively low and we
don’t need to worry about available memory. Also first approach of running pixels
separately ensures that there is no cache invalidation, that could likely occur when
using second approach.

4.3. GPU accelerated implementation

J-PET Monte-Carlo simulation [60] is implemented on GPU using CUDA programming
interface following second approach – all CUDA threads are processing single pixel.
SMPixelMonteCarlo is implemented as single CUDA kernel launched sequentially per
each pixel by supervisor CPU program.
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All of the generic optimizations described above were carried into GPU implemen-
tation as well, thanks to C++11 support in CUDA compiler introduced beginning year
2015.

We do not worry about cache invalidation, simply because we do not use cache on
GPU. We use fast built-in atomics to increment emission detection counts on TORs.
For the number of detectors higher than 100, atomics collision occurrence is very
unlike, therefore atomics do not slow down the algorithm – as proven by one of our
benchmarks.

In order to reduce accesses to global memory, we keep all the geometry information
in on-die shared memory, which is orders of magnitude faster than global memory.
This memory is shared across all threads of single multi-processor, and while it is
relatively small – up to 48 KB for NVIDIA GPUs, it is sufficient to store all necessary
data structures. Therefore, all intersection calculations do not need any global memory
access, which is only necessary for storing emission detection count, once for each
simulated interaction.

Both our implementations – generic and GPU accelerated, use common Scanner
class, that contains complete geometry description and methods for resolving intersec-
tions. This makes the GPU code lean and readable. However, in order to embed this
class instance in the shared memory, we had to find a workaround, as it is not possible
instantiate class with non-trivial constructor in shared memory using CUDA. That is
why we instantiate it on the CPU and then we copy it using special helper to the GPU’s
shared memory. Additionally, we had to ensure that all geometry data is embedded
directly in the class instance itself and we have same class structure memory layout on
both CPU and GPU.

Since Monte-Carlo relies on efficient random number generator (RNG), we use our
own Tausworthe RNG implementation presented in [49] using fast bitwise and fused
multiply-add (FMA) operations. Each thread uses own RNG state kept in fast local
register, therefore no memory or I/O access is needed for RNG. Local RNG states are
seeded once with using global RNG on algorithm startup.
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4.4. Results

4.4.1. Performance benchmark

No. of detectors CPU1,2 GPU3 Speedup

48 410.37 ms 21.72 ms 18.89
96 479.43 ms 29.02 ms 16.52

192 697.22 ms 38.23 ms 18.24

1 GeForce GTX 980 Ti 1 Ghz, 6 GB, 5 632 Gflops, 336 GB/s, CUDA 7.5 -O3
2 Best compiler result among GCC 4.8, GCC 5.3 and ICC 16.0
3 Intel Xeon E5-2699v3 3.2 GHz, 6 core, ≈ 307 Gflops, 51 GB/s, GCC 5.3 -O3

Table 4.1.: CPU vs GPU benchmark for system matrix Monte-Carlo
(10 ∗ 106 emissions per pixel, 2002 image space, 4 mm pixel size,
average time of simulation for single pixel)

The time of per pixel simulation Algorithm 6 does not depend on number of pixels
in system matrix. The relation of the overall simulation Algorithm 7 time to number of
pixels is linear. Moreover, the simulation time increases with number of detectors, as
shown in Table 4.1, which is expected. The main limitation of our implementation is a
number of active blocks per SMX, caused by per-thread register limit, which allows
SMX to run only two threads block, that is not enough to hide memory access latency.

Altogether it takes 4 minutes to compute system matrix for 192 detectors J-PET
“big” barrel, 2002 pixel grid and 10 million emissions from each pixel.

4.4.2. Simulated scanner sensitivity analysis

After performing system matrix Monte-Carlo simulation we may determine simulated
scanner sensitivity s(v) using equation (3.28). Our tools produce visualization for s(v)
additionally to system matrix output. This allows to investigate if given scanner’s
geometry covers completely desired field of view (FOV) – area lying inside the scanner
and if the FOV does not contain “blind spots” where sensitivity is zero or near zero,
meaning that emissions originating from such areas could not be detected at all by any
of detector pairs.
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Tightly packed scintillators layout as shown in Figure 4.5a, where each scintillator
fits tight its neighbors, guarantee that “blind spots” will not appear. Such layout may
be however either difficult to realize in practice, because we need to take into account
space occupied by photomultipliers attached to scintillators and other elements such
as cables or scintillators insulation foil. In such case gaps between scintillators manifest
themselves as small pits or stripes on sensitivity map image as shown in Figure 4.5b.

(a) Tightly packed parallel scintillators (b) Loosely packed perpendicular scintillators

Figure 4.5.: Example sensitivity map for 2 layouts 32 detector 2D barrel
(dark areas denote high sensitivity)

4.5. Phantom response simulation

Monte-Carlo may be not only applied to system matrix generation, but also to generate
response for virtual phantom. A phantom is an object that can be measured by medical
instrument in order to determine this instrument’s properties and characteristics. Such
phantom may be a physical object containing radio-emitter for PET measurement. In
our simulation we use virtual phantom that exists only in our software.

Such virtual phantom consists of geometrical shapes, e.g. ellipses that have as-
signed center point position, axes length, rotation and emission intensity as shown
in Figure 4.6.
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ellipse 0.0 0.0 0.69 0.92 0 0.05
ellipse 0.0 -0.0184 0.6624 0.874 0 0.5
ellipse 0.22 0.0 0.11 0.31 -18 0.15
ellipse 0.0 0.35 0.21 0.25 0 1.0
ellipse 0.0 -0.1 0.046 0.046 0 0.75
ellipse -0.08 -0.605 0.046 0.023 0 0.75
ellipse 0.06 -0.605 0.023 0.046 0 0.75
ellipse 0.54 -0.451 0.03 0.2 -24.12 0.75

Figure 4.6.: Example for Shepp-like phantom description

Generating phantom response is similar to system matrix Monte-Carlo simulation,
but instead of taking random point from currently processed pixel, we take random
point from emission shapes according to their emission intensity and we perform the
same emission detection simulation.

Currently there exists only implementation for CPU. Since generating the phantom
response require significantly less total emission simulations, there is no need to
develop optimized GPU implementation at this moment. Our implementation is able
to produce additional image output that can serve as preview and also as reference
image when measuring NRMSE (3.33).
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Chapter 5.

2D barrel PET system matrix based
MLEM reconstruction

Once system matrix is generated for given PET detector geometry and configuration,
we may perform image reconstruction for specific response data. This response data
may be either produced by real physical scanner device or separate simulation, e.g.
virtual phantom simulation from previous Chapter 4.

System matrix based reconstruction is bin-mode reconstruction, therefore perform-
ing it requires computing ρ estimate from TOR bin t with count n(t) using 2D version
of equation (3.15) introduced in Section 3.3.1

ρ(i)(t+1) = ∑
t∈T

n(t) P(t | i) ρ(i)(t)

∑
j∈I

P(t | j) s(j) ρ(j)(t)
for i ∈ I (5.1)

Since system matrix carries P(t ∩ i) not P(t | i) values, using substitution from equa-
tion (3.29) in equation (5.1) with P we get formula used in our algorithm

ρ(i)(t+1) = ∑
t∈T

n(t)P(t∩i)
s(i) ρ(i)(t)

∑
j∈I

P(t∩j)
s(i) s(j) ρ(j)(t)

=
1

s(i) ∑
t∈T

n(t) P(t ∩ i) ρ(i)(t)

∑
j∈I

P(t ∩ j) ρ(j)(t)

(5.2)

59
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5.1. Generic CPU implementation

Implementing (5.2) directly yields Algorithm 8 of complexity O(#T #I2) where #T
denotes number of TORs and #I denotes number of pixels. This complexity can be
reduced to O(#T #I) by reordering loops as shown in Algorithm 9 proposed in [61].

Algorithm 8 Naive 2D barrel reconstruction

ρnew ← 0 . start with zero ρnew
for i ∈ I do

for t ∈ T do
denom← 0 . compute denominator
for j ∈ I do

denom← denom+ P(t ∩ j) ρ(j)
end for
ρnew(i)← ρnew(i) +

n(t) P(t | i) ρ(i)
denom

end for
end for
for i ∈ I do . correct ρ against sensitivity

ρnew(i)←
ρnew(i)

s(i)
end for

Algorithm 9 Re-ordered 2D barrel reconstruction

ρnew ← 0 . start with zero ρnew
for t ∈ T do

denom← 0 . compute denominator
for i ∈ I do

denom← denom+ P(t ∩ i) ρ(i)
end for
for i ∈ I do

ρnew(i)← ρnew(i) +
n(t) P(t∩i) ρ(i)

denom
end for

end for
for i ∈ I do . correct ρ against sensitivity

ρnew(i)←
ρnew(i)

s(i)
end for

Further optimization can be obtained from sparse matrix representation, that keeps
only non-zero P(t ∩ i) values in TOR-major order resulting in final Algorithm 10 of
complexity O(max(#pixels(T ))I) where #pixels(T ) denotes number of pixel entries
for given TOR in sparse matrix structure described in Figure 4.4.
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Algorithm 10 Optimized 2D barrel reconstruction

ρnew ← 0 . start with zero ρnew
for t ∈ T do

denom← 0 . compute denominator
for i← pixels(t) do . iterate through non-zero P pixels

denom← denom+ P(t ∩ i) ρ(i)
end for
for i← pixels(t) do . iterate through non-zero P pixels

ρnew(i)← ρnew(i) +
n(t) P(t∩i) ρ(i)

denom
end for

end for
for i ∈ I do . correct ρ against sensitivity

ρnew(i)←
ρnew(i)

s(i)
end for

5.2. GPU accelerated implementation

GPU accelerated reconstruction is implemented using CUDA programming interface.
CUDA parallelization relies on processing each t bin separately by each CUDA thread
and it is relatively simple as the bin-mode reconstruction is computationally not very
demanding.
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Figure 5.1.: Hilbert curve 64× 64 texture 2D spatial to linear memory mapping

Because of that there are just a few GPU specific optimizations used in this imple-
mentation. Built-in atomics are used for updating ρnew. Access to previous iteration



62 2D barrel PET system matrix based MLEM reconstruction

ρ is provided through hardware 2D texture – cached and optimized for coherent
memory spatial access, usually using Z-order, Hilbert curve, depicted in Figure 5.1, or
similar spatial to linear memory mappings [62, 63].

5.3. Results

5.3.1. Scintillator shapes and layout evaluation

Our 2D barrel reconstruction was used in early stages of PET project to discover scin-
tillator shapes and detectors layouts having good theoretical resolution and sensitivity.
Scintillator shapes were chosen to match the samples available in our laboratory. All
of them had different cross-section area and thus sensitivity.

(a) tightly packed scintillators, variable number (b) 140 scintillators, inscribed in 20 mm circle

Figure 5.2.: Scintillator shapes and arrangement

We have taken into consideration two PET scanners with single ring of detectors of
45 cm radius – one with tightly packed scintillators, as shown in Figure 5.2a, second
with constant number of scintillators, as shown in Figure 5.2b. Parameters presented
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in Table 5.1 were used to produce the system matrix for each shape. System matrix
and simulation used TOF step of 1 cm to produce TOF bins according to equation (4.5).

Shape Parameters No. of detectors1

Rectangle 5 mm (width) × 19 mm (depth) 564 / 140
Square 13.85 mm × 13.85 mm 204 / 140
Triangle Side: 17 mm 164 / 140
Hexagon Side: 18 mm 152 / 140
Circle Radius: 10 mm 140 / 140

1tightly packed scintillators / constant number of scintillators

Table 5.1.: Scintillator shape parameters and number of detectors

For each shape we were simulating a response for Shepp-Logan phantom, until we
have reached 160 ∗ 106 coincidences, and an accompanying system matrix character-
ized by high statistics – 200 ∗ 106 emissions for each pixel.

Our evaluation was using very optimistic TOF step of 1 cm, whereas the current
J-PET prototype has TOF measurement error’s standard deviation of 2.7 cm along
TOR. Moreover, in real life we expect scans with 10 ∗ 106 coincidences, so presented
here image reconstruction results shall be only considered in the context of scintillator
shape effectiveness, but not as expected image reconstruction quality for working
J-PET scanner. Such results will be presented in the next chapters.

In order to evaluate shape and layout effectiveness, we were measuring the good-
ness of the reconstructed image after each iteration using Normalized Mean Squared
Error (NRMSE). The results of this measurement are presented in Figures 5.3 and 5.5.

In case of tightly packed scintillators, depicted in Figure 5.2a, it is not clearly visible
in reconstruction images, shown in Figure 5.4, which shape has the advantage over the
others. This can be however determined from the plot in Figure 5.3 and leads to the
conclusion that reconstruction quality depends on the number of scintillators, which
is proportional to the scanner angular resolution. There is one exception – triangular
shape providing slightly better resolution than square. This can be justified by the fact
that triangle is effectively thinner, so it can provide better angular resolution even with
slightly smaller number of scintillators.
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Figure 5.3.: NRMSE across 30 iterations for tightly packed shapes (140 detectors, 1 cm TOF bin
size, 128× 128 image space)

(a) Reference (emitted) (b) Circular detectors
(10 mm radius)

(c) Hexagonal detectors
(10 mm side)

(d) Square detectors
(14 mm×14 mm)

(e) Triangular detectors
(10 mm side)

(f) Rectangular detectors
(5 mm×19 mm)

Figure 5.4.: Reconstruction image after 10 iterations using tightly packed detector shapes
(140 detectors, 1 cm TOF bin size, 128× 128 image space)
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Figure 5.5.: NRMSE across 20 iterations for inscribed shapes
(140 detectors, 1 cm TOF bin size, 128× 128 image space)

(a) Reference (emitted) (b) Triangular detector
(10 mm side)

(c) Radial rectangular
detector

(5 mm×19 mm)

(d) Tangential rectangular
detector

(19 mm×5 mm)

Figure 5.6.: Reconstruction image after 10 iterations using selected inscribed detector shapes
(140 detectors, 1 cm TOF bin size, 128× 128 image space)
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Another interesting fact observable in Figure 5.3 is that after few iterations we reach
best quality, then the quality degrades with each next iteration. This phenomenon was
already observed by others [20].

Filling the available space on the detector ring may not be possible in real-life
and it is not possible in case of J-PET prototype where available space is restricted
by photo-multiplier tube dimensions. Therefore, another set of measurements was
taken, accounting scintillators inscribed into circle having photomultiplier dimensions
(20 mm radius) which matches closer our prototype setup. This configuration is
depicted in Figure 5.2b.

The evaluation presented in Figure 5.5 has let us make a decision for shape and
orientation of scintillators installed in the first prototypes specified in Table 5.2 and
depicted in Figures 5.7 and 5.8 – radially directed i.e. longer side along the radius,
rectangular detectors of 9 mm×15 mm and 7 mm×19 mm cross-section dimensions
were used for the first two physical prototypes of J-PET scanners.

Codename Radius No. of detectors Sc. shape Sc. dimensions

small barrel 18 cm 24 (1 layer) Rectangle 0.9× 1.5× 30.0 cm
big barrel 57.5 cm 192 (3 layers) Rectangle 0.7× 1.9× 50.0 cm

1st layer 42.5 cm 48 Rectangle –
2nd layer 46.75 cm 48 Rectangle –
3rd layer 57.5 cm 96 Rectangle –

Table 5.2.: Configuration of first two J-PET prototypes
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Figure 5.7.: Built J-PET “small barrel” prototype layout
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Figure 5.8.: Built J-PET “big barrel” prototype layout

Figure 5.9.: Built J-PET “big barrel” prototype sensitivity map in x− y plane
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5.3.2. Performance benchmark

Bin-mode reconstruction is not computationally demanding and number of operations
depends strictly on product of number of image pixels and number of TORs. As
shown in Table 5.3, using GPU accelerated implementation, it is possible to execute
1000 iterations in 17 seconds for 2 mm resolution, while usually less than 20 iterations
are sufficient to produce good quality image.

That is why just few optimizations used for GPU implementation and it does not
bring much improvement relatively to CPU implementation. It was never an objective
to produce highly optimized GPU implementation, due to non-demanding nature
of bin-more reconstruction, opposite to list-mode algorithms presented in the next
chapters.

Image Size Pixel Size CPU1,2 GPU3 Speedup

1002 8 mm 6.19 ms 0.96 ms 6.4
2002 4 mm 17.77 ms 3.06 ms 5.8
4002 2 mm 74.49 ms 17.10 ms 4.4
8002 1 mm 327.66 ms 102.49 ms 3.2

1 GeForce GTX 980 Ti 1 Ghz, 6 GB, 5 632 Gflops, 336 GB/s, CUDA 7.5 -O3
2 Best compiler result among GCC 4.8, GCC 5.3 and ICC 16.0
3 Intel Xeon E5-2699v3 3.2 GHz, 6 core, ≈ 307 Gflops, 51 GB/s, GCC 5.3 -O3

Table 5.3.: 2D “big” barrel bin-mode reconstruction CPU vs GPU benchmark
(average iteration time of 50 iterations in milliseconds)
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5.3.3. Performance estimation in Roof-line model

2D bin-mode reconstruction has very low Qalg = 0.5 and is clearly memory bound for
all of the computing platforms shown in Table 2.1.

Operation FLOP Mem.Op.

pixel - 2 loads
pixel weight - 2 loads
ρ - 1 texture load
denominator 2
numerator 1
ρnew - 1 atomic store

Total 3 6
Qalg 0.5

Table 5.4.: 2D barrel reconstruction operation count per mean pixel (algorithm 10 inner loop)

Number of floating point operations in Algorithm 10 is minimal in comparison to
6 memory loads and stores as shown in Table 5.4. For such strictly memory bound
algorithm only possible way for optimization is improving memory access. This is
done in this case by using texture unit and its fast cache to read current ρ.
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Chapter 6.

2D strip PET list-mode reconstruction

In this chapter we will focus on 2D detector geometry described by two parallel
scintillators (strips). 2D strip PET reconstruction is a specific subproblem of general 3D
reconstruction of the complete J-PET scanner. 2D strip PET geometry can be modeled
as two parallel line segments of length L at the distance 2R, with neglected thickness
(Figure 6.1). Time information is measured by two pairs of two photomultiplier tubes
attached to each end of both scintillators. This is a minimal configuration required
to form a single detector and perform the reconstruction. Apart from being the
elementary part of the J-PET scanner, this configuration could be used in principle as a
cheap 2D scanning device on its own.

For each event the detector response ẽ is a tuple of four values

ẽ = (T̃ul, T̃ur, T̃dl, T̃dr) (6.1)

each representing time of signal appearance on each attached photomultiplier.

Gamma quanta hit positions in our geometry can be estimated by two quantities,
where csci. is the effective speed of light in a scintillator (12.6 cm/ns):

z̃u =
1
2

csci.

(
T̃ul − T̃ur

)
, z̃d =

1
2

csci.

(
T̃dl − T̃dr

)
(6.2)

Combining time measurements from two scintillators, we can express the position
of the gamma quanta emission point along the line segment joining upper and lower
hit points as a difference ∆l̃, representing twice a distance from the segment’s midpoint

∆l̃ =
1
2

c
((

T̃ul + T̃ur

)
−
(

T̃dl + T̃dr

))
(6.3)
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L

2R
x z

y z̃u

z̃d

φ̃

Figure 6.1.: Strip detector geometry

where c is speed of light in the air and ∆l̃ is the difference of distances of the recon-
structed point (y, z) from upper and lower detection points.

From those measurements the emission position and angle can be reconstructed
directly

tan φ̃ =
z̃u − z̃d

2R

ỹ = −1
2

∆l̃√
1 + tan2 φ̃

=
2R∆l̃√

z̃u − z̃d + 4R2

z̃ =
1
2
(
z̃u + z̃d + 2y tan φ̃

)

=
1
2

(
z̃u + z̃d +

(z̃u − z̃d)∆l̃√
z̃u − z̃d + 4R2

)

(6.4)
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where 2R denotes distance between the scintillators. In this calculation attenuation
model (3.23) for scintillator thickness and geometry errors are neglected. We later
show that this does not noticeably degrade the reconstruction quality.

The calculation above is however subject to measurement errors

z̃y = zy + εzy , y = u, d ∆l̃ = ∆l + ε∆l (6.5)

where the errors ε are normally distributed with correlation matrix C. The magnitude
of the measurement errors depends on place where the gamma hit the scintillator
C = C(zu, zd)

C =




σ2
z (zu) 0 ς(zu)

0 σ2
z (zd) −ς(zd)

ς(zu) −ς(zd) σ2
∆l(zu, zd)


 (6.6)

where σ2
z (z) = E

[
ε2

u,d(z)
]

,

σ2
∆l(zu, zd) = E

[
ε2

∆l(zu, zd)
]

,

ς(z) = E[εzu(z)ε∆l(z, zd)] = −E[εzd(z)ε∆l(zu, z)]

(6.7)

In our current implementation we assume ς(z) = 0, as the preliminary measure-
ments of early two strip prototype show that the correlation between two detector
strip errors is minimal, effectively making C to be diagonal. Also, the dependence of
errors on z turns out to be weak, so we assume that the magnitude of errors is constant
across the whole strip.

The 2D strip PET reconstruction is done iteratively using the list-mode version of
the MLEM algorithm as described in Section 3.4.2. Each iteration of this algorithm is
defined by 2D version of equation (3.18)

ρ(i)(t+1) = ∑
ẽ∈Ẽ

P(ẽ | i) ρ(i)(t)

∑
j∈V

P(ẽ | j) s(j) ρ(j)(t)
for i ∈ I (6.8)

where ρ(i) denotes sought emission density, P(ẽ | i) denotes reconstruction kernel that
represents the probability that an event detected as ẽ originates from pixel i and s(i)
denotes sensitivity of the pixel i.
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6.1. Analytic kernel approximation for strip PET scanner

We will now derive analytical approximation P(ẽ | i) presented first in [64, 65]. First,
we start with s(e) – a probability that event e will be detected. We assume that every
event reaching the detector is detected so the s(e) is given solely by the geometrical
constraints

s(e) = s(zu, zd, ∆l) =





1 zu ∈ [− L
2 , L

2 ] ∧ zd ∈ [− L
2 , L

2 ]

0 otherwise
(6.9)

This is somewhat more complicated in the image space

s(y, z, φ) =





1 tan φ ∈
[

max

(
−

1
2 L + z
R− y

,
−1

2 L + z
R + y

)
, min

(
1
2 L− z
R− y

,
1
2 L + z
R + y

)]

0 otherwise

(6.10)

With that we can determine the sensitivity for image point (y, z)

s(y, z) = π−1

π
2∫

−π
2

dφ s(y, z, φ) = π−1(φmax − φmin) (6.11)

where

φmin = arctan max

(
−

1
2 L + z
R− y

,
−1

2 L + z
R + y

)
,

φmax = arctan min

(
1
2 L− z
R− y

,
1
2 L + z
R + y

) (6.12)

As discussed in the previous section the errors are normally distributed

P(ẽ∩ e) = s(e)
det

1
2 C(e)

(2π)
3
2

exp
(
−1

2
(ẽ− e)TC−1(e)(ẽ− e)

)
(6.13)
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where

∆e = e(z, y, φ)− e(z̃, ỹ, φ̃) =




z + (R− y) tan φ− z̃− (R− ỹ) tan φ̃

z− (R + y) tan φ− z̃ + (R + ỹ) tan φ̃

−2y
√

1 + tan2 φ + 2ỹ
√

1 + tan2 φ


 (6.14)

With these definitions sought P(ẽ | i) becomes

P(ẽ | i) = P(ẽ∩ i)
s(i)

(6.15)

where

P(ẽ∩ i) = π−1
∫

z,y∈i

π
2∫

−π
2

dφ P(ẽ∩ (z, y, φ)), (6.16)

s(i) =
∫

z,y∈i

s(z, y) (6.17)

We will now construct an approximation for the formula (6.16), starting by calcu-
lating

P(ẽ∩ z, y) = π−1

π
2∫

−π
2

dφ P(ẽ∩ (z, y, φ)) (6.18)

The first approximation we make is assuming that the correlation matrix C is
depending weakly on e and can be approximated by its value at ẽ. The integral (6.18)
becomes then

P(ẽ∩ z, y) = π−1 det
1
2 C(ẽ)

(2π)
3
2

φmax∫

φmin

dφ exp
(
−1

2
(ẽ− e)TC−1(ẽ)(ẽ− e)

)
(6.19)

Assuming 3 σz � L and that we will be evaluating our kernel only for points (y, z)
lying inside detector and ẽ whose φmin � φẽ � φmax we can replace integral limits

P(ẽ∩ z, y) ≈ π−1 det
1
2 C(ẽ)

(2π)
3
2

∞∫

−∞

dφ exp
(
−1

2
(ẽ− e)TC−1(ẽ)(ẽ− e)

)
(6.20)
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When φẽ of some ẽ is close to φmin or φmax, the integral (6.20) with replaced limits
is producing too high value, because the essential part of the Gaussian volume crosses
φmin or φmax limit, yet is taken into integral value. However, when φmin � φẽ � φmax,
the most part of the Gaussian volume lies inside the limits, hence the approximation
produces correct value in such case.

The effect is depicted in Figure 6.2. We will later show that the fraction of responses
with φẽ close to the limits is relatively small and does not have high impact on overall
approximation error.

s(ẽ) = 0s(ẽ) = 1

approximation > 0

true kernel = 0

approximation ≈ true kernel

Figure 6.2.: Strip detector approximation vs true kernel relative to angle

We will now approximate integral (6.20) using the saddle-point approximation.
Therefore we first expand ∆e in φ

∆e ≈~o∆φ2 +~a∆φ +~b for ∆φ
def
= φ− φ̃ (6.21)
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with

~o =




−(∆y + ỹ− R) tan φ̃ cos−2 φ̃

−(∆y + ỹ + R) tan φ̃ cos−2 φ̃

−(∆y + ỹ) cos−1 φ̃(1 + 2 tan2 φ̃)


 , (6.22)

~a =




−(∆y + ỹ− R) cos−2 φ̃

−(∆y + ỹ + R) cos−2 φ̃

−2(∆y + ỹ) cos−1 φ̃ tan φ̃


 , (6.23)

~b =




∆z− ∆y tan φ̃

∆z− ∆y tan φ̃

−2∆y cos−1 φ̃


 (6.24)

where

∆y def
= y− ỹ and ∆z def

= z− z̃ (6.25)

After inserting (6.21) into the exponent of (6.19) we obtain the expression

1
2

(
~o∆φ2 +~a∆φ +~b

)
C−1

(
~o∆φ2 +~a∆φ +~b

)
(6.26)

which we truncate to the quadratic order

(
~oC−1~b +

1
2
~aC−1~a

)
∆φ2 +~aC−1~b∆φ +

1
2
~bC−1~b (6.27)

After differentiating with respect to ∆φ we obtain the equation for the minimum

(
2~oC−1~b +~aC−1~a

)
∆φ +~aC−1~b = 0 (6.28)

with the solution

∆φmin = −
~bC−1~a

~aC−1~a + 2~oC−1~b
(6.29)
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Denoting λ
def
= ∆φ− ∆φmin we rewrite the (6.27) as

1
2

(
~aC1~a + 2~oC−1~b

)
λ2 +

1
2

(
~bC−1~b− (~aC−1~b)2

~aC1~a + 2~oC−1~b

)
(6.30)

Finally, we obtain

P(ẽ∩ z, y) ≈ det
1
2 C(ẽ)

(2π)
3
2

exp


−1

2

(
~bC−1~b−

(
~bC−1~a

)2

~aC−1~a + 2~oC−1~b

)


π−1
∞∫

−∞

dλ exp

(
−1

2
λ2
(
~aC−1~a + 2~oC−1~b

))
(6.31)

and performing the Gaussian integration we get

P(ẽ∩ z, y) ≈ det
1
2 C

2π
√
~aC−1~a + 2~oC−1~b

π−1

exp


−1

2

(
~bC−1~b−

(
~bC−1~a

)2

~aC−1~a + 2~oC−1~b

)


(6.32)

We still need to perform the integration over the pixel in (6.16) and (6.17). Instead
of that we will just approximate the integrals by the value of (6.32) and (6.11) at the
center point (yi, zi) of the pixel i and its volume V(i)

P(ẽ∩ i) ≈ V(i) P(ẽ∩ yi, zi) , s(i) ≈ V(i) s(yi, zi) (6.33)

and

P(ẽ | i) ≈ P(ẽ∩ yi, zi)

s(yi, zi)
(6.34)

For each event, we will limit calculating formula (6.32) to three sigma region around
the reconstruction point, estimated by the quadratic form ellipse equation

~bC−1~b = R2 (6.35)

where R is defined as the three sigma (R = 3).
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6.2. Consideration for geometry errors

Analytic approximation kernel given by equation (6.32) does not consider scintillator
hit position geometry error (Figure 3.1), only measurement errors are taken into
account. We will show that for current J-PET setup, measurement errors play vital role
and geometry errors can be ignored.

Lets assume for the moment that all gamma quanta emissions are perpendicular to
19 mm thick scintillator used in J-PET big barrel as shown in Table 5.2. We will estimate
geometry error σgeom∆l relatively to measurement error σ∆l = 40mm that represents
J-PET prototype time resolution [14]. Knowing that coincidence occurred and both
gamma quanta have hit respective scintillators, conditional probability density of an
interaction can be modeled after equation (3.22) and equation (3.23) as

fhit(x) =





1
100 e−

x
100

1− e−
19

100
for 0 ≤ x ≤ 19

0 otherwise

≈





0.058 e−
x

100 for 0 ≤ x ≤ 19

0 otherwise

(6.36)

that is almost flat in [0, 19] and can be approximated by uniform distribution

f̃hit(x) =





1
19 for 0 ≤ x ≤ 19

0 otherwise
(6.37)

If each of two coincidence hit geometric errors εhitu,d
have an uniform distribution

over the interval [−19
2 mm, 19

2 mm], then their sum

εgeom∆l = εhitu + εhitd
(6.38)

have a symmetric triangular distribution over the interval [−19 mm, 19 mm] and
σgeom∆l ≈ 7.8 mm and the combined σ∆l+geom∆l is only 2% higher than σ∆l

σ∆l+geom∆l =
√

σ2
∆l + σ2

geom∆l

≈
√

402 + 7.82

≈ 40.8 mm

(6.39)
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Relaxing assumption that gamma quanta emissions are perpendicular, secant
length expressed relatively to angle φ and scintillator thickness l as

secant(φ, l) =
l

cos φ
(6.40)

does not vary much depending on emission angle for current J-PET setup. For big
barrel J-PET prototype using 50 cm long scintillators and 45cm radius maximum
angle is arctan 50

90 ≈ 30◦ giving the maximum secant length only 15% greater than
scintillator thickness. This may only marginally raise σgeom∆l and combined σ∆l+geom∆l

in equation (6.39).

2R ∼ 1.5R R

Figure 6.3.: Secant length relative to TOR distance to center

The calculation above is done for central TORs having 2R distance between scin-
tillators. TORs lying far from center have maximum secant length higher, e.g. TOR
lying at FOV border with length R, depicted in Figure 6.3, have arctan 50

45 ≈ 50◦ and
maximum secant length 55% greater than secant length for perpendicular φ. However,
at the same time the secant length for perpendicular φ and length R – right red line
segment in Figure 6.3, is half of the one for 2R, so geometric errors are even lower
for TORs lying on the FOV border, showing altogether that geometry errors may be
ignored for current J-PET setup.
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6.2.1. Simulation of geometry errors

In order to validate calculations above, we have performed simulations of 2 strip
PET detector system with R = 415mm, L = 500mm and scintillator height of 19mm,
representing one “big” barrel detector pair. 1 million responses for emissions from
central (0, 0) point source were collected for each simulation. First simulation had fixed
emission direction φ angle, perpendicular to detectors, representing case described
by equation (6.36). The resulting ∆l̃ distribution, depicted in Figure 6.4a, was almost
perfect triangular distribution with parameters (−19mm, 19mm) (marked with red
line for reference) and σgeom∆l = 7.75mm. This has confirmed our calculations.
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(a) Fixed perpendicular φ
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(b) Isotropic φ

Figure 6.4.: ∆l̃ histogram R = 415mm, L = 500mm, bin size = 1 mm
grey area – simulated distribution,
red outline – (−19 mm, 19 mm) triangular distribution

Second simulation was conducted with relaxed constraint about emission angle, so
φ angle was a random direction. The resulting ∆l̃ distribution, depicted in Figure 6.4b,
was nearly triangular distribution with σgeom∆l = 8.16 mm. This has confirmed that
the emission angle has negligible impact on ∆l̃ geometric error in “big” barrel configu-
ration case and altogether the ∆l̃ geometric errors have minimal impact on overall ∆l̃
error distribution.

Using the second simulation, we were also able to estimate z̃u, z̃d geometric errors,
for which analytic derivation is not so trivial. This was done indirectly by calculating
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distribution for z̃u + z̃d. Since the emission point (0, 0) is central, therefore zu + zd = 0
and hence z̃u + z̃d = εu + εd.

The result z̃u + z̃d distribution depicted in Figure 6.5 had σgeom zu+zd = 2.62 mm, so
assuming σzu,d = 10 mm for “big” barrel configuration [14], we get

σgeom zu,d =
σgeom zu+zd√

2
= 1.85 mm, (6.41)

σzu,d+geom zu,d =
√

σ2
zu,d

+ σ2
geom zu,d

≈
√

102 + 1.852

≈ 10.17 mm

(6.42)

which shows that the combined σzu,d+geom zu,d is 1.7% higher than σzu,d .
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Figure 6.5.: z̃u + z̃d histogram R = 415 mm, L = 500 mm, bin size = 1 mm
(isotropic φ, grey area – simulated distribution)

6.3. Analytic kernel formula validation

In order to validate our analytic kernel formula (6.32), that uses several approxi-
mations in its derivation, we have performed three Monte-Carlo simulations of 2D
strip detector response to a point source at three (z, y) positions – (0, 0), (10 cm, 0),
(10 cm, 10 cm). For each position 109 coincidences were simulated, producing distri-
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bution of P(ẽ∩ z, y) for each ẽ = (z̃, ỹ, φ̃), where z̃ and ỹ were binned as 50× 50 pixel
grid, and tan φ̃ was stored in 200 bins.

Next, we have calculated error as a normalized difference between analytic kernel
value P(ẽ∩ z, y) multiplied by Jacobian J – coming from replacing ẽ = (z̃u, z̃d, ∆l̃)
with ẽ = (z̃, ỹ, tan φ̃) according to (6.4) and integrating over pixel and tan φ bins, and
simulated bin value sim(ẽ, z, y)

error(ẽ, z, y) =
J P(ẽ∩ z, y)− sim(ẽ, z, y)

J P(ẽ∩ z, y)
(6.43)

where

J = 4R pixel2size tansize

√
1 + tan2 (6.44)

Our formula agreed with the simulation with a maximum error below 1% for
φmin � φẽ � φmax. For φẽ angles close to φmin and φmax our formula was producing
to high values, shown in Figures 6.6c, 6.7c and manifested by black caps near the top
and bottom border in Figure 6.8. This is expected because of (6.20) approximation.
Nevertheless, there were just few tangent bins for angles close φmin and φmax, so the
overall error remained low as shown in Figures 6.6a, 6.6b, 6.7a and Figure 6.8a.
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Figure 6.6.: Relative error of analytic kernel to 2D simulated kernel in (0, 0) for selected tan φ
(positive value – analytic value too high, negative – too low)

Next we conducted simulation of 3D two strip detector taking into account ge-
ometry and scintillator interaction model. The agreement for selected tangent bins is
shown in Figure 6.7 and its changes along φ tangent are shown in Figure 6.8b.

It is visible in Figure 6.8b that the agreement for φmin � φẽ � φmax in case of 3D is
not so perfect as in case of 2D shown in Figure 6.8a. Particularly the analytic kernel is
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Figure 6.7.: Relative error of analytic kernel to 3D simulated kernel in (0, 0) for selected tan φ
(positive value – analytic value too high, negative – too low)

producing too small values for greater angles, but not very close to φmin or φmax, as
shown in Figure 6.7b. This comes straight from interaction model dependent on equa-
tion (6.40), which is not taken into account in our analytic kernel approximation. Still,
the overall error in case of 3D is below 3% for φmin � φẽ � φmax.
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Figure 6.8.: Relative error of analytic kernel to simulated kernel in (0, 0) along tan φ
(positive value – analytic value too high, negative – too low)
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6.4. Generic implementation

The iteration step described by formula (6.8) can be implemented as described below

Algorithm 11 2D strip list-mode reconstruction step

function STRIPLMRECONSTRUCTIONSTEP(ρ, ρnew)
ρnew ← 0 . start with zero ρnew
for all ẽ ∈ Ẽ do

denom← 0 . calculate denominator
for i ∈ ellipse(ẽ) do

cache(i)← P(ẽ | i) ρ(i) . cache product of kernel and image
denom← denom+ cache(i) s(i)

end for
for i ∈ ellipse(ẽ) do

ρnew(i)← ρnew(i) +
cache(i)
denom

end for
end for

end function

Loops for all ẽ ∈ ellipse(ẽ) iterate over all pixels in the 3σ ellipse of the event ẽ.
To calculate pixels contributing to this ellipse, we first need to determine its bounding
box in pixel space. Once bounding box is calculated, we loop only through pixels
inside this bounding box. Each pixel is then tested if its center point resides inside or
outside of the ellipse. Only then the whole kernel is calculated. The results are cached
and used subsequently in the second loop.

The CPU implementation follows essentially the Algorithm 11. We use OpenMP to
parallelize the outer loop over the events. Each thread writes to its own copy of ρnew

array. All copies are merged at the end of the iteration. Currently we do not take direct
advantage of the AVX/SSE instruction set aside of automatic vectorization provided
by Intel C++ Compiler – vectorizing for example transcendental functions.

6.5. GPU accelerated implementation

Construction of GPU accelerated implementation for J-PET 2D strip detector, origi-
nally presented in [66], begins with a naive GPU implementation based on reference
CPU implementation where each thread processes all pixels of single event, so few
thousands of events are processed simultaneously by hardware threads.
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Such approach has however serious drawback on GPU hardware, which is es-
sentially a vector computer. On the NVIDIA CUDA architecture that we use, the
threads are collected in batches of 32 threads called warps. All threads in a warp
must execute same instruction in parallel (SIMD). In the naive implementation each
thread is processing a different event with different number of pixels. That results in
a double loop with loops bounds different across the threads of a warp. This leads
to severe thread divergence and, as we have discovered, carries a much higher penalty
then naively expected. One would expect that the execution time of a warp, would be
approximately the time needed to execute the longest loops, but as it turned out it is
much higher. This effect is explained by us in detail in [46]. Additionally, we cannot
cache visited pixels and their kernel results since there are not enough registers or
shared memory to store such information given each thread processes separate event.

This can be partially circumvented using different pixel calculation scheduling
called by us warp granularity, where whole warp of 32 threads calculates a single
event, depicted in Figure 6.9. Each thread in a warp processes a single pixel for the
same event and there is no divergence. Different events are processed by different
warps that run independently. This leads to better utilization of available shared
memory, registers and improves memory access coherence. However, processor cycles
are still wasted by the threads whose pixels lie outside of 3σ ellipse (marked white
in Figure 6.9).

Single event is calculated in two passes. First, we calculate denominator of (6.8).
This pass iterates through all pixels inside 3σ ellipse bounding box. Each pixel is tested
with 3σ ellipse equation. Only pixels belonging to the ellipse are taken into account in
denominator calculation (marked grey in Figure 6.9).

During the first pass of warp granularity we get an opportunity to cache visited
pixels in shared memory and kernel (6.32) value in registers, so the second pass
can loop only through pixels visited already without a need to test them for ellipse
inclusion and use kernel value calculated once and stored in the register. This is
possible as long as the maximum number of pixels belonging to 3σ ellipse is relatively
small, which is the case when pixel size is 2 mm or higher.

Calculation of the denominator requires adding the contributions from the 32
threads of the warp. We have done this using the new shuffle instructions introduced
in Kepler architecture. This gave a notable performance boost over standard reduction
algorithm using shared memory [67].
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Figure 6.9.: Warp granularity (whole event processed by single warp)

Final optimization is to access ρ (previous iteration image buffer) as texture. This
produces noticeable performance boost by using hardware GPU texture unit cache
and special 2D access optimized memory layout. However, it can be observed that
memory access still takes around 35% of overall iteration time after optimizations.

6.6. Results

6.6.1. Performance benchmark

Time of flight list-mode reconstruction is more computationally demanding than bin-
mode, which can be observed comparing times presented in Table 5.3. This is expected
and this is the reason that the most of the existing devices still use bin-mode. Number
of operations in Algorithm 11 depends on a number of responses (events) and the size
of σ in pixels. Relation to number of events is linear, therefore it will be not presented
here.
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Relation to pixel-size is linear in case of CPU, but it is not in case of GPU, that shows
some advantage when using smaller pixels, thus larger image space, as shown in Ta-
ble 6.1. This comes from the fact that there will be relatively less trailing warp chunks
in GPU warp granularity with many idle threads – white squares in “warp chunk 4”
depicted in Figure 6.9, when pixels are smaller. Also some chunks belonging to 3σ

bounding box will be completely excluded from the 3σ ellipse, so i ∈ ellipse(ẽ)
condition will be false for all warp threads, making GPU quickly skip to the next
chunk.

Image Size Pixel Size CPU1,2 GPU3 Speedup

213× 125 4 mm 985 ms 49 ms 20
425× 250 2 mm 3 978 ms 161 ms 25
850× 500 1 mm 15 537 ms 585 ms 27

1 Intel Xeon E5-2699v3 3.2 GHz, 6 core, ≈ 307 Gflops, 51 GB/s, ICC 16.0 -O3
2 Best compiler result among GCC 4.8, GCC 5.3 and ICC 16.0
3 Intel Xeon E5-2699v3 3.2 GHz, 6 core, ≈ 307 Gflops, 51 GB/s, GCC 5.3 -O3

Table 6.1.: 2D “big” barrel list-mode reconstruction of CPU vs GPU benchmark
(106 responses, average iteration time of 5 iterations in milliseconds)

6.6.2. Performance estimation in Roof-line model

2D strip reconstruction with its estimated in Table 6.2 Qalg ≈ 40 is performance bound
on CPU with Qcpu ≈ 30 and memory bound on GPU having Qgpu ≈ 60 factor. How-
ever GPU implementation employs texture units with fast cache, hence “correcting”
Qalg for that may make it actually very close to Qgpu and peak compute performance.
It is also important to ensure that most of the memory accesses are coalesced. This is
addressed by warp granularity improving memory access coalescence.

Cost of each transcendental function is equated with 8 elementary FLOP in Table 6.2.
This comes from the fact that elementary operations require 4 cycles per warp in latest
CUDA architectures, where transcendental functions require 32 cycles. Still these
functions are relatively fast on GPU platforms, much faster than if we stored them
in some pre-computed look-up array or texture. This is because GPU devices were
optimized for computer graphics in first place, where trigonometric and exponential
functions are important for calculating rendered graphics lighting.
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Operation FLOP Mem.Op.

warp-pixel 8 -
ellipse-check 16 -
kernel 76 -

add/mul 60 -
exp 1 ∗ 8 -
sqrt 1 ∗ 8 -

denom reduce 8 -
rho calculate 6 -
sensitivity read - 1

via texture - 1
rho read/update - 3

via texture - 1
via atomic - 1

outer loop 106/20 1/20
- event load - 1
- bbox 66 -

- add/mul 26 -
- cos/atan 2 ∗ 8 -
- sqrt 3 ∗ 8 -

- miscellaneous 40 -

Total ∼ 120 ∼ 3
Qalg ∼ 40

Table 6.2.: 2D strip reconstruction operation count per pixel
(algorithm 11 inner loop, assumed 20 pixels for each event)

6.6.3. Detailed performance estimation

We made a detailed breakdown for warp granularity algorithm by replacing parts of
code with constants and measuring iteration time for remaining active parts. The time
difference produced the numbers shown in Table 6.3a. This has led of course to invalid
reconstruction results, however it had no impact on the active parts performance.
The breakdown shows that memory latency cannot be hidden and balanced out
completely by arithmetic operations. Moreover, during kernel execution, many of
the global memory accesses are still not coalesced, so Load/Store (L/S) unit needs to
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perform more than one transaction to fetch data to warp registers (128 byte cache L2
cache line on NVIDIA Kepler architecture). For example, if bounding box length is not
divisible by 32, L/S unit performs additional transaction for elements on the edge of
the bounding box.

It is possible to replace sensitivity memory read with calculation of analytic ap-
proximation from the pixel center (6.33). However we use instead a texture holding
multi-sampled thus slightly better sensitivity approximation. Reading this texture has
comparable cost to analytic calculation. Remaining two memory accesses read current
ρ and update new ρ are necessary and cannot be avoided.

Operation Time

Iteration total time 612 ms

Kernel calculation 52 ms
Atomicadd load/store 199 ms
Rho global memory access 117 ms
Shared memory load/store 56 ms
Iterator calculation 20 ms
Check ellipse 119 ms
remaining operations 49 ms

(a) Warp granularity

Operation Time

Iteration total time 955 ms

Kernel calculation 354 ms
Atomicadd load/store 238 ms
Rho global memory access 131 ms
remaining operations 232 ms

(b) Thread granularity

Table 6.3.: 2D strip algorithm iteration time with selected algorithm parts contribution
(single iteration, 107 events)

6.6.4. PSF FWHM measurements

We will now try to determine 2D strip reconstruction performance characteristics
using measures introduced in Section 3.6, according as close as possible to NEMA
standard [57] – with one exception, that we will be using MLEM reconstruction instead
of filtered back-projection (FBP) required by NEMA.

To do so we have simulated 105 coincidences with emission points generated
uniformly from the source of 1 mm diameter disc placed (0, 1 cm) above z-axis. The
two gamma were assumed to be exactly collinear, the detection was modeled with
attenuation law equation (3.22) with 19 mm thick and 30 cm long detectors. The
scatterings were not taken into consideration in the simulation.
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Figure 6.10.: “big” 2 strip J-PET virtual phantom PSF FWHM plot
(R = 42 cm, L = 50 cm, 105 coincidences, (0, 1 cm) position)
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Figure 6.11.: “big” 2 strip J-PET virtual phantom image reconstruction
(R = 42 cm, L = 50 cm, 0.2 mm pixel size, phantom position marked with circle)

The PSF FWHM for this simulation is shown in Figure 6.10 and detailed images
for few selected iterations are shown in Figure 6.11. The convergence of PSF image
reconstruction is slow. This fact was already observed by others [68]. After around
3500 iterations there is no further improvement in FWHM and the noise starts to
appear on the resulting images. The steps visible on PSF FWHM plots come from the
changes of pixel holding maximum value.
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(a) (0, 0) central position (17 147 coincidences)
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(b) ∼ (10 cm, 10 cm) position (25 061 coincidences)

Figure 6.12.: 2 strip detector prototype real measurement PSF FWHM plot
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Figure 6.13.: 2 strip detector prototype reconstruction images for central phantom position
(R = 20.5 cm, L = 30 cm, 0.2 mm pixel size, source placement marked with circle)

There are also preliminary 2 strip detector prototype scan results presented in [69].
These were done with real point-like source of ∼ 1 mm diameter active area. The
source was placed in 9 positions. Below in Figure 6.12 we present results for two
example positions and sample images for first central position in Figure 6.13.
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6.6.5. Quality measurement

As a pre-requisite for the quality estimation, we have conducted two simulations
for virtual Shepp-Logan phantom - first producing 1 million coincidences, second
producing 10 million, assuming σzu,d = 10 mm, σ∆l = 40mm time resolution [14].
Quality estimation presented in Table 6.14 was performed by comparing the emitted
density phantom image 6.15a, 6.16a to the reconstructed image using normalized root
mean square error (NRMSE), defined in Section 3.6.3.

It is important to note that input for the reconstruction is what has been measured
with errors, depicted in Figures 6.15c, 6.16c. We neither can measure what was real
emission density shown in Figures 6.15a, 6.16a, nor the exact detected emission density
shown in Figures 6.15b, 6.16b.
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10 ∗ 106

Figure 6.14.: “big” 2 strip J-PET Shepp-Logan phantom reconstruction NRMSE plot
(R = 42 cm, L = 50 cm, NRMSE as a function of the number of MLEM iterations,
for two numbers of coincidences)

It can be observed that number of coincidences has visible impact on image quality.
Too low number of coincidences cause noise to manifest itself soon after performing
20 iterations, reflected by NRMSE raise in Figure 6.14. Higher number of coincidences
enables to perform more iterations without the noise manifestation. Altogether our
MLEM TOF method shows to be effective in reconstructing smaller details barely
visible on “naive reconstruction”, that could not be extracted by simple image filtering.
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(a) emitted (b) detected (c) measured
(naive reco.)

(d) 1 iteration (e) 10 iterations (f) 20 iterations (g) 50 iterations

Figure 6.15.: J-PET Shepp-Logan virtual phantom simulation and image reconstruction
(106 coincidences)

(a) emitted (b) detected (c) measured
(naive reco.)

(d) 1 iteration (e) 10 iterations (f) 50 iterations (g) 100 iterations

Figure 6.16.: J-PET Shepp-Logan virtual phantom simulation and image reconstruction
(10 ∗ 106 coincidences)



Chapter 7.

3D J-PET reconstruction

Supplied with the knowledge and the experience presented in previous chapters, we
are now able to form the final statistical model and algorithm in order to perform full
3D reconstruction.

Presented reconstruction is a combination or a “hybrid” of two subproblem solu-
tions presented respectively for x− y 2D barrel plane and z− y 2D strip plane. The
2D barrel model represents complex geometry, while 2D strip model embeds time
measurement errors.

7.1. Combining 2D barrel and 2D strip reconstruction

Our objective is to find P
(

ẽ = (t, z̃u, z̃d, ∆l̃) | v
)

, necessary for the 3D version of J-PET
reconstruction, where ẽ is a single response, t is a detector pair index, z̃u, z̃d are
measured positions along the detectors (6.2), ∆l̃ is a measured position difference
between the detectors (6.3), and v represents a voxel.

In order to do so, we need to integrate P(ẽ | p, Ω), a probability of registering
an emission from the point p in the direction Ω as a response ẽ, over all emission
directions Ω and all points p of the voxel v

P
(

ẽ = (t, z̃u, z̃d, ∆l̃) | v
)
=
∫

p∈v

∫
dp dΩ P(ẽ | p, Ω) (7.1)

95
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We may express the inner integral in spherical coordinate system originating from
the point p

P
(

ẽ = (t, z̃u, z̃d, ∆l̃) | v
)
=
∫

p∈v

π∫

0

π∫

0

dp sin θ dθ dφ P(ẽ | p, θ, φ) (7.2)

We fix the orientation of the coordinate system, so detector pair t lies along its
“equator”, making φ an emission angle in 2D strip plane and θ an emission angle in 2D
barrel plane, as shown in Figure 7.1.

p

Ω′

φ

Ω
θ

Figure 7.1.: Spherical coordinate system orientation
(p denotes emissions point, Ω, Ω′ denote quanta emission directions)

Next, we can assume J-PET scanner geometry related uncertainties and time mea-
surement errors, introduced in Chapter 3, are independent, so

P
(

ẽ = (t, z̃u, z̃d, ∆l̃) | p, θ, φ
)
= P(t | p, θ, φ) P

(
z̃u, z̃d, ∆l̃ | t, p, θ, φ

)
(7.3)

where P(t | p, θ, φ) denotes probability of interaction with TOR t detector pair, de-
pending on intrinsic detector response function (IDRF) introduced in Section 3.5, and
P
(

z̃u, z̃d, ∆l̃ | t, p, θ, φ
)

denote 2D strip measurement error model (6.13) for TOR t.
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Now we make an approximation that interaction probability depends weakly on φ,
as shown in Section 6.2, and that time measurement errors do not depend on θ, so

P
(

t, z̃u, z̃d, ∆l̃ | v
)
≈
∫

p∈v

π∫

0

π∫

0

dp sin θ dθ dφ P(t | p, θ) P
(

z̃u, z̃d, ∆l̃ | t, p, φ
)

(7.4)

=
∫

p∈v

dp
π∫

0

sin θ dθ P(t | p, θ)

π∫

0

dφ P
(

z̃u, z̃d, ∆l̃ | t, p, φ
)

(7.5)

J-PET detectors are thin enough, so orientation depicted in Figure 7.1 ensures that
effective θ range where P(t | p, θ) is non zero is very close to 90◦, therefore assuming
sin θ ≈ 1 when P(t | p, θ) 6= 0, we can calculate the inner itegrals

≈
∫

p∈v

dp P(t | p) P
(

z̃u, z̃d, ∆l̃ | t, p
)

(7.6)

Next, we make the same approximation we made before in equation (6.33), taking
single 2D strip kernel value at voxel’s central point pv for all points in the voxel

≈
∫

p∈v

dp P(t | p) P
(

z̃u, z̃d, ∆l̃ | t, pv

)
(7.7)

= P
(

z̃u, z̃d, ∆l̃ | t, pv

) ∫

p∈v

dp P(t | p) (7.8)

and because of the first approximation (7.4), P(t | p) does not depend on point p’s
z-coordinate as long p is in the FOV, this leads us to the final approximation

P
(

t, z̃u, z̃d, ∆l̃ | v
)
≈ H(v) P(t | i) P

(
z̃u, z̃d, ∆l̃ | t, pv

)
(7.9)

where H(v) denotes constant defining height (along z-axis) of voxel v, P(t | i) denotes
2D system matrix value for TOR t and pixel i = (vx, vy), P

(
z̃u, z̃d, ∆l̃ | t, pv

)
denotes

2D strip conditional probability, calculated at voxel’s central point pv as

P
(

z̃u, z̃d, ∆l̃ | t, pv

)
=

Pt

(
z̃u, z̃d, ∆l̃ ∩ pv

)

st(pv)
(7.10)

that is 2D strip kernel value (6.32) divided by 2D strip frame sensitivity (6.11), similarly
to (6.34), both parametrized by TOR t, having specific detectors distance.



98 3D J-PET reconstruction

2D strip kernel expects (z̃, ỹ, φ̃) arguments, hence before running actual reconstruc-
tion all ẽ = (t, z̃u, z̃d, ∆l̃) are converted into ẽ = (u, d, z̃, ỹ, φ̃) using equation (6.4),
where u, d denote TOR t detectors indices. With this representation 3D P can be
expressed as

P
(
ẽ = (u, d, z̃, ỹ, φ̃) | v

)
= P(u, d | v) P

(
z̃, ỹ, φ̃ | u, d, proju,dv

)
(7.11)

where proju,d(v) = (z, y) denotes projection of voxel v central point to 2D strip plane
for u, d detector pair.

yproj

zproj

zz

yy

xx

γd

γu

Figure 7.2.: Projection from 3D space (green) to 2D detector pair space (red)

2D strip plane is spanned by detector pair u, d specific to each coincidence. There-
fore 2D strip zproj, yproj axes are specific to detector pair u, d and are not identical to
3D space z, y axes as shown in Figure 7.2. Having (xu, yu, 0) and (xd, yd, 0) detector
pair central points, the 2D strip space is defined by

originu,d =

(
xu + xd

2
,

yu + yd
2

, 0
)

~zu,d = (0, 0, 1)

~yu,d = (
|xu − xd|√

(xu − xd)2 + (yu − yd)2
,

|yu − yd|√
(xu − xd)2 + (yu − yd)2

, 0)

(7.12)
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7.2. Generic CPU implementation

3D reconstruction Algorithm 12 performs list-mode MLEM described by (3.18). It is a
“fusion” of Algorithms 10 and 11 performing image reconstruction for 2D barrel and
2D strip.

Algorithm 12 3D hybrid list-mode reconstruction step

function 3DRECONSTRUCTIONSTEP(ρ, ρnew)
ρnew(v)← 0
for all ẽ ∈ Ẽ do . iterate through all scan responses

t = (u, d)← TOR(ẽ)
denom← 0 . reset denominator to zero
for i ∈ pixels(t) ∩ bbox3σ(ẽ) do . iterate 3σ bounding box pixels

weight← P(t | i) . load system matrix value
y← proju,d(i) . projection to TOR t frame
for z ∈ planes(bbox3σ(ẽ)) do . iterate planes along z-axis

v← (ix, iy, z)
denom← denom+weight s(v) P(ẽ | t, z, y) ρ(v)

end for
end for
for i ∈ pixels(t) ∩ bbox3σ(ẽ) do . iterate 3σ bounding box pixels

weight← P(t | i) . load system matrix value
y← proju,d(i) . projection to TOR t frame
for z ∈ planes(bbox3σ(ẽ)) do . iterate planes along z-axis

v← (ix, iy, z)

ρnew(v)← ρnew(v) +
weight P(ẽ | t, z, y) ρ(v)

denom
. update ρnew

end for
end for

end for
end function

In Algorithm 12, P(t | i) denotes pre-calculated 2D system matrix value, thus is
effectively a memory access. This value is loaded once per pixel and can be reused
in the innermost loop iterating over the planes along z-axis. Also, s(v) denotes pre-
calculated full 3D barrel sensitivity, read from the memory and coming from the 3D
simulation described in following Section 7.4.

P(ẽ | t, z, y) denotes 2D strip analytic kernel value (6.34). This is effectively calcu-
lated as unconditional kernel (6.32) divided by sensitivity st(z, y) (6.11), necessary to
form conditional probability. In opposition to 2D strip implementation, st(z, y) is not
pre-calculated and cached, but calculated on-fly. This is because we would need to
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pre-calculate it for all TORs – detector pairs, but such pre-calculated sensitivity would
barely fit into the available memory.

Inner loop constructs actual voxel v = (ix, iy, z) out of pixel i and plane z. This
voxel is used to lookup current ρ and update next ρnew value.

Some other expressions are also pre-calculated prior running actual reconstruction
iterations. An intersection pixels(t) ∩ bbox3σ(ẽ), representing system matrix pixels
belonging to TOR t that are in 3σ bounding box, is pre-calculated and stored as simple
pixel list index range. Therefore i ∈ pixels(t) ∩ bbox3σ(ẽ) loop effectively iterates
over the elements of the pixel list associated with each ẽ response. Same applies to
response z plane range denoted as planes(bbox3σ(ẽ)), this is pre-calculated and stored
as simple voxel z coordinate range assigned to each ẽ.

Pixel list and weights are rewritten into structure of arrays (SoA) upon loading
sparse matrix depicted in Figure 4.4. Since 3D z coordinate is identical to 2D u, d
projected strip space, only y is calculated as a result of the projection of pixel i’s central
point onto ~yu,d anchored to originu,d (7.12), denoted as proju,d(i) in Algorithm 12.

7.3. GPU accelerated implementation

GPU implementation uses warp-granularity scheduling, similar to the one shown
in Figure 6.9, to process all ẽ TOR pixels from Algorithm 12 using a single warp.
This makes some memory loads coalesced, especially TOR pixel access and P(t | i)
system matrix read. However, unlike 2D strip GPU implementation, z planes are
not processed in parallel. Actually, processing them in parallel slightly degrades
performance, as some additional calculations are necessary to determine voxel v from
warp thread index.

Some of the 2D strip GPU implementation optimizations could not be ported to 3D
implementation due to limitations of shared memory and registers. Most noticeable
difference from Algorithm 11 is that P(ẽ | z, y) cannot be cached in the kernel variable,
simply because there are not enough registers. The total number of voxels processed,
thus P(ẽ | z, y) calls necessary to calculate denominator, is width(TOR(ẽ)) times higher
than in 2D strip case, where width(t) denotes width for given TOR t in pixels, and
depending on resolution can be 3 up to 20 pixels for J-PET scanner geometries. This
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results in loading ρ(v) and calling P(ẽ | z, y) calculation twice as often as in 2D strip
GPU implementation.

On the other hand, using on-fly calculation for st(z, y) does not bring any penalty
on GPU, as arctan is an optimized hardware instruction. In fact, it even helps to hide
global memory access latency for system matrix and barrel sensitivity reads. Finally
3D reconstruction GPU implementation uses 3D textures for current ρ and s(v) lookup,
which improves memory access coalescence and uses fast texture cache, reducing
memory access latency.

7.4. Simulation of 3D J-PET scanner

In order to be able to generate an input for 3D reconstruction we had to extend existing
2D barrel simulation to the full 3D. This has also let us to use 3D version of sensitivity
for the image reconstruction. While it is possible to use 2D sensitivity in Algorithm 12,
using 3D version ensures proper correction against sensitivity that noticeably changes
along z-axis for same v position in x-y barrel plane. This is done for the cost of more
frequent memory access, for each voxel instead of each pixel in TOR.

The 3D version of the simulation is in the essence a minimal extension to Algo-
rithm 6. Instead of taking random (x, y, θ) where (x, y) ∈ i – simulated pixel and
θ ∈ [ 0, π), we take random (x, y, z, θ, φ) where (x, y, z) ∈ v – simulated voxel and
θ, φ ∈ [0, π) are angle components of spherical coordinates of a random point on unit
sphere, representing random direction.

Prior starting 2D barrel intersection testing described in Algorithm 6, we first check
if one of the emitted quanta did not escape through one of the open sides of the barrel.
This is done by finding intersection points of the emission beam crossing the surface of
an infinitely long cylinder, having its axis equal to J-PET scanner z-axis, and a radius
of J-PET barrel radius. As depicted in Figure 7.3, if one of the intersection points lies
out of the barrel – z(p1)<− L

2 ∨ z(p1)>
L
2 ∨ z(p2)<− L

2 ∨ z(p2)>
L
2 , we consider the

emission to escape the barrel and we skip to the next random emission event.

Otherwise, we continue checking the 2D barrel intersection for (x, y, θ) using 2D
version Algorithm 6. Finally, instead testing interaction with 2D secant length l, we
use corrected length lcorr = l/ cos φ according to equation (6.40). This gives us an
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z

−L/2 L/2

R

Figure 7.3.: Upper emission escaping through left open side of the 3D barrel

approximation for 3D secant length, that does not take into account the case when the
beam crosses the side of the scintillator attached to PMT, as shown in Figure 7.4.

l1l1corr l2 l2corr

Figure 7.4.: Emission angle correction for 3D

7.5. Results

7.5.1. Performance benchmark

3D reconstruction Algorithm 12 processes average TOR width (measured in pixels)
times more voxels than 2D strip Algorithm 11. So the performance is expected to drop
proportionally to the average TOR width. Actual performance drops about 4×more
for GPU implementation than this as shown in Table 7.1. This can be however easily
explained. First of caching kernel values cannot be ported as number of values would
not fit in the available fast register memory, so all kernel computation operations are
basically done twice comparing to 2D version. Moreover, 3D reconstruction operates
on much bigger image space and memory comparing to 2D version. Therefore 3D
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memory accesses are less likely coalescent and hitting the cache when using 3D texture
than in 2D strip implementation.

The CPU generic implementation performance shows much bigger degradation
comparing to the 2D version. There is no cause for concern though, as CPU implemen-
tation just acts as reference and the severe degradation comes from the fact that we
calculate sensitivity for 2D strip on-fly and arctan function is slow on CPU. Moreover,
CPU has no 3D texture or spatially optimized hardware cache, therefore the linear
memory cache hit is much less likely than in 2D strip implementation.

Image Size Pixel Size CPU1,2 GPU3 Speedup

1002 8 mm 5 140 ms 49 ms 105
2002 4 mm 27 322 ms 250 ms 109
4002 2 mm 176 862 ms 3 442 ms 51
8002 1 mm 1 708 898 ms 29 512 ms 57

1 Intel Xeon E5-2699v3 3.2 GHz, 6 core, ≈ 307 Gflops, 51 GB/s, ICC 16.0 -O3
2 Best compiler result among GCC 4.8, GCC 5.3 and ICC 16.0
3 GeForce GTX 980 Ti 1 Ghz, 6 GB, 5 632 Gflops, 336 GB/s, CUDA 7.5 -O3

Table 7.1.: 3D “big” barrel list-mode reconstruction CPU vs GPU benchmark
(average iteration time of 5 iterations in milliseconds)

7.5.2. Performance estimation in Roof-line model

3D hybrid reconstruction (Qalg ≈ 27) is memory bound on both CPU (Qcpu ≈ 30) and
GPU (Qcpu ≈ 60). This comes from the fact that 2D barrel part shown in Table 5.4 is
heavily memory bound and 2D strip part is just nearly performance bound. Further
optimization could employ replacing two 2D barrel TOR pixels and their weights
with some analytic approximation, based on the distance to the line segment spanned
across TOR detectors. Replacing sensitivity read with some analytic approximation
is however not feasible as current J-PET prototypes geometry is non-trivial with its
loosely packed scintillators as shown in Figure 5.9, therefore even if it was possible,
calculating such sensitivity on-fly would be more costly than looking it up from the
texture.
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Operation FLOP Mem.Op.

warp-pixel 8 -
2D TOR pixels - 1
2D barrel pixel weights - 1
2D strip projection 8 -
2D strip kernel 76 ∗ 4 -
denom reduce 8 ∗ 4 -
rho calculate 6 ∗ 4 -
sensitivity read - 4 ∗ 1

- via texture - 4 ∗ 1
rho read/update - 4 ∗ 2

- via texture - 4 ∗ 1
- via atomic - 4 ∗ 1

outer loop 4 2/10
- event load - 2
- miscellaneous 40 -

Total ∼ 380 ∼ 14
Qalg ∼ 27

Table 7.2.: 3D hybrid reconstruction operation count per pixel
(algorithm 12 inner loop, assumed 10 pixels, 40 voxels and 4 z-planes for each event)

7.5.3. PSF FWHM measurements

We have used a data coming from two sources as an input for our image reconstruction
in order to determine PSF FWHM. The former source was the GATE simulations
described in [8, 58]. The latter is our own Monte-Carlo simulation.

We have generated emission points uniformly from the source, 1 mm diameter
sphere in this case, and then direction of emission also uniformly. The two gamma
were assumed to be exactly collinear, the detection was modeled with attenuation
law equation (3.22) and the scatterings were not taken into consideration, opposite to
GATE simulation.
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Source

(1 cm, 0, 0) (10 cm, 0, 0)
Iteration x-axis y-axis z-axis x-axis y-axis z-axis

1 9.059 8.803 25.279 7.402 7.162 25.319
5 5.081 3.909 13.409 3.546 3.335 13.562

10 3.811 2.956 11.071 2.708 2.504 11.257
50 2.399 1.543 8.542 1.597 1.341 8.721

100 2.105 1.330 8.018 1.321 1.148 8.171
200 1.910 1.127 7.562 1.157 1.053 7.664

Table 7.3.: PSF FWHM as a function of the number of MLEM iterations
(FWHM values in mm along each of 3 axes, for two source positions)

Assuming σzu,d = 10 mm, σ∆l = 40mm time resolution again [14] for both sources,
both have produced almost identical results, therefore without loss of generality we
present below only plots and numbers for the latter.
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Figure 7.5.: PSF FWHM as a function of the number of MLEM iterations

PSF FWHM is rapidly decreasing during first 50 iterations as shown in Figure 7.5,
after 200 iterations there is almost no decrease alone x and y axis, however FWHM
still decreases along z axis. This can be explained by slow PSF convergence of 2D strip
kernel part of 3D reconstruction as shown in Figure 6.10.
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Figure 7.6.: Naive reconstruction of the 1mm source at (10, 0, 0)mm
(cuts taken thru the maximum)
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Figure 7.7.: MLEM reconstruction after 100 iterations of the 1 mm source at (10, 0, 0)mm
(cuts taken thru the maximum)

The asymmetrical PSF shape in x − y axis visible on left images in Figure 7.6
and 7.7 comes from the erratic J-PET scanner sensitivity around the source placement
(1 cm, 0, 0) depicted in Figure 7.8.
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(a) 0.5 mm (b) 1 mm
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Figure 7.8.: Sensitivity of 40× 40 mm central region in the central plane of the J-PET scanner
(images for different pixel sizes, (1 cm, 0, 0) source placement marked with circle)
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7.5.4. Quality measurements

In order to perform 3D reconstruction image quality measurements, we have created
virtual phantom model based on Deluxe Jaszczak Phantom according to description
provided in Table 7.4 and [70, 71] – depicted in Figure 7.9. Next we have performed 4
simulations for the response of the J-PET “big” barrel 3D PET scanner to this virtual
phantom, assuming σzu,d = 10 mm, σ∆l = 40mm time resolution [14]. The phantom
was placed in two orientations – phantom cylinder axis along scanner z-axis and y-axis.
1 and 10 million detected coincidences scans were generated for each orientation.

These simulations have yielded NRMSE plot shown in Figure 7.10. 10 million
represents an expected number of collected coincidences during real long medical
PET examination. Therefore results for 10 million coincidences reflect the expected
reconstruction image quality for future medical examinations performed using J-PET
scanner. Result for 1 million coincidences was given to show what happens if MLEM
method is given not enough statistics and can represent brief “live-preview” medical
PET examination.

Altogether shown results represent the quality comparable to commercial PET
devices available on the market [33, 34, 36], which lets us believe that J-PET scanner
may be a cheaper but comparably good alternative to expensive crystal PET scanners.

Element Dimensions

Cylinder

diameter 20.4 cm
height 18.6 cm

Rods and spheres

rod diameters 4.8, 6.4, 7.9, 9.5, 11.1, 12.7 mm
rod height 8.8 cm
sphere diameters 9.5, 12.7, 15.9, 19.1, 25.4, 31.8 mm
spheres vertical position 12.7 cm

Table 7.4.: Deluxe Jaszczak Phantom specification according to [70, 71]
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(a) proportional density (b) increased transparency

Figure 7.9.: Virtual phantom based on Deluxe Jaszczak Phantom 3D rendering
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Figure 7.10.: J-PET “big” barrel 3D PET scanner NRMSE plot for Jaszczak phantom
(NRMSE as a function of the number of MLEM iterations,
for two numbers of coincidences and two phantom orientations)
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emitted measured MLEM reconstructed
(a) x-y rods cut

(b) x-y spheres cut

Figure 7.11.: 3D reconstruction results – 10 ∗ 106 coincidences, 20 iterations
(phantom cylinder axis orientation along z-axis)

emitted measured MLEM reconstructed
(a) x-z rods cut

(b) x-z spheres cut

Figure 7.12.: 3D reconstruction results – 10 ∗ 106 coincidences, 20 iterations
(phantom cylinder axis orientation along y-axis)
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emitted measured MLEM reconstructed
(a) x-y rods cut

(b) x-y spheres cut

Figure 7.13.: 3D reconstruction results – 1 ∗ 106 coincidences, 20 iterations
(phantom cylinder axis orientation along z-axis)

emitted measured MLEM reconstructed
(a) x-z rods cut

(b) x-z spheres cut

Figure 7.14.: 3D reconstruction results – 1 ∗ 106 coincidences, 20 iterations
(phantom cylinder axis orientation along y-axis)
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Chapter 8.

Conclusions and future directions

J-PET is a novel device not only in terms of use of plastic scintillator strips implying
its unique geometry, but also in terms of modern electronics and at last, but not least,
algorithms employing parallel computing techniques and GPGPU devices.

In the previous chapters of this dissertation, I presented several algorithms and
techniques that form a foundation for image reconstruction software for J-PET scanner.
These algorithms not only work and produce results with comparable quality to
existing devices available on the market, but their performance makes them suitable
for almost realtime on-site measurement visualization and analysis as they comply
with the constraint of producing results below one minute. This makes J-PET device
not only potentially cheaper and easier to manufacture, but also convenient to use.

8.1. Future directions

While all algorithms presented in this work and accompanying source code represent
working proof-of-concept, they can be a subject for further improvements in terms
of performance and functionality. First of all, the software tools produced by source
code accompanying this work and described thoroughly in appendices, provide bare
command line interface. Such interface is best for prototyping, analysis and research,
but for production use it has to be coupled with some dedicated visualization modules.

Another future direction is exploring the usage of other computing devices for
purpose of optimized simulation and image reconstruction. Currently optimized
J-PET GPGPU code uses exclusively CUDA programming interface that is suitable
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only for NVIDIA device family. CUDA was chosen intentionally as NVIDIA devices
represent best FLOPs/dollar ratio today and CUDA interface is most stable, explored
and reliable GPGPU interface. We made some initial attempts to employ other com-
puting accelerators such as Intel Xeon Phi, but the initial performance results were
nowhere close to NVIDIA devices. This comes either straight from NVIDIA devices
highest FLOPs peak performance comparing to the others, but also from easy and
straightforward CUDA programming paradigm. Other parallelization and vectoriza-
tion techniques require either relying on compiler automatic optimizations or OpenMP
constructs, which did not work very well in case of J-PET, or use of manual intrinsics
which is laborious time-consuming process as we have learnt in φ4 project [49]. CUDA
implicit parallelization produces best results in shortest time span.

Porting the GPGPU source code to OpenCL standard, which follows same paradigm
as CUDA and works for devices coming from other manufacturers, could be consid-
ered as well. Recent OpenCL 2.1 standard introduces support for C++ [72], which
could allow to port our code easily to OpenCL. However, all current OpenCL imple-
mentations still do not support version 2.1 of the standard, while just a few support
older version 2.0. Using older OpenCL implementation would require rewriting most
of the code parts into plain C. This would be again very time-consuming process, that
gives no guarantee that we receive better results using NVIDIA competing devices,
such as AMD GPU cards. Therefore it makes sense to explore this direction once
device manufacturers will provide complete support for OpenCL 2.1, that will let
compile and run our code without many modifications on other GPGPU devices.

It has to be noted that we made some attempt to produce SPIR [73] binary code,
runnable on OpenCL compatible devices, out of our C++ source code base using
patched LLVM Clang compiler. This solution was however very fragile and produced
code that worked only for some trivial input. The changes were also not accepted
into Clang base, simply because at the time Khronos was working on supporting C++
officially in OpenCL.

Altogether, we believe that further evolution of programming interfaces, computing
paradigms and device architectures in the upcoming years will make easier to exploit
computing power available in massively parallel computing accelerators, that will
drive further evolution of PET imaging and other medical imaging techniques. We
hope this work can be inspiration for future works and provides good understanding
for J-PET scanner and its image reconstruction methods.
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Accompanying project source code

The source code accompanying this dissertation is a result of over three year’s work
and represents evolution of the various ideas arose during the research on J-PET
simulation and reconstruction. While the codebase is complex, we did our best to
employ best programming techniques and good programming habits making the code
readable and reusable to anyone.

All PET, image reconstruction, simulation and optimization algorithms were de-
veloped solely by the authors and were not copied or derived from any existing
implementations.

A.1. Getting project source code from Git repository

This project source code was versioned from the very beginning using Git version
control system (VCS) and it is hosted on Jagiellonian University server at

https://sorbus.if.uj.edu.pl/pet/tools 1

The repository access is restricted, but will be provided to anyone willing to
contribute to or review this work by requesting the access writing to author’s email

adam.strzelecki@uj.edu.pl

1Will render as 404 Page Not Found for not-logged user.
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A.2. Build prerequisites and CUDA environment

This project was developed and tested on Linux and Mac OS X. It should compile and
run on most UNIX/POSIX compatible platforms. This project may run with no or
minimal modifications on Microsoft Windows, but no official support is provided for
this platform.

This project does not use any third party libraries, especially no PET, image specific
or code optimization libraries, with an exception for

• command line interface arguments parsing provided by cmdline minimalistic
single header library [74],

• unit tests runner framework provided by Catch header only library [75],

• optional geometry description generation relying by Boost geometry library [76].

Minimal CPU-only configuration has following build prerequisites:

1. UNIX compatible build environment, tested on Ubuntu 14.04 LTS Linux and Mac
OS X 10.11

2. C++11 compatible compiler i.e. GCC 4.6, Clang 3.2 or ICC 13

3. CMake [77] 2.8 for build script generation

4. GNU Make 3.8 for building using Makefile

Optional prerequisites, e.g. required for GPGPU optimized modules:

1. CUDA 7.5 (automatically detected by cmake), necessary for GPGPU modules

2. Ninja 1.4 for faster re-builds (with cmake -G Ninja)

3. libpng headers and libraries for PNG output

4. Boost 1.58 for optional geometry calculation

5. QtCreator 3.1 programming environment for comfortable development
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A.3. Preparing and building project using CMake

PET tools project relies on CMake [77] for platform independent build process bootstrap.
In most of the cases it is sufficient to execute cmake within the root of the project to
generate platform specific build files.

-- The CXX compiler identification is Clang 3.7.0
-- Check for working CXX compiler using: Ninja
-- Check for working CXX compiler using: Ninja -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Found OpenMP: -fopenmp=libomp
-- OpenMP found
-- Found CUDA: /usr/local/cuda (found version "7.5")
-- The C compiler identification is AppleClang 7.0.2.7000181
-- Found ZLIB: /usr/lib/libz.dylib (found version "1.2.5")
-- Found PNG: /usr/local/lib/libpng.a (found version "1.5.23")
-- Boost version: 1.58.0
-- Disabled CACHE_ELLIPSE_PIXELS
-- Using WARP GRANULARITY
-- Using MAX_PIXELS_PER_THREAD=12
-- Using MAX_THREADS_PER_BLOCK=512
-- Disabled NORMAL_PHANTOM
-- Enabled USE_KERNEL
-- Disabled USE_RHO_PER_WARP
-- Disabled USE_SENSITIVITY
-- Disabled USE_STATISTICS
-- Using WARP_SIZE=32
-- Configuring done
-- Generating done
-- Build files have been written to: /Users/UJ/Projects/PET

Figure A.1.: Example CMake output for successful PET tools build configuration

Once CMake succeeds setting up build process – all prerequisites are properly
found and resolved, Makefile file will be written by default in UNIX environment. In
order to perform actual build process make command have to be executed in project
root.

Aside default CMake customization options, PET tools define their own compila-
tion options. For best performance these options should not be altered.
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A.4. Producing and reading Doxygen documentation

Source code files, C++ classes, namespaces and built commands are extensively docu-
mented using Doxygen [78] tool and inline comments. The documentation can be built
by running doxygen command in the root of the PET tools project tree, and then read
by opening doc/html/index.html file in the web browser.

SparseMatrix< PixelType, LORType, HitType > Class Template
Reference

Made for efficient storage of large PET system matrix.

See also
Sparse system matrix binary file format

PET2D::Barrel::Geometry

 Inheritance diagram for SparseMatrix< PixelType, LORType, HitType >:

#include <2d/barrel/sparse_matrix.h>

Public Member Functions
 SparseMatrix (S n_pixels_in_row, S n_detectors, S n_tof_positions=1, Hit

n_emissions=0, bool triangular=true)
 Construct new sparse matrix with given parameters. More...

Sort sorted () const
 Returns matrix current sort method. More...

S n_pixels_in_row () const
 Returns number of pixels in row. More...

S n_pixels_in_row_half () const
 Returns half number of pixels in row. More...

S n_detectors () const

Figure A.2.: Example Doxygen documentation page for SparseMatrix class
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A.5. Running tests

J-PET tools project uses unit tests via Catch framework [75] in order to provide high
quality valid code. In order to run tests make test has to be built, then ./test com-
mand has to be run to perform tests.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
test is a Catch v1.3.1 host application.
Run with -? for options

======================================================
All tests passed (61372 assertions in 106 test cases)

Figure A.3.: Output of successful test execution

A.6. PET tools commands

Brief description of PET tools commands compiled during the build process is pro-
vided below for the reader’s comfort. Detailed documentation for these commands
can be found in Doxygen generated documentation.

All commands provide in-place help when supplied with -? or –help command
line option. Simulation or reconstruction commands provide additional -G or –gpu
option to run in GPU accelerated mode.

usage: ./3d_hybrid_matrix [options] ... matrix_file ...
build: OpenMP/CUDA WARP
note: All length options below should be expressed in meters.
options:

-c, --config load config file (file [=])
-n, --n-pixels number of pixels in one dimension (int [=256])
-p, --s-pixel pixel size (float [=auto])
-s, --shape detector (scintillator) shape (square, circle, ...
-w, --w-detector detector width (float [=auto])
-h, --h-detector detector height (float [=auto])

--d-detector inscribe detector shape into circle of ...

Figure A.4.: Partial 3d_hybrid_matrix –help output
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A.6.1. List of commands

2d_barrel_geometry (optional) generates precise geometry description file, used to
calculate analytic P (3.5) representation and iterate through TOR non-zero P
pixels.

This command require Boost library to be present in the system.

2d_barrel_lm_reconstruction performs 2D barrel list-mode reconstruction. This com-
mand is essentially list-mode specific re-implementation of bin-mode reconstruc-
tion described in Chapter 5.

2d_barrel_matrix performs 2D barrel system matrix simulation described in Chap-
ter 4. This file is used by 2d_barrel_reconstruction.

2d_barrel_phantom performs 2D barrel phantom simulation described in Chapter 4
producing an input response file for 2d_barrel_reconstruction.

2d_barrel_reconstruction performs 2D barrel bin-mode reconstruction described in
Chapter 5 from given bin-mode response file and system matrix file.

2d_strip_phantom performs 2D strip phantom simulation from given textual phan-
tom description generating list-mode response file that can be used to perform
reconstruction using 2d_strip_reconstruction.

2d_strip_reconstruction performs 2D strip reconstruction as described in Chapter 6
using given response file.

3d_hybrid_matrix performs 3D slice system matrix simulation as described in Chap-
ter 7 for given z position.

3d_hybrid_phantom performs 3D phantom simulation described in Chapter 7 for
given JSON phantom description generating list-mode response file.

3d_hybrid_reconstruction performs full 3D reconstruction for J-PET scanner as de-
scribed in Chapter 7 from list-mode response file using given geometry file and
optionally system matrix file slice or multiple slices.

3d_tool_crop 3D raw image crop tool

3d_tool_psf 3D PSF FWHM calculation tool
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A.6.2. List of commands not intended for general use

2d_barrel_format_converter converts general 3D position plus time into TOR index
plus TOF position delta. Used to convert external simulation data.

2d_strip_kernel_monte_carlo simulates 2D strip P, equivalent of 2d_barrel_matrix.
Meant to compare 2D strip P analytic approximation quality.

3d_hybrid_sensitivity performs 3D scanner sensitivity simulation and outputs the
3D sensitivity map. (CPU only)

A.7. Source code structure

cmake contains extra CMake modules.

doc present when doxygen is run, contains documentation.

lib contains third-party libraries.

math contains Mathematica modules.

phantoms contains example phantom description files.

scripts contains helper (shell) scripts.

src contains C++ source code.

common common classes for 2D and 3D.

2d 2D generic simulation and reconstruction classes and commands.

geometry 2D generic geometry classes.

barrel 2D barrel simulation and reconstruction.

cuda CUDA (GPU) specific code.

strip 2D strip simulation and reconstruction.

cuda CUDA (GPU) specific code.

3d 3D hybrid classes and commands.

geometry 3D generic geometry classes.

hybrid 3D hybrid simulation and reconstruction.

cuda CUDA (GPU) specific code.

util utility classes and helpers.
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Appendix B.

Result visualization and analysis tools

Some important results and scripts that were performed using PET tools can be found
in a separate repository at

https://sorbus.if.uj.edu.pl/pet/data 1

B.1. PSF FWHM and NRMSE calculation tools

J-PET tool project provides two important analysis tools – 3d_tool_psf for calculating
PSF FWHM described in Section 3.6.2 and 3d_tool_nrmse for calculating NRMSE
described in Section 3.6.3.

While these measures can be calculated by other tools, such as Mathematica, the
built-in tools were optimized to calculate the measures for many image reconstruction
iterations and output textual data that can be later used for plots such as Figure 7.5
presented in Section 7.5.3.

B.2. Using Mathematica for visualization and analysis

Mathematica [79] is not only computer-algebra system (CAS), but also great interactive
visualization and analysis environment with its own language. Many analysis and
plots presented in this work were done using Mathematica 10, and are available as
notebooks – files with .nb extension in data repository.

1Will render as 404 Page Not Found for not-logged user.
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B.3. System matrix visualization

J-PET tools contains math subdirectory containing many basic notebooks and some
Mathematica modules. Most important is 2d_barrel_matrix.m defining

ReadPETMatrix function reading sparse matrix file from given file into optimized
Mathematica representation.

ImagePETMatrix plotting result of ReadPETMatrix, either as sensitivity map or TOR
plot with optional second argument containing list of TOR indices.

B.4. Reconstruction visualization and quality analysis

Mathematica notebook file data/201510_3d_sensitivity/analyze.nb can serve as
an example of how to make an analysis of PET simulation output system matrix file.
As shown in Figure B.1 below, Mathematica was used to visualize interactively the
sensitivity of J-PET “big” barrel scanner in x− y plane depending on position along z
axis of the scanner.

Figure B.1.: data/201510_3d_sensitivity/analyze.nb notebook
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B.5. Other third party tools for visualization

2D reconstruction and simulation tools output .png greyscale files together with
regular output. These files can be displayed using any image viewer. Generated PNG
files are 8-bit, thus are normalized to 0− 255 range, where data minimum value is
mapped to 0 and maximum is mapped to 255.

3D reconstruction and simulation tools output RAW binary files together with
.nrrd (Nearly Raw Raster Data) textual description files. These files can be open by
several analysis and visualization programs supporting NRRD format described in
detail by [80] or any applications capable of reading floating point binary data. The
major advantage of NRRD and RAW binary file tandem is that it stores unnormalized
and un-quantized exact results. So in case of the image reconstruction output, voxel
values represent unaltered number of emissions estimates.

B.6. ParaView for 3D imagery visualization and analysis

ParaView [81] is an advanced open-source visualization application. It supports many
input formats including RAW volumetric data. It can also read NRRD files, that
contain necessary information to load accompanying binary volumetric data.

Figure B.2.: ParaView 3D reconstruction result volumetric display
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B.7. MRIcro simple and 3D visualization tool

MRIcro [82] is recommended to anyone looking for some lightweight application for
3D visualization. It comes in two flavors – MRIcro for OS X which is OS X specific
version and MRIcroGL which is OpenGL multi-platform implementation.

Figure B.3.: MRIcro for OS X visualizing 3D reconstruction result from .nrrd file

MRIcro supports natively NIfTI format, and offers automatic converter from DI-
COM used widely in Europe for computed tomography. It can also read NRRD files
generated by J-PET tools.



Glossary

PET positron emission tomography - imaging technique for PET tomography device or
PET scanner detecting gamma radiation coming from annihilation of positrons
(anti-electrons).

J-PET Jagiellonian PET - PET scanner using polymer plastic scintillators, built at Jagiel-
lonian University in Krakow, subject of this work.

scintillator - element absorbing radiation and emitting visible light.

photomultiplier - element detecting light (arriving photons) as voltage changes on
electrical connectors.

scintillator detector or PET detector - system of scintillator and one or more photo-
multipliers.

time slot or time window - time period relative to reference clock.

coincidence - appearance of signal on given pair of detectors in a single time slot.

response - readout of coincidence measurement.

event - unobserved directly, but indirectly through PET device, emission of two
quanta gamma.

TOR tube of response, alternatively LOR, line of response - scanner response space
element, described by pair of detectors and space spanned between them. Given
response belongs to specific TOR if it is a measurement of detected coincidence
on the detector pair spanning this TOR.

TOF time of flight - additional time information, usually a time difference of signal
detection on photomultipliers pair. Can be used to estimate more precisely
emission position along TOR.
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ML maximum likelihood - measure used to evaluate agreement between the candidate
statistical model parameters, e.g. emission density image, and data-incomplete
observation, e.g. PET scan, according to specific statistical model [54].

EM expectation maximization, MLEM, maximum likelihood expectation maximization -
specific iterative method (algorithm) of estimating maximum likelihood statistical
model parameters [51–53].

LM list mode - representation for PET scan data, carrying detailed information for each
response, unlike simpler representations used for PET imaging based on event
counting, e.g. using binning (histograms).

phantom or imaging phantom - reference object used for scanning, imaging or calibrat-
ing tomography devices, used as substitute for live or cadaver subjects.

pixel - element of 2D discrete image space.

voxel - element of 3D discrete image space.

CPU central processing unit - main processing unit (processor) of computer or com-
puting device, responsible for executing operating system and general purpose
operations.

GPU graphics processing units - specialized processing unit (processor) used for gen-
eration and processing of computer graphics, usually emplaced on dedicated
add-on graphics card.

GPGPU general-purpose computing on graphics processing units - general-purpose com-
putation carried on GPU. GPUs were not designed for GPGPU in the first place,
but were adapted via specialized programming interface.

SIMD single instruction multiple data - computational model and computer architecture
where single machine instruction can operate on multiple operands (data points)
simultaneously, so in a single cycle computer can perform multiple operations,
such as additions or multiplications. However, it is not possible to perform two
different operations at once, in opposition to parallel computing.

parallel algorithm - algorithm executed on multiple independent computing units,
usually made of several independent computing paths.

vector algorithm - algorithm performing computations using SIMD vector instruc-
tions.
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FLOP floating point operation - operation or computer instruction operating on floating
point number.

FLOPS floating point operations per second - measure of processor performance ex-
pressed as a maximum number of floating point operations the processor is
capable of executing within a second.

memory bandwidth - measure of memory throughput performance expressed as a
maximum number of bytes that can be transferred from or to memory within a
second.

OpenMP - programming interface standard for performing parallel computation on
CPU.

CUDA - programming interface for performing GPGPU on NVIDIA GPU devices.

SIMT single instruction multiple threads - computational model specific to NVIDIA
GPU devices, similar to SIMD, but from the programmer’s perspective using
scalar instructions and so called CUDA threads, that are implicitly translated into
SIMD vector elements and vector instructions of GPU.

Xeon Phi - family of Intel computational accelerators based on well known x86 archi-
tecture, using special extended 512-bit vector registers and instructions, capable
of carrying 16 single precision floating point numbers.
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[7] Konrad Szymański, Paweł Moskal, ..., Adam Strzelecki, et al. “Simulations of γ

quanta scattering in a single module of the J-PET detector”. In: Bio-Algorithms
and Med-Systems 10.2 (2014), pp. 71–77.

[8] Paweł Kowalski, Paweł Moskal, Wojciech Wiślicki, Lech Raczyński, ..., Adam
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