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Abstract

This thesis consists of three publications, a review chapter on the basic concepts
of Stokes flows and two original papers on charged particles sedimenting under
gravity in a Stokes flow.

It has been known from the literature that for certain initial conditions, two
uncharged spherical particles with different densities and radii sedimenting in a
Stokes flow can stay close together even after long periods of time. Uncharged
stationary relative positions have the line of particle centers either aligned with
or at a right angle with the direction of gravity. The bounded relative orbits
consist of periodic orbits and heteroclinics. However, these bounded relative
orbits and stationary relative positions are at best neutrally stable. Also, the
volume of initial conditions in which the relative distance of uncharged particles
stays bounded is small.

In this thesis it is shown that electrostatic interaction changes the qualitative
dynamics of the pair of particles settling under gravity in a viscous fluid. In par-
ticular, two charged particles settling in a Stokes flow may have configurations
which are asymptotically stable to perturbations. Thus Earnshaw’s Theorem,
which states that there is no stable steady configuration of charged particles in
a vacuum, does not generalize to the case of charged particles in a fluid.

A pair of charged particles can have stable stationary relative positions with
a line of particle centers aligned with gravity or inclined. There are no periodic
orbits for pair of charged particles settling under gravity in a Stokes flow. In
addition, there can be multiple stable stationary relative positions. For given
values of the parameters, there can exist two stable stationary relative position
with line of particle centers aligned with gravity. If there exists a stable sta-
tionary relative position with line of particle centers inclined with gravity then
there are two found symmetrically across the line of symmetry.

Stable doublets only form between particles of different densities and differ-
ent radii, but can exist even if the charge is arbitrarily small. In fact, analyzing
the conditions when stable and non-overlapping doublets can exist gives bounds
on particle parameters - ratio of particle densities relative to the fluid density,
ratio of particle radii and the ratio of characteristic electrostatic force to charac-
teristic gravitational force. Phase space diagrams are given describing bounds
of the ratio of Stokes velocities and particle radii. The region consistent with
the existence of a stable stationary relative position is given, as well as regions
in which stability to some but not all perturbations can exist. A diagram is

2



also provided which shows the maximum distance between the pair of particles
given the ratio of Stokes velocity and ratio of particle radii.

The larger particle is always above the smaller particle at the stable sta-
tionary relative position. For there to exist a stable stationary state, either the
particles must be both denser than the fluid or both less dense than the fluid. If
the particles are denser than the fluid, then the smaller particle must be denser
than the larger one and if they are less dense then the smaller particle must be
less dense than the larger one. When the line of particle centers is inclined with
respect to gravity, the Stokes velocities must be such that the isolated larger
particle would sediment faster than the smaller particle, but when the line of
particle centers is aligned with gravity there are examples where the isolated
larger particle could have greater or lower Stokes velocity than the smaller one.

There are stable stationary relative positions for arbitrarily large separa-
tions between the particles. For large separations, the upper particle must have
a slightly greater Stokes velocity than the lower one. Additionally, the char-
acteristic electrostatic force must be large in comparison to the characteristic
gravitational force. It is also shown that if the particles have both very close
Stokes velocities and very close densities, then the ratio of characteristic forces
consistent with a stable stationary relative position can be very small.

The basin of attraction of the stationary relative position is can have a
horizontal cross section radius large in comparison to the sum of particle radii
and is unbounded above. The set of relative orbits which stay bounded is
separated from the relative orbits which go to infinity by a seperatrix curve. On
this seperatrix there is a saddle point stationary relative position. The distance
between particles when they are at this saddle point is a good measure of the
radius of the cross-section of the basin of attraction of the stable stationary
relative position. The qualitative dynamics are established using the Poincare-
Bendixson theorem.

The existence and large basins of attraction of such stable doublets of charged
sedimenting particles is fundamental. With the broad range of parameters con-
sistent with the existence of stable doublets, these results may be significant for
dilute charged particulate systems in biological, medical and industrial contexts.
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Streszczenie
Na  niniejszy  doktorat  składają  się:  jeden  artykuł  przeglądowy  na  temat 

podstawowych pojęć przepływów Stokesa i dwie oryginalne publikacje poświęcone 
cząstkom naładowanym sedymentującym w przepływie Stokesa.

Z  literatury  wiadomo,  że  dla  pewnych  warunków  początkowych  dwie 
nienaładowane  cząstki  sferyczne  o  różnych  gęstościach  i  promieniach  opadające 
grawitacyjnie w przepływie Stokesa mogą pozostawać blisko siebie nawet na długich 
skalach czasu. Stacjonarne względne położenia nienaładowanych cząstek  są takie, że 
linia  prosta  łącząca  środki  cząstek  jest  równoległa  lub  prostopadła  do  grawitacji.  
Ograniczone  względne  trajektorie  to  orbity  periodyczne  i  heterokliniki.  Jednakże 
zarówno ograniczone względne trajektorie jak i  punkty stacjonarne są co najwyżej 
neutralnie stabilne. Poza tym objętość zbioru położeń początkowych prowadzących 
do ograniczonych względnych trajektorii jest niewielka. 

W niniejszym doktoracie zostało pokazane, że oddziaływanie elektrostatyczne 
jakościowo  zmienia  dynamikę  pary  cząstek  opadających  grawitacyjnie  w  lepkim 
płynie.  A mianowicie,  dwie  naładowane  cząstki  opadające  w  płynie  opisywanym 
przybliżeniem Stokesa mogą tworzyć konfiguracje asymptotycznie stabilne względem 
zaburzeń. A zatem dla układu cząstek w naładowanym płynie nie można uogólnić 
twierdzenia Earnshawa, które orzeka, że w próżni nie ma stabilnych stacjonarnych 
konfiguracji cząstek naładowanych. 

Para cząstek naładowanych może tworzyć stabilną konfigurację o pionowej 
lub nachylonej linii łączącej środki cząstek, natomiast nie może wykonywać ruchów 
periodycznych.  W  dodatku  dla  ustalonych  wartości  parametrów,  możliwe  jest 
istnienie  więcej  niż  jednej  stabilnej  stacjonarnej  konfiguracji  względnych  położeń 
cząstek. W takim przypadku linie proste łącząca środki cząstek mogą być zarówno 
wzdłuż kierunku grawitacji jak i względem niego nachylone. 

Stabilne pary mogą tworzyć tylko takie cząstki naładowane, które mają różne 
gęstości i promienie, natomiast ich ładunek może być dowolnie mały. W pracy podane 
zostały ograniczenia na wartości parametrów układu – stosunku gęstości względnych 
cząstek, stosunku promieni oraz stosunku charakterystycznej siły elektrostatycznej do 
charakterystycznej siły grawitacji – konieczne do spełnienia aby zaistniała możliwość 
utworzenia przez cząstki naładowane stabilnej pary. Wyznaczono diagram fazowy w 



przestrzeni stosunku promieni i oraz stosunku prędkości Stokesa, podając obszary, dla 
których możliwe jest istnienie stabilnych stanów stacjonarnych, a także obszary, gdzie 
występują  konfiguracje  stabilne  tylko  ze  względu  na  niektóre  (nie  wszystkie) 
zaburzenia.  Dodatkowo  pokazane  zostało  jakich  wartości  odległości  między 
cząstkami w stabilnym stanie stacjonarnym można oczekiwać dla jakich stosunków 
prędkości Stokesa i promieni.

W stabilnej konfiguracji  stacjonarnej,  większa cząstka jest zawsze powyżej 
cząstki mniejszej, a poza tym obie cząstki muszą mieć większe gęstości niż płyn, lub 
obie  mniejsze.  Jeśli  cząstki  są  gęstsze  niż  płyn,  to  w  stabilnej  konfiguracji  
stacjonarnej mniejsza cząstka musi być gęstsza niż większa cząstka. Jeśli zaś cząstki 
są mniej  gęste od płynu,  to w stabilnej  konfiguracji  stacjonarnej  mniejsza cząstka 
musi być mniej gęsta niż większa cząstka. Gdy w stabilnym stanie stacjonarnym linia  
prosta  łącząca  środki  cząstek  jest  nachylona  względem  kierunku  grawitacji,  to 
prędkości  Stokesa  są  takie,  że  izolowana  większa  cząstka  opadałaby szybciej  niż 
mniejsza. Jeśli jednak  linia prosta łącząca środki cząstek jest równoległa do kierunku 
grawitacji,  to są przykłady pokazujące na to, że  izolowana większa cząstka może 
mieć zarówno większą jak i mniejszą prędkość Stokesa od cząstki mniejszej.

Istnieją  stabilne  stacjonarne  położenia  względne  dla  dowolnie  dużych 
odległości między cząstkami. Dla dużych odległości, górna cząstka musi mieć nieco 
większą  prędkość  Stokesa  od  niższej  cząstki.  Ponadto  charakterystyczna  siła 
elektrostatyczna musi  być  duża w porównaniu z charakterystyczną siłą  grawitacji. 
Pokazano także, że jeśli prędkości Stokesa obu cząstek bardzo nieznacznie różnią się 
od  siebie,  a  ich  gęstości  są  niemal  równe,  to  stabilne  stacjonarne konfiguracje  są 
osiągane  dla  bardzo  małych  wartości  opisanego  powyżej  stosunku  sił 
charakterystycznych. 

Basen  przyciągania  stanów  stacjonarnych  względnych  położeń  jest 
nieograniczony od góry,  przy czym promień poziomego przekroju czynnego może 
być duży w porównaniu z sumą promieni cząstek. Zbiór ograniczonych orbit ruchu 
względnego jest oddzielony saparatrysą od orbit dążących do nieskończoności. Na tej 
saparatrysie  ruchów  względnych  znajduje  się  punkt  stacjonarny  będący  siodłem. 
Odległość między cząstkami  w tym punkcie  jest  w przybliżeniu taka jak promień 
przekroju czynnego dla trajektorii przyciąganych do stabilnego punktu stacjonarnego. 
Jakościowa dynamika jest wyznaczona z użyciem twierdzenia Poincaré-Bendixsona.

Istnienie dużych basenów przyciągania stabilnych par naładowanych cząstek 
opadających  w  lepkim płynie  jest  fundamentalne.  Zważywszy  na  to,  że  stabilne 
stacjonarne konfiguracje par wystepują dla szerokiego zakresu parametrów, wyniki  
niniejszego  doktoratu  mogą  być  znaczące  dla  rozrzedzonych  układów  cząstek  w 
kontekstach biologicznych, medycznych i przemysłowych.



1 Motivation

This thesis is made up of three publications. The publications are a review
chapter on the basic concepts of Stokes flows [1] and two original papers on
charged particles sedimenting under gravity in a Stokes flow [2, 3].

Non-inertial ”Stokes flows”, introduced in [4] , have a central place in sedi-
mentation [5, 6, 7] and the dynamics of micro and nanoparticles more generally
[8, 9, 10, 11, 12, 13, 14, 15].

The dynamics of hydrodynamically interacting particles in a Stokes flow can
become complicated. Large scale spontaneous self-organization into ordered
structures has been observed in, for instance, many drops in a Hele-Shaw cell [16,
17] and many magnetically active rollers near a repelling wall [18]. Spontaneous
organization has applications such as the design of micro swimmers which can
capture cargo [19] for, e.g., drug delivery [20]. Smaller scale organization of
particles in Stokes flows has been observed such as formation of doublets for
drops in a Hele-Shaw cell [21], pairs of magnetically active rollers near a repelling
wall [22] and many others.

It has been shown [23] there is a set of initial conditions for two uncharged
spherical particles of different radii and different masses settling under gravity in
a Stokes flow for which the particles do not tend to separate. The relative orbits
generated by these initial conditions consist of periodic orbits and heteroclinic
orbits. The bounded relative orbits and stationary relative positions are at best
neutrally stable. Further the set of initial conditions which lead to these orbits is
bounded. The set is small enough that capture will probably have no significant
effect on the dynamics of sedimenting suspensions e.g. [24, 25, 26, 27].

The question that motivates this thesis is if it is possible for new forces,
such as electrostatic forces, to stabilize pairs of sedimenting particles. Electro-
statically stabilized pairs of sedimenting particles are interesting for the simple
reason that charged particles in fluids are very common. However, electrostatic
forces in a vacuum are destablizing by Earnshaw’s Theorem, introduced in [28].
Geometrically, Earnshaw’s theorem holds because the electrostatic field is a har-
monic function away from the charges [29] and therefore the strong maximum
principle (see 6.4.2 in [30]) implies there can be no minimum to the electrostatic
potential away from the boundary. It will be shown in this thesis that this
theorem does not generalize to the presence of a fluid.
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2 Goal & Structure Of The The-
sis

The goal of this thesis is to utilize a simple ”point particle” model to understand
the conditions under which charged particles sedimenting under gravity in a
Stokes flow can form stable doublets with large basins of attraction. In order
to accomplish this goal, this thesis consists of three publications [1, 2, 3].

A. Trombley, C.I. and Ekiel-Jeżewska, M.L., 2019. Basic Concepts of Stokes
Flows. In Flowing Matter (pp. 35-50). Editors: Toschi, F. and Sega, M.,
Springer, Cham. https://doi.org/10.1007/978-3-030-23370-9_2

• Abstract: Various properties essential to the understanding of Stokes
flow are discussed, including reversibility, negligibility of inertial forces
and minimum energy dissipation theorem. Illustrative examples re-
lated to these properties are provided: inertial terms for the fluid flow
generated by a rotating cylinder, force on a rotating cylinder close to
a solid plane wall, Stokes paradox, energy dissipation for particles of
different shapes. The meaning and the limits of the Stokes approxi-
mation are discussed in the context of more general equations.

• This work was supported in part by Narodowe Centrum Nauki under
grant No. 2014/15/B/ST8/04359. We acknowledge scientific benefits
from COST Action MP1305.

B. Trombley, C.I. and Ekiel-Jeżewska, M.L., 2018. Stable Configurations of
Charged Sedimenting Particles. Physical Review Letters, 121(25), p.254502.
https://doi.org/10.1103/PhysRevLett.121.254502

• Abstract: The qualitative behavior of charged particles in a vacuum
is given by Earnshaw’s theorem, which states that there is no steady
configuration of charged particles in a vacuum that is asymptotically
stable to perturbations. In a viscous fluid, examples of stationary
configurations of sedimenting uncharged particles are known, but
they are unstable or neutrally stable—they are not attractors. In
this Letter, it is shown by example that two charged particles set-
tling in a fluid may have a configuration that is asymptotically sta-
ble to perturbations for a wide range of charges, radii, and densities.
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The existence of such “bound states” is essential from a fundamental
point of view and it can be significant for dilute charged particulate
systems in various biological, medical, and industrial contexts.

• The supplemental material to this article is also included. The sup-
plemental material was published at https://journals.aps.org/

prl/supplemental/10.1103/PhysRevLett.121.254502

• This Letter was supported in part by Narodowe Centrum Nauki un-
der Grant No. 2014/15/B/ST8/04359. We acknowledge scientific
benefits from COST Action MP1305.

C. Trombley, C.I. and Ekiel-Jezewska, M.L., 2021. Relative trajectories of
two charged sedimenting particles in a Stokes flow. Journal of Physics
Communications. Accepted Manuscript online 27 May 2021 . https:

//doi.org/10.1088/2399-6528/ac060c

• Abstract: We study the dynamics of two charged point particles
settling in a Stokes flow. We find what ranges of initial relative po-
sitions and what ranges of system parameters lead to formation of
stable doublets. The system is parameterized by the ratio of radii,
ratio of masses and the ratio of electrostatic to gravitational force.
We focus on opposite charges. We find a new class of stationary
states with the line of the particle centers inclined with respect to
gravity and demonstrate that they are always locally asymptotically
stable. Stability properties of stationary states with the vertical line
of the particle centers are also discussed. We find examples of sys-
tems with multiple stable stationary states. We show that the basin
of attraction for each stable stationary state has infinite measure,
so that particles can capture one another even when they are very
distant, and even if their charge is very small. This behavior is qual-
itatively different from the uncharged case where there only exists a
bounded set of periodic relative trajectories. We determine the range
of ratios of Stokes velocities and ratio masses which give rise to non-
overlapping stable stationary states (given the appropriate ratio of
electrostatic to gravitational force). For non-overlapping stable in-
clined or vertical stationary states the larger particle is always above
the smaller particle. The non-overlapping stable inclined stationary
states exist only if the larger particle has greater Stokes velocity, but
there are non-overlapping stable vertical stationary states where the
larger particle has higher or lower Stokes velocity.

• This work was supported in part by the National Science Centre
under grant UMO2018/31/B/ST8/03640.

For the remainder of this introduction, these three publications will be re-
ferred to as article A [1], article B [2] and article C [3]. In section 3, the
background of Stokes Flows from article A and the point particle model ana-
lyzed in article B and article C are expounded. In section 4 there is a brief
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overview of some of the original results in article B & article C. A summary
and some general conclusions are drawn in section 5. Full-text articles along
with supplementary materials are provided in section 7. Signed declarations of
author contributions are provided in Section 8.
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3 Methods & Model

3.1 Stokes Flows

Many fluid systems have weak inertial fluid forces in comparison to viscous
forces. Stokes flows are fluid flows in which inertial forces are dominated by
viscous forces to the point that inertial forces are negligible. Many high quality
introductions to Stokes flows have been written such as those in [8, 9, 10, 11,
12, 13, 14, 15, 31]. The Stokes equations of an incompressible fluid are

µ∇2u−∇p = 0 (3.1)

∇ · u = 0 (3.2)

where µ is the dynamic viscosity, u is the fluid velocity and p is the fluid
pressure.

Article A is a review chapter on the basic concepts of incompressible Stokes
flow. This subsection will follow that paper. In article A, two approaches to
Stokes flow are given: 1) starting from the Navier-Stokes equations and moving
to the limit of low Reynolds number & 2) finding the differentiable and solenoidal
vector field which attains the minimum of the extensive energy dissipation rate
for given boundary conditions. In addition, article A covers topics such as
reversibility of Stokes flows and the relation between Stokes and other fluid flow
equations.

For now, I will discuss the Stokes equations using the ”variational” approach
as in section 2.4 of article A, while also drawing on 3.4 of [8] and section 2.2
of [11]. There are many interesting comments on variational methods in fluid
mechanics in general in [32].

Let the flow u be a vector field which is continuously differentiable and
solenoidal - that is, u obeys equation (3.2) - within a volume V and with given
boundary conditions on ∂V . Further, let eu be the rate of strain tensor given
component-wise as

euij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (3.3)

.
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An integral of eu multiplied by itself is the extensive energy dissipation rate
E

E =

∫
2µeu : eudV (3.4)

where : is the double dot product. In article A, there is a brief demonstration
that the differentiable & solenoidal minimizer of this integral subject to bound-
ary conditions solves Stokes equations (3.1) & (3.2) with the same boundary
conditions. Similar demonstrations can be found in [11] and other sources. In
fact, the minimum energy dissipation principle, introduced in [33], states that
a necessary and sufficient condition for a differentiable solenoidal vector field to
minimize integral (3.4) subject to given boundary conditions is for u to solve
the Stokes equations (3.1) & (3.2) for the same boundary conditions.

This variational point of view can be useful for reasoning about Stokes flows.
One might wonder if an object with a jagged boundary experiences more drag
(i.e. force component antiparallel with motion) than its convex hull. But be-
cause Stokes flows minimize the extensive energy dissipation rate E, they exhibit
inclusion monotonicity [34]. One consequence of inclusion monotonicity is that
a large particle which could include a smaller particle must experience at least
as much drag as the small particle when undergoing the same translation in
a fluid with the same boundary conditions. Therefore, for instance, making a
particle convex by filling in the jagged bits cannot reduce the drag on a particle.
For more discussion see section 2.4 of article A.

This concludes the material from article A which will be used in this in-
troduction. However, one can also observe that (3.1) & (3.2) are linear partial
differential equations. Therefore they can be solved by Green’s function meth-
ods. For an unbounded fluid which is at rest far from the particles, the Green
Tensor G/8πµ to find u at a given point r is

1

8πµ
G(r) =

1

8πµ|r|
(I +

r⊗ r

|r|2
) (3.5)

where I is the identity tensor. Notice that G is symmetric under the mapping
r→ −r. The product of this tensor with an external force gives a velocity field,
or ”Stokeslet”. There is also a Green tensor for the pressure [11]. The Green
tensor (3.5) - which is also sometimes called the Oseen tensor - will be used in
our analysis of the dynamics of a pair of charged settling particles in a Stokes
flow.

3.2 Charged Point Particles Settling Under Grav-
ity In A Stokes Flow

In article B & article C, a model was introduced in order to examine the dy-
namics of a pair of charged particles with radii a1 & a2, masses M1 & M2 and

11



Figure 3.1: (a) Geometric coordinates chosen for a pair of charged particles
sedimenting in a viscous fluid under gravity with radii a1 & a2, reduced masses
m1 & m2 and charges q1 & q2. Interparticle position d and its angle θ from the
direction perpendicular to gravity is also shown. (b) Diagram of external forces
on the same system.

charges q1 & q2 sedimenting under constant gravity in a Stokes flow with density
ρ and dynamic viscosity µ. Particle labels are chosen so that a1 ≤ a2. To take
care of buoyancy, the reduced mass mi=Mi−4

3πa
3
i ρ is used for particle i = 1, 2.

This system is illustrated in figure 3.1(a).
The model is constructed using the ”point particle approximation” where

the forces are assumed to act on the centers of the particles. The point particle
approximation may be physically accurate if the particles are not too close.

With external force fi acting on particle i and assuming the fluid velocity
goes to zero far from the pair of particles we can use (3.5) to find the Stokeslet
of particle i at the location of the center of particle 3− i

1

8πµ
G(d) · fi (3.6)

where d is the vector starting on the center of particle 1 and ending on the
center of particle 2 as in 3.1(a). This is used as the interaction contribution to
particle velocity.

The self-contribution of the particle to its own velocity comes from Stokes
law

1

6πµai
fi (3.7)

The sum of (3.6) & (3.7) gives the velocity of each particle.
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Moving on to the external forces fi: gravitational and electrostatic. The
diagram of external forces is in figure 3.1(b). A unit vector ẑ is chosen so that
the gravitational force fm,i on particle i is

fm,i = −migẑ. (3.8)

where g is the acceleration due to gravity. In order to arrive at the simplest
possible model and apply the point particle approximation consistently, the
electrostatic force fq,i in article B & article C was chosen to be Coulomb, i.e.

fq,i(d) = (−1)ikqiq3−i
d

|d|3
(3.9)

where k is Coulomb’s constant. This approximation leaves out considerations
such as anisotropy of charge, motile charges on the surface of the particle and
screening. In total, the sum of the external forces acting on particle i is

fi(d) = fm,i + fq,i(d) (3.10)

With those external forces, one can find the relative particle center velocity
ḋ in the point particle approximation. The result is the following nonlinear
vectorial ordinary differential equation

ḋ =

(
1

8πµ
G(d) · f1(d) +

1

6πµa2
f2(d)

)
−
(

1

8πµ
G(d) · f2(d) +

1

6πµa1
f1(d)

)
(3.11)

The term in the first parentheses is the velocity of particle 2 and the term
in the second is the velocity of particle 1.

Reasoning about equation (3.11) is simplified by non-dimensionalization.
The units chosen are a length unit L and velocity unit V0.

L = a1 + a2, (3.12)

V0 =
m2g

6πµL
(3.13)

From this one can define, e.g. a characteristic time scale T = L/V0. Notice
that looking at systems with different viscosity merely changes the units. This
is because Stokes flows are always dynamically similar. One can also see the
nondimensional separation vector between particle centers is

α =
d

L
(3.14)

It will also be helpful to define α = |α| as the norm of the nondimensional
separation vector. In article B, it was found that the system depends on three
non-dimensional parameters:
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β = − kq1q2
L2m2g

(3.15)

γ =
a1
a2
, (3.16)

δ =
m1

m2
(3.17)

One can see that β is a ratio of a characteristic gravitational force, γ is the
ratio between particle radii and δ the ratio of reduced masses. Parameters β
& γ are defined to be positive when the particles are denser than the fluid and
the charges are opposite. For a discussion of how the system behaves when one
or both particles are less dense than the fluid, see the supplemental material
to article B. Equations (3.15) - (3.17) correspond to equations (6) in article B
and equations (12)-(14) in article C. With these definitions, δ/γ is the ratio of
Stokes velocities and δ/γ3 is the ratio of reduced particle densities.

Nondimeninsionalizing equation (3.11) one gets the following non-dimensional
nonlinear vector ordinary differential equation

α̇ =
3

2|α|3
β G ·α+

3

4
(1− δ)G · ẑ− β (1 + γ)2

γ|α|3
α

− (γ − δ)(1 + γ)

γ
ẑ (3.18)

where G is the nondimensionalized Green’s tensor

G(α) =
1

|α|
(I +

α⊗α
|α|2

) (3.19)

The results in article B & article C were established via mathematical anal-
ysis of equation (3.18), which is equation (9) in article B and equation (14) in
article C.

There are two coordinate systems which are convenient to analyze (3.18)
in. The first is a Cartesian coordinate system such that x̂ is an unit vector
orthogonal with ẑ and in the plane with the particle centers and ẑ. Therefore,
α = αxx̂+αz ẑ. In this coordinate system equation (3.18) becomes the following
nonlinear system of ordinary differential equations

α̇x = 3β
αx
α4
− β (1 + γ)2

γ

αx
α3

+
3(1− δ)

4

αxαz
α3

(3.20)

α̇z = 3β
αz
α4
− β (1 + γ)2

γ

αz
α3

+
3(1− δ)

4

α2
x + 2α2

z

α3
− (γ − δ)(1 + γ)

γ
(3.21)

which are equations (17) & (18) in article C.
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The other convenient coordinate system is polar coordinates where α = |α|
as earlier and θ is defined to be the angle from the horizontal. In this coordinate
system, equation (3.18) becomes the following nonlinear system of ordinary
differential equations

α̇ =
β

α2

(
3

α
− (1 + γ)2

γ

)
+

(
3(1− δ)

2α
− (γ − δ)(1 + γ)

γ

)
sin(θ) (3.22)

αθ̇ =

(
3(1− δ)

4α
− (γ − δ)(1 + γ)

γ

)
cos(θ) (3.23)

which are equations (21) & (22) in article C.
Equation (3.18) and its coordinate forms (3.20) - (3.23) are the basic equa-

tions of the dynamics investigated in article B & article C.
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4 Overview Of Original Results

In this section I will summarize some of the original results in article B & article
C. In article B, it was demonstrated from the vector ordinary differential equa-
tion (3.18) that the two settling charged point particles with particle centers
aligned with gravity can have stable stationary relative positions, where stabil-
ity is defined as returning to the original relative position after perturbation. By
linearizing around a stationary relative position, necessary and sufficient condi-
tions for the stability of a stationary relative position were given and analyzed.
In article C, it was demonstrated that such stable stationary states exist also
for systems where the line of particle centers is inclined with respect to gravity.
Further, it was shown in article C that the basin of attraction for a stable sta-
tionary relative position can be large in comparison to the sum of particle radii.
Article B & article C both find bounds on the region of parameter space of ra-
tio of characteristic forces, ratio of reduced masses and ratio of radii consistent
with the existence of non-overlapping stable stationary relative positions and
estimate values of interparticle distance for given regions of parameter space.

4.1 Stationary States & Local Asymptotic Sta-
bility

Article B focuses on finding the stationary and stability conditions when the
line of particle centers is aligned with gravity and particle 2 is above particle 1,
i.e. α = α∗ẑ, where α∗ > 0. There are no stable stationary relative positions
on the ray θ = 3π

2 , so there is no restriction in taking α∗ > 0. On the ray
θ = π/2, the right hand side of equation (3.23) is identically zero. Therefore,
the stationary condition is

0 = 6γβ − 2β(1 + γ)2α∗ + 3γ(1− δ)α∗2 − 2(γ − δ)(1 + γ)α∗3 (4.1)

which is equation (14) in article B and equation (39) in article C. This
equation is linear in β and δ and non-linear in γ and α∗.

The stability conditions are found by linearizing around a stationary relative
position. This intuitive approach is shown to be necessary and sufficient for local
asymptotic stability in the supplemental material to article B by the Lypunov
function method. Letting α = α∗ + εr and θ = π

2 + εθ, the linear dynamics are
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[
ε̇r
ε̇θ

]
≈ − 1

γα∗3
A ·

[
εr
εθ

]
(4.2)

where

A =

[
λ1 0
0 α∗λ2

]
(4.3)

and

λ1 = β(1 + γ)2 − 3γ(1− δ)α∗ + 3(γ − δ)(1 + γ)α∗2 (4.4)

λ2 = 3γ(1− δ)− 4(γ − δ)(1 + γ)α∗ (4.5)

Linear ordinary differential equation with constant coefficients (4.2) is equiv-
alent to equations (10) & (11) in article B and equations (34) & (35) in article
C. Because of the spherical symmetry of the charge, the electrostatic force only
effects the radial coordinate, not the angle. Because A is a diagonal matrix,
the eigenvalues are simply the diagonal entries. Therefore the system is stable
if and only if

0 < β(1 + γ)2 − 3γ(1− δ)α∗ + 3(γ − δ)(1 + γ)α∗2 (4.6)

0 < 3γ(1− δ)− 4(γ − δ)(1 + γ)α∗ (4.7)

These inequalities are equivalent to inequalities (15) & (16) in article B and
are inequalities (36) & (37) in article C. The stationary and stability condi-
tions in those articles are equivalent, but are in different coordinate systems
(Cartesian in article B, radial in article C).

In article C, the equivalents of (4.1) - (4.7) are found for particles in arbitrary
orientations. Consider the case of an inclined stationary relative position with
separation vector α† = |α| and angle θ† 6= π/2. The stationary conditions can
be read off equations (3.22) & (3.23). One sees that the inclined stationary
relative positions are at

α† =
3(1− δ)γ

4(γ − δ)(1 + γ)
(4.8)

sin(θ†) = β
4(1 + γ)(1 + 3δ − 3γ − δγ)

3γ(1− δ)2α†
(4.9)

which are equations (44) & (45) in article C. Interestingly, the charge only
effects the angle, not the interparticle distance. This is because of our assump-
tion of spherical symmetry of the charge. Further, the sine of the angle of the
particle centers is proportional to the ratio of characteristic electrostatic force
to characteristic gravitational force.
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The same linearization method as (4.2) is used to find the conditions for
local asymptotic stability in this case. Letting α = α† + εr and θ = θ† + εθ and
linearizing one gets[

ε̇r
ε̇θ

]
≈

[
− 3β
α†4

(γ−δ)(1+γ)
γ cos(θ†)

− (γ−δ)(1+γ)
α†2γ

cos(θ†) 0

] [
εr
εθ

]
(4.10)

which corresponds to equations (46) & (47) in article C. Notice that the
matrix in (4.10) does not have A as a limit as θ → π

2 .
Now to find the stability condition from (4.10). A real 2 × 2 matrix has

eigenvalues with negative real parts if and only if the determinant is positive
and the trace is negative. Doing some algebra one can see the stability condition
for non-identical particles with an inclined stationary relative position is simply
β > 0, i.e. opposite charges, which is inequality (50) in article C.

4.2 Necessary Conditions On Parameters For Non-
Overlapping Stable Stationary Relative Po-
sitions

Having found the necessary and sufficient conditions for a locally asymptotically
stable stationary relative position for with line of particle centers either aligned
with gravity or inclined, the question is now: what ranges of parameters - ratio
of reduced masses δ, ratio of radii γ or ratio of characteristic forces β - are
consistent with the existence of a stable stationary relative position? Articles
B & C both concentrated on the case when the particles are non-overlapping at
the stable stationary relative position, i.e.

α∗ > 1 (4.11)

α† > 1 (4.12)

Inequality (4.11) is inequality (17) in article B and inequality (53) in article
C.

The question of parameters must be broken into two sub-questions: (a)
”What ranges of parameters are consistent with the existence of a stable sta-
tionary relative position with line of particle centers aligned with gravity?” and
(b) ”What ranges of parameters are consistent with the existence of a stable
stationary relative position with line of particle centers inclined with gravity?”.

I will start with stable stationary relative positions with line of particle
centers aligned with gravity, following article B & section 7 in article C. Ma-
nipulating (4.6) & (4.7) it can be shown that some necessary conditions for
vertically aligned stable stationary states are
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δ > 0 (4.13)

δ

γ3
> 1 (4.14)

β > 0 (4.15)

1 6= γ (4.16)

These inequalities follow from inequalities (18) - (21) in article B. Inequality
(4.13) shows that the sedimenting particles must either both be denser than
the fluid or both less dense. Inequality (4.14) shows that the smaller particle
must be denser than the larger particle if they are denser than the fluid or the
contrary if less dense. There is further discussion of the case when particles are
less dense than the fluid in the supplemental material to article B. Inequality
(4.15) shows that opposite charges are necessary to stabilize the system. Finally,
inequality (4.16) demonstrates the particles must have different radii. This is
shown in the supplemental material to article B.

γ

0 0.2 0.4 0.6 0.8 1

δ
 /

 γ

0

0.5

1

1.5

2

Figure 4.1: Phase diagram of vertical stationary states in the parameter space
of the ratio of particle radii γ and the ratio of the particle Stokes velocities δ/γ.
Non-overlapping stable stationary relative positions can exist in the black but
not in the white region.

More detailed bounds on the ratio of Stokes velocities δ/γ & ratio of radii
γ are discussed in detail in section 7 of article C. A simplified phase diagram
is shown in figure 4.1. In the black area of figure 4.1, stable stationary relative
positions can exist. The angular stability condition (4.7) and the feasibility
condition (4.11) give a lower bound of the black area

δ

γ
>

4γ + 1

4 + γ
(4.17)
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which is inequality (59) in article C. The upper bound comes from using
the stationary condition (4.1) to eliminate β from the radial stability condition
(4.6) and solving for δ/γ. The upper bound is

δ

γ
< max

{
18γ + 4(1 + γ)3 − 3(1 + γ)(1 + 7γ)

18γ2 + 4(1 + γ)3 − 3γ(1 + γ)(7 + γ)
, 1

}
(4.18)

which is equation (63) in article C. Inequalities (4.17) & (4.18) specify the
range of the ratio of Stokes velocities and ratio of radii consistent with the
existence of a stable stationary relative position.

Moving on to the parameters consistent with stable stationary relative po-
sitions with line of particle centers inclined with gravity, it has already been
noted that if an inclined stationary relative position exists then

β > 0 (4.19)

is a necessary and sufficient condition for stability. From the stationary
condition on interparticle distance for inclined particles (4.8) and the fact that
the separation vector must have positive norm one gets

(1− δ)(γ − δ) > 0 (4.20)

which is equation (24) in article C. Further, the stationary condition (4.8)
& the feasibility condition (4.12) entail

4γ + 1

4 + γ
<
δ

γ
< 1 (4.21)

The lower bound is the same as in figure 4.1 The above and equation (4.20)
entail

δ < 1 (4.22)

Now that some bounds on the parameter set have been established, some re-
lations which hold for stable stationary relative positions with large separations
- i.e. α∗ � 1 & α† � 1 - can be outlined.

Again I will start with the case when the line of particle centers is aligned
with gravity, following article B. From the stationary condition (4.1) and sta-
bility conditions (4.6) & (4.7) in the limit of α∗ � 1 the following relations
hold

1− δ

γ
≈ 3(1− γ)

4(1 + γ)

1

α∗
� 1 (4.23)

β ≈ 3γ(1− γ)

4(1 + γ)2
α∗ � 1 (4.24)

Relation (4.23) means that large stable stationary interparticle distances
with line of particle centers aligned with gravity require the Stokes velocities of
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the particles to be approximately the same. The second relation means that the
ratio of characteristic electrostatic to characteristic gravitational force must be
large in order to have a large separation for stable stationary relative distances
with a line of particle centers aligned with gravity.

Finally, for the case when the line of particle centers is inclined with gravity
one can see from (4.8) that α† � 1 if

1− δ

γ
≈ 0 (4.25)

1− δ ≈ 1 (4.26)

As in the case when particle centers are aligned with gravity, the Stokes
velocities must be approximately the same for large separations at a stable
stationary relative position. Unlike that case, it is also required the reduced
masses be similar.

The necessary conditions on parameters for the existence of stable stationary
relative positions with line of particle centers aligned with gravity (4.15)-(4.18)
or inclined with gravity (4.19)-(4.22) help understand when to expect stable
doublets to form. Relations (4.23)-(4.26) can help guide experimental work as
the point particle model is expected to be accurate for distant particles.

4.3 Example Of Stable Stationary Relative Po-
sitions & Their Basins Of Attraction

With the relations on parameters in the previous subsection as a guide, it is now
possible to talk about the dynamics of systems with stable stationary relative
positions. A comparison between the dynamics of an uncharged not stable
system and a charged stable system is given in figure 4.2, which is made up of
figures 2(b) and 3(a) from article C.

In 4.2(a), an example of relative trajectories of an uncharged system is
shown. This is example H’ from article B. The parameters chosen are δ = .986
& γ = .988. One can see that when the particles are sufficiently close together,
closed periodic orbits are formed. This is expected from classical results [23].
The stationary states with line of particle centers aligned with gravity are sad-
dle points connected by heteroclinic orbits. These orbits form the seperatrix
between bounded relative orbits and unbounded relative orbits. In article C
section 3, an exact solution is given for this seperatrix. The horizontal station-
ary states are neutrally stable and surrounded by periodic orbits. See article C
section 3 for more details.

In 4.2(b), a small charge is added so that β = .01 to the system with the
same values of δ & γ. This is similar to example H from article B. This creates a
vertical stable stationary relative position at α∗ = 2.31.... There are not stable
stationary relative positions with the larger particle directly below the smaller
one - that is, θ = 3π/2 - at α = 6.56... and α = .588.... The stationary relative
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Figure 4.2: Examples of relative trajectories (a) β = 0 (uncharged), δ = .986
& γ = .988. The orbits of the larger particle are shown in the reference frame
on the center of the smaller particle. The open circles represent not stable
stationary relative positions. The colors are used to facilitate tracing streamlines
close to each other. (b) β = .01, δ = .986 & γ = .988. The black circle at
αz = 2.31... is a stable steady relative position.

positions on the ray θ = 3π/2 are saddle points. In particular, the stationary
relative position α = .588... is stable against perturbations in the direction
with gravity and the stationary relative position at α = 6.56... is stable against
horizontal perturbations.

The basin of attraction of the stable stationary relative position is unbounded
above. This can be seen by considering the of orbits that end on the lowest
saddle point. These orbits form the seperatrix between bounded and unbounded
relative orbits: almost every relative orbit which begins on the interior of this
curve goes to the stable stationary relative position. Every relative orbit outside
the seperatrix goes toward infinity. In fact, in article C section 5, the Poincare-
Bendixson theorem is used to show this and a stronger result: all orbits in the
interior of the seperatrix must go to a stationary relative position. There are
no periodic orbits as seen in the uncharged case.

The horizontal cross-section of the basin of attraction in figure 4.2(b) is
bigger than six times the sum of the particle radii. Therefore even well-separated
particles can end up at the stable stationary relative position. Figure 3(b) in
article C gives an example with a cross section radius and separation distance
that is even larger. In fact, in article C, it is observed that the cross-section
radius scales with the vertical position of the saddle point on the seperatrix.

In article C section 5, the same results are shown for other cases, such
as two stable stationary relative positions with line of particle centers aligned
with gravity, when the line of particle centers at the stable relative positions
are inclined with respect to gravity and when there are both stable stationary
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relative positions aligned with gravity and stable stationary relative positions
inclined with gravity.

The qualitative dynamics in these cases are similarly established by the
Poincare-Bendixson theorem. In fact, the qualitative dynamics for systems with
multiple and inclined stable stationary relative positions are similar to the case
of a single stable relative position. In all cases, the relative orbits either go
to a stationary relative position or seperate. Further, there is in each case a
seperatrix which separates the bounded and unbounded relative orbits with a
saddle point stationary relative position.
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5 Conclusions

This section summarizes some of the results in the review article A [1] and some
of the original results in article B [2] & article C [3] and draws some general
conclusions.

In article A, basic concepts of Stokes flow such as reversibility, negligibility of
inertial forces and minimum energy dissipation theorem are analyzed. Applica-
tions of each concept are given as well as their interrelations. For example, it is
shown that the minimum energy dissipation theorem entails reversibility but re-
versibility does not imply the minimum energy dissipation theorem. Illustrative
examples are given for each concept.

Article B is concerned with showing there exist stable relative positions of
pairs of charged particles settling under gravity in a Stokes flow by the analysis
of a point particle model. This research drew inspiration from classical results
showing there can exist a small set of at best neutrally stable bounded relative
orbits between two uncharged particles sedimenting under gravity in a Stokes
flow [23]. The stabilization of stationary relative positions by electrostatic force
was unexpected because Earnshaw’s Theorem means that electrostatic forces are
destabilizing in a vacuum. The stable stationary relative positions considered in
article B have a line of particle centers aligned with gravity. The interparticle
separation at the stable stationary relative position can be arbitrarily large.
This means that the point particle approximation may be physically reasonable.
Charged particles must have different radii in order for stable doublets to form.
When charged particles have a line of centers aligned with gravity, the larger or
the smaller particle could have greater Stokes Velocity.

It is further shown in article B that for large separations of charged particles
at a stable stationary relative position, the ratio of Stokes velocities must be
near unity and the ratio of characteristic electrostatic to characteristic gravita-
tional force must be large. Also for large separations of charged particles at a
stable stationary relative position, the upper particle must have a greater Stokes
velocity than the lower particle. The particles must have different densities and
radii to have a stable stationary relative position, but in the limit of very similar
particles - in the sense of having similar Stokes velocities and densities - the ra-
tio of characteristic electrostatic to characteristic gravitational force consistent
with a stable stationary relative position can be arbitrarily small.

Article C analyzes the point particle model in order to find the dynamics of
a pair of charged particles settling under gravity in a Stokes flow. Using the
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Poincare-Bendixson Theorem, it is shown that there are two qualitative kinds
of dynamics in the point particle model: either the particles go to a stationary
relative position or they separate.

Further, in article C it is shown that the set of initial conditions which give
rise to relative orbits that do not separate over time is unbounded (unlike the
bounded set seen for uncharged particles). The set of relative orbits which stay
together is segregated from the set of relative orbits which go to infinity by a
seperatrix curve. The seperatrix has a saddle point stationary relative position
on it. The distance between particle centers at the saddle point can be used as a
proxy for the cross section radius. This cross section radius can be several times
the sum of particle radii. The large size of the set of relative orbits in which
the particles stay together both in measure and in cross-section and the large
particle separation at the stable stationary relative position suggest the relevant
particle dynamics could be well-approximated by the point-particle model.

It is also shown in article C that, unlike the uncharged case, there are no
periodic orbits for pairs of charged point particle sedimenting under gravity in
a Stokes flow in the model examined. Further, there can be stable stationary
states with a line of charged particle centers inclined with respect to gravity
with charged point particle sedimenting under gravity in a Stokes flow, but not
for uncharged particles. Phase space diagrams were used to describe bounds
on the ratio of Stokes velocities and particle radii for stable stationary relative
positions with line of charged particle centers either aligned or inclined with
respect to gravity.

The point particle model makes the prediction of stable doublets and absence
of periodic relative orbits. These qualitative features could be confirmed by
future experiments. If confirmed, the existence of stable doublets could have
consequences for dilute charged suspensions, as it is well known that the effect
of the relative diffusion of doublet pairs can have a singular perturbing effect on
the suspension [24]. Because charged matter in a viscous fluid is very common
in scientific, biological, medical and industrial contexts, the results in this thesis
are fundamental.
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Chapter 2
Basic Concepts of Stokes Flows

Christopher I. Trombley and Maria L. Ekiel-Jeżewska

2.1 Introduction

Stokes flows have many applications in both physical theory and practice. For
example, they have been used to describe dynamics of complex fluids in microflu-
idics, lab-on-chip technologies [1], medical applications [2, 3], design of innovative
materials [4–6] and micro-devices—e.g. to carry drugs [7, 8] or act as fuel
cells [9]—and in biological systems [10–15].

In this chapter, we discuss some fundamental properties of Stokes flows, namely:
negligibility of inertial forces, reversibility and the minimum energy dissipation
theorem. First we will briefly discuss how the neglecting of inertial forces simplifies
the nonlinear Navier–Stokes equations to the linear Stokes equations. We then
discuss two basic aspects of Stokes flows: reversibility and the minimum energy
dissipation theorem. In order to bring out the nature of the three principles,
we will demonstrate by example how these properties can be used to obtain
conclusions about investigated fluid systems without laborious construction of
analytical solutions. We then move beyond the Stokes approximation in various
ways in order to see how the principles work in a general context. Finally, we
conclude by discussing the logical structure of the principles as revealed by the
examples considered.

C. I. Trombley · M. L. Ekiel-Jeżewska (�)
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2.2 Navier–Stokes and Stokes Equations

2.2.1 Navier–Stokes Equations

We start with the general Navier–Stokes equations for an incompressible fluid.
These are [16–18]

ρ
∂u
∂t

+ ρ(u · ∇)u = μ∇2u −∇p + F (2.1)

∇ · u = 0 (2.2)

where ρ is the density of the fluid, u is the velocity field of a fluid, μ is the dynamic
viscosity of the fluid, p is the fluid pressure field,1 and F captures the effects of
external forces. The left-hand side of this equation is the inertial forces, that is, the
acceleration of a fluid element with unit volume. The right-hand side is sum of the
viscous and pressure forces, μ∇2u and ∇p, respectively, exerted on surfaces of
this fluid element, and any external body forces F acting on the fluid element. The
second equation is based on the conservation of mass of a fluid element and achieves
its simple form because of incompressibility of the fluid element.

We use non-dimensionalisation in order to capture the relative scale of the forces.
DefineU to be a characteristic velocity of the fluid andL to be a characteristic length
scale. Other characteristic dimensional scales of the flow, for instance, a time scale
T = L/U , can be defined implicitly from these scales. There is still some freedom
when normalising pressure p and body forces F. We choose to normalise pressure
by a characteristic viscous force per unit area and F by a characteristic viscous force
per unit volume as in [18]. Using a star to denote non-dimensionalised objects, this
results in the following definitions:

u∗ = u
U

∇∗ = L∇
∂

∂t∗
= L

U

∂

∂t
(2.3)

p∗ = L

μU
p

F∗ = L2

μU
F

1In the presence of a gravitational field, p is the so-called modified pressure, which takes into
account also gravitational potential energy per unit fluid volume.
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With the above characteristic dimensional scales, the inertial force per unit volume

is estimated by ρU2

L
and the scale of the viscous force per unit volume is μU

L2 . The
Reynolds number, Re, a non-dimensional number defined as the ratio of inertial and
viscous forces in a fluid, takes the form

Re = (ρU2)/L

(μU)/L2 = ρUL

μ
(2.4)

The end result is the following non-dimensional version of the Navier–Stokes
equation (2.1):

Re

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= ∇∗2u∗ − ∇∗p∗ + F∗ (2.5)

The left-hand side is the inertial force and the right-hand side is the viscous, pres-
sure and body forces. Flows with the same Re are hydrodynamically similar [18].

A difficulty to using Eqs. (2.1) and (2.2) (or their non-dimensional form) in the
analysis of fluids is that the inertial forces are nonlinear in u. In terms of forces, the
so-called Stokes approximation can be understood as when the viscous and pressure
forces dominate the inertial forces absolutely. The Reynolds number allows one to
test the applicability of Stokes approximation to fluids. The Stokes approximation
holds exactly in the limit as this ratio goes to zero [17–22]. For this reason, Stokes
flows are often called low Reynolds number, non-inertial or viscous flows.

2.2.2 Stokes Flows

Taking the limit Re → 0 in Eq. (2.5) one obtains the non-dimensional steady Stokes
equations. In dimensional form, without external body forces, sources or sinks, they
read

μ∇2u −∇p = 0 (2.6)

∇ · u = 0 (2.7)

The first equation states the balance of forces in a non-accelerating fluid. The second
equation is, as in Eq. (2.2), the conservation of mass for incompressible fluids.

The Stokes equations (2.6) and (2.7) must be combined with boundary conditions
appropriate to the physical situation. The so-called stick or no-slip boundaries for
rigid walls and at the surfaces of particles are important examples. Consider a
surface S moving with local velocity w. It has no-slip boundary condition for the
fluid velocity u if on S one has

u(r) = w(r) for r ∈ S (2.8)
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There are many other important examples of boundary conditions, such as
the boundaries for a free surface [18], but we will focus on the stick boundary
conditions, which are sufficient for considering inertial forces, reversibility and the
minimum energy dissipation. When considering reversibility especially, one must
remember that boundaries can be time dependent. This means that the boundaries
move, such as in the classical Taylor–Couette experiment involving a fluid between
two rotating cylinders [23]. The Stokes equations (2.6) and (2.7) can also apply to
unbounded flow problems by the selection of an appropriate boundary at infinity.
For instance, a fluid can be constrained to be at rest at infinity, as in case of particles
settling in a quiescent fluid.

Equations (2.6)–(2.7) are linear, so that any linear combination of solutions
(u1, p1) and (u2, p2) is also a solution (u1 + u2, p1 + p2). Linearity allows for
classes of solutions to be constructed. One example is the case of flow around a
rigid sphere, where a complete set of elementary solutions to Eqs. (2.6) can be
constructed, as done by Lamb [16]. In his families of elementary solutions, the
pressure p is expanded in spherical harmonics and the velocity field u is written as
an infinite series of solid harmonics. This concept is used in the multipole method of
solving the Stokes equations for systems of particles moving in fluids [20, 24–30].

2.3 Reversibility of Fluid Flows

Because Stokes equations (2.6)–(2.7) are steady and linear, the motion they predict
is reversible in time. Mathematically, it means that the reversibility transformation
of any solution, that is, (u(x, t), p(x, t)) �−→ −(u(x, t), p(x, t)), will also give a
solution. This can be checked by simple algebraic manipulation of the governing
equations. G.I. Taylor explained in his film Low Reynolds Number Flows [31] the
physical meaning of reversibility—“low Reynolds number flows are reversible when
the direction of motion of the boundaries which gave rise to the flow is reversed”.
Actually, a reversed fluid flow can result from reversing velocity of the boundary
(equal to the fluid velocity at the surfaces of particles or walls) or from reversing
directions of the external and the opposite hydrodynamic forces. In the following,
we will show how reversibility allows to predict symmetries of fluid flows and
motion of particles in fluids.

2.3.1 Examples of Reversibility

One of the most dramatic presentations of reversibility is seen in the film mentioned
above [31]. In this experiment, the volume between two transparent cylinders is
filled with glycerine. Dyes are injected which form a compact coloured volume
into the glycerine to help visualise the flow. The inner cylinder is rotated causing
the dyes to stir and apparently mix. The inner cylinder is then rotated in the
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opposite direction and one sees the seemingly mixed fluids unstir themselves. This
experiment demonstrates the difficulty of mixing low Reynolds number fluids, an
important problem for microfluidics.

G.I. Taylor used this experiment to explain the concept of reversibility in the
following way: “On reversal of the motion of the boundary, every particle retracts
exactly the same path on its return journey as on the outward journey, and at every
point its speed is the same fraction of the boundary speed as it was at the same
point on its outward journey, so that when the boundary has returned to its original
position every particle in the fluid has also done so and the original pattern of dye is
reproduced” [32].

A very important consequence of reversibility in biology is that the ordinary
swimming motion done by an idealised swimmer with a rigid tail could not produce
forward motion in a non-inertial fluid, since any propulsion created by the swimmer
when the tail moves left is exactly cancelled when it moves right, as demonstrated
in [31]. This is a consequence of the “Scallop theorem” fundamental to the study
of the locomotion of microscale organisms [11].

One can use reversibility to derive basic properties of solutions to the Stokes
equations without finding the solutions explicitly. Take the case of a rotating, but not
translating, sphere immersed in fluid governed by Eqs. (2.6) and (2.7). This situation
is illustrated in Fig. 2.1. We might ask how much force such a sphere would feel.
Here we mean the force exerted by the fluid on the sphere owing to stick boundary
conditions on its surface. This hydrodynamic force needs to be balanced by the
opposite external (non-hydrodynamic) force acting on the sphere. Through the use

Fig. 2.1 A solid sphere rotating without translations near a solid wall. Reversibility implies that
the sphere does not feel any external force perpendicular to the wall
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of superposed reversibility and symmetry transformations, we can discover that in
this situation the answer is that the sphere would not feel any hydrodynamic force
in the direction perpendicular to the wall [33]. This can be proven by contradiction.
Suppose Fx �= 0. Notice that if we put the origin at the centre of the sphere, the
system is symmetric for the transformation y �−→ −y. This reflection reverses the
rotation of the sphere, but leaves the x-component of the force the same. Now apply
the reversibility transformation. The rotation is now reversed back to the original
sense. The force vector should have the opposite direction. The result is that the
sphere is at the same position, has the same physical rotation, but opposite Fx . This
is a contradiction. This argument shows how reversibility and symmetry arguments
can be combined to put strong restrictions on Stokes flow [33, 34].

We can also apply reversibility arguments again to the case of a sphere which
moves under a constant gravitational force parallel to a solid wall. Applying the time
reversal, we now reverse also the direction of the sphere velocity and force. By the
same argument above, i.e. by combining the time reversal with the reflection with
respect to the plane y = 0, there will be no velocity in the direction perpendicular
to the wall; the sphere will keep translating parallel to the wall [34]. This reasoning
applies to the study of sedimentation of a slowly moving particle of any shape and
material symmetric with respect to reflection in the plane y = 0 [33, 34]. We have
demonstrated that reversibility has observable consequences which do not require
elaborate constructions.

2.3.2 Irreversible Trajectories in Stokes Flow

Applying reversibility, one must take care that reversibility applies to time and
forces. In particular, the paths that particles take need not be reversible in time even
though the Stokes equation is reversible in time. As an example, consider the system
shown in Fig. 2.2: two spheres of the same radii—one fixed and another one settling
from above under gravity. For non-touching spheres, trajectories of the moving
sphere centre are symmetric with respect to reflection in the plane z = 0. Under
the time reversal, the gravitational force is reversed and the sphere centre moves
backwards along the same trajectory. However, reversibility of the trajectories is
broken when two spheres come so close to each other that their surfaces interact
by direct forces, such as van der Waals attraction or mechanical reaction of rough
surfaces at the contact [35–39]. The reason is that central direct forces are not
symmetric with respect to superposition of the time reversal with reflection in the
horizontal plane z = 0.
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Fig. 2.2 Experimentally observed trajectories of the centre of sphere settling under gravity in a
silicon oil towards another fixed sphere of the same radius. Top: reprinted by permission from
Ref. [36]. Copyright Kluwer Academic Publisher (2002). Bottom: reprinted with permission from
Ref. [37]. Initally, the line of the sphere centres is inclined with respect to gravity. For a large
inclination, the surfaces of the spheres are always separated by a fluid, and the trajectories are
reversible. However, if the initial inclination is small enough, after some time the surfaces come
into contact and the resulting direct forces break the reversibility of the trajectories
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2.4 Minimum Energy Dissipation Theorem

We will now give a “variational” view of Stokes flow. A solution to Stokes
equations (2.6) and (2.7) is the unique divergence-free vector field that minimises
the extensive energy dissipation rate (that is, the energy dissipated by the bulk
of the fluid) [20]. In this section, we will state this minimum energy dissipation
theorem precisely and sketch a proof. After that, we will apply it to derive “inclusion
monotonicity”, a principle about particles moving through Stokes flows.

2.4.1 Statement

Consider a fluid filling a volume V with an impermeable boundary ∂V = S. Let u be
the velocity of a Stokes flow defined by Eqs. (2.6) and (2.7). Let v be a divergence-
free vector field describing a flow in V with the same boundary conditions as u. The
minimum energy dissipation theorem is

εu ≤ εv (2.9)

where εu is the extensive energy dissipation rate of the Stokes flow and εv is the
extensive energy dissipation rate of the other flow.

For an excellent discussion of how these relations for the change of internal
energy over time are established physically, see section 3.4 of [18]. For now we will
simply use the fact that for an incompressible fluid, the intensive energy dissipation
rate (i.e. the energy dissipated per unit volume) � is

�u = 2μeu : eu (2.10)

�v = 2μev : ev (2.11)

where e is the rate of strain tensor for the Stokes flow u given component-wise as
eu
ij = 1

2 (
∂ui
∂xj

+ ∂uj
∂xi

) (and similarly for ev
ij ) and : is the double dot product. Integrating

� over V gives the extensive energy dissipation rates ε, so that

εu =
∫

�udV (2.12)

εv =
∫

�vdV (2.13)

Having thus connected the energy dissipation rate to the mechanical properties of
the flow, we can now discuss the proof of Eq. (2.9). Because the minimum energy
dissipation theorem is proven and discussed in many textbooks, such as [20], we
will only give a brief outline. One starts by demonstrating

∫
(ev
ij − eu

ij )e
u
ij dV = 0 (2.14)
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from Green’s theorem, the divergence theorem and Stokes equations (2.6) and (2.7).
Then one subtracts Eq. (2.14) from the extensive energy dissipation rate for v and
rearranges

2μ
∫

ev
ij e

v
ij dV = 2μ

∫ (
ev
ij e

v
ij − (ev

ij − eu
ij )e

u
ij

)
dV (2.15)

= 2μ
∫ (

eu
ij e

u
ij + (ev

ij − eu
ij )e

v
ij

)
dV (2.16)

= 2μ
∫ (

eu
ij e

u
ij + (ev

ij − eu
ij )e

v
ij − (ev

ij − eu
ij )e

u
ij

)
dV (2.17)

= 2μ
∫ (

eu
ij e

u
ij + (ev

ij − eu
ij )

2)dV (2.18)

Which shows that 2μ
∫ (

ev
ij e

v
ij − eu

ij e
u
ij

)
dV ≥ 0, which by Eqs. (2.10) and (2.11) is

the same as ∫ (
�v −�u

)
dV ≥ 0 (2.19)

By Eqs. (2.12) and (2.13), one sees that Eq. (2.19) is the same as Eq. (2.9), the
minimum energy dissipation theorem.

2.4.2 An Application of the Minimum Energy Dissipation
Theorem

One advantage of variational principles such as the minimum energy dissipation
theorem is that they can be used to describe the behaviour of general rigid bodies
in a Stokes flow. We will give an example through the principle of “inclusion
monotonicity”. If one particle is large enough to completely contain another particle,
then we can compare the magnitude of the so-called drag force resulting from a
Stokes flow. Inclusion monotonicity follows from the minimum energy dissipation
theorem, which we will now show in a manner following [20].

Let a rigid particle 1 take up a volume V1 with surface ∂V1 = S1 and compare
with the flow around rigid particle 2 taking up a volume V2 with a surface ∂V2 = S2.
They are undergoing the same translational motion with velocity w without rotation.
The fluid is described by Stokes equations (2.6) and (2.7). Further, the particles have
no-slip boundary conditions on their surfaces. The forces the fluid flow exerts on
these particles are

f1 =
∮

σ 1 · n1dS1 (2.20)

f2 =
∮

σ 2 · n2dS2 (2.21)



44 C. I. Trombley and M. L. Ekiel-Jeżewska

where σ i is the fluid stress tensor and ni is the normal coming out of surface of
particle i. The force of the fluid on the particle has the same magnitude but opposite
direction.

Inclusion monotonicity principle: If V2 ⊂ V1, then f2 · w ≤ f1 · w
(2.22)

The drag is the component of the fluid force on the particle in the direction of
w [17]. One can see by dividing through by |w| that inclusion monotonicity relation
Eq. (2.22) gives that the magnitude of the drag force on particle 1 is greater than
magnitude of the drag force on particle 2. Proof of inclusion monotonicity principle
Eq. (2.22) is illustrated in Fig. 2.3 and given below.

Let u1 be the Stokes flow around the larger particle 1 and u2 be the Stokes flow
around the smaller particle 2. The energy dissipation rate per unit time in the fluid
is proportional to the drag [20]

εu1 = f1 · w (2.23)

εu2 = f2 · w (2.24)

Fig. 2.3 Proof of inclusion monotonicity principle, illustrated. Three panels are drawn with
particles in grey and fluid in white. In panel 1 and 2 particle 1 and particle 2 displace volumes
such that V2 ⊂ V1. The particles are moving with the same velocity w—shown with white tipped
arrows—creating fluid velocity fields u1 and u2 shown with black tipped arrows. The last panel
depicts a non-physical velocity field v which is equal to u1 outside of V1 and w in V1 − V2
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From the above equations it is easily seen that Eq. (2.22) is equivalent to εu2 ≤
εu1 . However because these are Stokes flows for different geometries, the energy
dissipation rates cannot be directly compared. Therefore, we will construct a (non-
physical) vector field v in order to compare the energy dissipated by the motion
of the two particles. Define v piecewise to be u1 outside of V1 and v = w, the
translational velocity, inside of V1 − V2. The vector field v is continuous because of
the no-slip boundary condition. Now we will compare the energy dissipation rates
of the different vector fields u2, u1 and v.

We start by comparing u1 and v. Because v is rigid body motion on V1 − V2, v
does not dissipate any energy there. Outside that set, v = u1. Therefore

εv = εu1 (2.25)

We now move on to the comparison between u2 and v. By definition, outside
of V1, v = u1 which is a divergence-less vector field. On V1 − V2, v is constant,
so it is automatically divergence free there. Therefore v is a divergence-free vector
field defined on the same volume of fluid as u2. Therefore, by minimum energy
dissipation theorem we have that v cannot dissipate less energy than u2, i.e.

εu2 ≤ εv (2.26)

Substituting the formulas for the energy dissipation rates Eqs. (2.23) and (2.24) into
the above gives inclusion monotonicity Eq. (2.22).

2.5 Limits of the Stokes Approximation

2.5.1 Example of a System Where the Stokes Approximation
Does Not Work

The examination of the validity of the Stokes approximation is very revealing of
the logical structure of the features of Stokes flow (negligibility of inertial forces,
reversibility and the minimum energy dissipation theorem). The most dramatic
setting to consider is the famous “Stokes paradox”. This paradox arises in the
uniform Stokes flow past an infinite rigid cylinder. Suppose that such a cylinder is
translating through a fluid with constant non-zero velocity u0 and has “no slip” on
its surface. We suppose that very far from the cylinder, the fluid is at rest: u(x) → 0
as x → ∞. Unfortunately, there is no solution to Eqs. (2.6) and (2.7) consistent
with these boundary conditions [16, 19]. In a more general context, Stokes paradox
occurs when a non-trivial two-dimensional solution of the Stokes equations (2.6)
and (2.7) has no-slip boundary conditions on an object whose surface is a simple
closed curve. The velocity is then necessarily logarithmically unbounded as one
gets far from the object [18, 40]. More physically, Stokes paradox occurs because
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the energy dissipated by the cylinder does not decline far from the particle—in other
words, due to the minimum dissipation principle.

Other Linear Flow Equations

Because the Stokes approximation is not always justified and Navier–Stokes
equations (2.1)–(2.2) are mathematically complicated, it is desirable to have other
linear equation systems for fluid flow. We will very briefly give two such example
systems in which Stokes paradox demonstrably does not occur but are still tractable:
the Oseen and Brinkman equations.

We start with the well-known Oseen equations [19]. Let there be some constant
background flow u∞ imposed on the fluid. As mentioned before, the Navier–Stokes
equations give that the inertial force have the nonlinear form ρ(u · ∇)u. If the
characteristic velocity of the flow is much less than |u∞|, then the main component
of inertia is the resistance of the fluid flow against the background flow. We can
decompose the local flow as u = u∞ + uO and call uO the Oseen flow. The inertial

force has therefore ρ
[
(u∞ + uO) · ∇

]
(uO+u∞) = ρ(u∞·∇)uO+ρ(u∞·∇)u∞+

ρ(uO · ∇)u∞ + ρ(uO · ∇)uO . Because u∞ is constant, the middle terms are zero.
Furthermore, we are looking for a linear equation, we assume that |uO | � |u∞|.
Therefore, we can neglect the nonlinear term. We use the term ρ(u∞ · ∇)uO to
incorporate inertial forces into linear equations. The equations resulting from the
addition of this term to Eq. (2.6) are termed the Oseen equations [41, 42]. The Oseen
equations for a steady, incompressible fluid have the form

ρ(u∞ · ∇)uO = μ∇2uO − ∇pO (2.27)

∇ · uO = 0

where pO is the pressure associated with such a flow.
There are considerations other than inertial forces that one can take into account

for fluid motion in systems described by linear equations. For example, fluid flows
in porous media can be described by linear equations. The solid skeleton causes an
additional hydrodynamic resistance, which in the Brinkman model of porous media
is introduced as a new term. This results in the following equations for fluid velocity
uB and fluid pressure pB :

μ∇2uB − ∇pB = cuB (2.28)

∇ · uB = 0

where c is the ratio of the fluid dynamic viscosity and the permeability of the porous
media.
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2.5.2 Departures from Reversibility Caused by Inertia

The Stokes approximation—which involves the deliberate neglecting of inertia—
cannot be applied to systems in which inertial forces materially contribute to motion.
This can be seen in flow visualisation. In symmetric environments, reversibility
implies that the flow will also be symmetric [33]. For non-Stokes flows (i.e.
Re � 0), the symmetry in the flow lines breaks down [43]. This departure from
reversibility grows with the Reynolds number [44].

Reversible flow was shown in Sect. 2.3.1 to have the interesting property that a
spherical particle under an external force parallel to a wall would not experience any
lateral motion. In an inertial flow, however, a spherical particle tends to drift away
from walls, breaking the reversibility, and causing the “tubular pinch effect” [44],
with a different pattern of fluid streamlines.

In the analysis given in Sect. 2.3.1, a sphere rotating in a non-inertial fluid was
considered. This leads to a reversible, time symmetric fluid flow [33]. However, a
sphere (or a cylinder) which experiences inertial effects while rotating will create
an irreversible flow. The inertial forces will cause the cylinder to irreversibly create
vortices, which then interact with the rotation of the cylinder in a complex, non-time
symmetric way, as shown in Ref. [45].

2.5.3 Accelerating Fluid Example

Even when the Stokes approximation is mathematically coherent, one should think
with care how to interpret their results. As an illustrative example, consider a fluid
contained within an infinite, impenetrable cylinder with radius R rotating with
angular velocity � and with no-slip boundary conditions at its surface. The explicit
solution of the Stokes equations has the form,

uS = �r θ̂ (2.29)

pS = c (2.30)

where c is a constant and θ̂ is the unit vector in the azimuthal direction of the
corresponding cylindrical coordinates. The flow velocity is, effectively, rigid body
rotation. Pressure is constant in space and therefore there are clearly no centrifugal
forces in the radial direction.

Moving on to consider the Navier–Stokes equations, we find that the solution
becomes

uNS = �r θ̂ (2.31)

pNS = 1

2
ρ �2r2 + c (2.32)
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Like the Stokes case, the fluid is undergoing rigid body rotation. But now a
centrifugal force appears in the form of a pressure gradient in the radial direction.
The Stokes solution (uS, pS) has no forces in the radial direction, but in practice
we would expect a centrifugal force in the presence of rotation. In the steady
Navier–Stokes case, the centrifugal force per unit fluid volume is pressure gradient.
Therefore, the centrifugal term pNS is much more realistic than the constant
term pS .

2.6 Conclusions

Summarising, various properties essential to the understanding of Stokes flow,
have been discussed, including negligibility of inertial forces, reversibility and
the minimum energy dissipation theorem. Illustrative examples related to these
properties have been provided: irreversible trajectories in Stokes flow, inertial terms
for the fluid flow generated by a rotating cylinder, force on a rotating sphere close
to a solid plane wall, Stokes paradox, energy dissipation for particles of different
shapes. The meaning and the limits of the Stokes approximation have been discussed
in the context of more general equations.

We will conclude with some analysis of the logical relationship between the
assumption of the negligibility of inertial forces, the assumption of reversibility and
the minimum energy dissipation theorem.

The assumption that a flow minimises the energy dissipation rate entails that the
flow satisfies the Stokes equations. This means that minimum energy dissipation
implies both reversibility and the negligibility of inertial forces. Stated contrapos-
itively, irreversible flows or flows with inertial forces dissipate more energy than
Stokes flows.

Furthermore, reversibility implies the negligibility of inertial forces. This is
equivalent to saying that the presence of inertial forces implies irreversibility. Any
term proportional to ρ(u·∇)u, the inertial force term in the Navier–Stokes equation,
will make a flow irreversible.

However, neither negligibility of inertial forces nor reversibility does not imply
the minimum energy dissipation theorem. Like the Stokes equations (2.6) and (2.7),
the Brinkman equations (2.28) and (2.29) are reversible and do not contain inertial
terms. But one can now simply apply the proof in Sect. 2.4.1 by substituting uB for
the general solenoidal vector field v to find that the Brinkman flow dissipates more
energy than the Stokes one. This also shows that, counterintuitively, reversibility is
not sufficient to achieve the minimum energy dissipation achieved by Stokes flows.
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The qualitative behavior of charged particles in a vacuum is given by Earnshaw’s theorem, which states
that there is no steady configuration of charged particles in a vacuum that is asymptotically stable to
perturbations. In a viscous fluid, examples of stationary configurations of sedimenting uncharged particles
are known, but they are unstable or neutrally stable—they are not attractors. In this Letter, it is shown by
example that two charged particles settling in a fluid may have a configuration that is asymptotically stable
to perturbations for a wide range of charges, radii, and densities. The existence of such “bound states” is
essential from a fundamental point of view and it can be significant for dilute charged particulate systems in
various biological, medical, and industrial contexts.
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Earnshaw’s theorem gives fundamental insights into the
stability of charged systems. Introduced in Ref. [1], the
theorem states that there is no stable equilibrium of charged
particles distributed in a vacuum without a boundary.
An informal reading is that electrostatic interactions are
inherently destabilizing and one must add, e.g., boundaries
or stabilizing forces [2]. Historically, Earnshaw’s theorem
informed the development of models of the stability of
matter and studies of qualitative features of charged
systems [2,3]. Finding the stable configurations allowed
by Earnshaw’s theorem when a spherical boundary is
imposed—the “Thompson problem”—is an active field
[4]. Earnshaw’s theorem underpins classical models of
Wigner crystallization (for instance, see Ref. [5]). It even
allows one to find quantitative limits on parameters for
stable classical models of complex molecules [6]. In this
Letter, we show that the presence of an unbounded
electrically neutral fluid can stabilize systems of charged
microparticles.
At micro and nano scales, both active “agents” and

passive objects, whether of biological [7–9] or inorganic
materials [10,11], and naturally or artificially made, have
been modeled theoretically as particles in a fluid. In
general, such particles can have complex shapes and be
deformable. Their rich dynamics have been extensively
investigated [12–19]. The development of microfluidics,
Lab-On-Chip technologies [20], and advances in medicine
and the design of innovative materials and devices—e.g., to

carry drugs [21] or treat wastewater [22]—depends on this
research.
The concept of a noninertial “Stokes flow,” introduced

in Ref. [23], holds a central place in the theory of the
dynamics of micro and nano particles [24,25]. In particu-
lar, Stokes equations are widely used to determine the
influence of a viscous fluid on the dynamics of particles
experiencing external forces, such as gravity or in a
centrifuge [14,26–30]. For a single particle, Stokes flow
is an appropriate model when the particle has reached
its terminal velocity, its so-called Stokes velocity. The
terminal velocity is reached swiftly at a microscale.
In systems of microparticles in a Stokes flow, the velocity
of each particle is a linear combination of the forces
on every particle. The coefficients of this combination
depend on positions of all the particles.
The goal of this Letter is to find asymptotically stable

configurations of two sedimenting charged particles. The
existence of such “attractive states” (configurations such
that if the particles were disturbed from this configuration
then they would tend to return) may be of a great
significance for sedimenting suspensions that exhibit
electrostatic interparticle interactions.
First, we briefly outline known results for uncharged

particles. Owing to reversibility of Stokes equations,
identical spherical sedimenting particles can form steady
configurations, such as, e.g., horizontal regular polygons
made of arbitrary numbers of particles [31]. More simply,
any arrangement of two identical particles in free space is
steady. However, these steady configurations are, at most,
neutrally stable, and therefore are not attractive.
The more interesting case of two spherical uncharged

sedimenting particles with different radii and densities was
examined in the seminal paper [32]. If the particles are far
enough from each other that their interaction can be
neglected, then particle A with a larger Stokes velocity
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will fall faster than particle B with a smaller Stokes
velocity. Intuition may suggest that if particle A is above
particle B with their centers in a vertical line, then they will
tend to approach each other no matter what their distance.
Counterintuitively, it was found that, in a certain range of
parameters, the particles do not tend to touch each other
(in an infinite time) but instead “capture” each other at a
distance a bit larger than the sum of their radii [32]. Even
more surprisingly, particle A can move slower than B if the
interparticle distance is smaller than its steady value. In this
uncharged system, vertical steady configurations are stable
against vertical, but unstable with respect to horizontal,
perturbations.
The main idea of this Letter is to introduce charge to such

a system, to find a steady vertical configuration and check
if electrostatic attraction between the particles will cause
them to come back to the steady configuration if perturbed.
In the following, we will show that indeed this is the case—
we discover stable configurations. Counterintuitively to
Earnshaw’s theorem in vacuum, electrostatic interactions
between charged particles in fluids can play a stabiliz-
ing role.
We now introduce a model of two charged, spherical

particles settling under gravity in a fluid of dynamic
viscosity μ. We assume that Brownian motion, fluid
compressibility, and inertia are irrelevant, and we describe
the fluid flow by the Stokes equations [24,25]. Thus, the
external forces on the particles are in balance with the fluid
resistance forces, and therefore the dynamics of particles is
described by a system of first order differential equations.
We denote particle radii by a1 and a2. Let M1 and M2

represent the mass of particle 1 and 2. The reduced density
of each particle is the difference between its density and
the density ρ of the fluid. Similarly, m1 ¼ M1 − 4

3
πa31ρ and

m2 ¼ M2 − 4
3
πa32ρ are the reduced masses. We assume

m2 > 0 with other cases covered in the Supplemental
Material [33]. Let r1 and r2 be the positions of the centers
of particle 1 and 2. Then the relative position is
d ¼ r2 − r1. We choose a coordinate system so that the
particle centers and the direction of gravity are in the plane
y ¼ 0 and ẑ is a unit vector pointing antiparallel to the
constant gravitational field g. We can now write the
superposition of electrostatic and gravitational forces on
the particles 1 and 2

f1 ¼ −kq1q2
d
jdj3 −m1gẑ ð1Þ

f2 ¼ kq1q2
d
jdj3 −m2gẑ; ð2Þ

where k is Coulomb’s constant, q1 and q2 are the charges
on particles 1 and 2, jvj is the length of any vector v, and
g ¼ jgj. Assuming pointlike charges, we consistently take
a point particle approximation for the interaction with the

fluid [25,34], and we obtain the following system of
ordinary differential equations (ODEs):

_r1 ¼
1

8πμ
G · f2 þ

1

6πμa1
f1 ð3Þ

_r2 ¼
1

8πμ
G · f1 þ

1

6πμa2
f2; ð4Þ

where Gij ¼ δij=jdj þ didj=jdj3 is the Green tensor for the
Stokes equations in an unbounded fluid [25]. The total
velocity of each particle has a mutual part that depends on
the force on the other particle and a self-part that depends
on the force on the particle itself. Notice that it is necessary
to take into account the particle radii in the self-terms.
Because of the translational invariance of the system G
depends only on the relative position d. We are interested in
the relative motion, which satisfies the following ODEs

_d¼ 1

8πμ

�
−
2kq1q2
jdj3 G · dþ ðm2 −m1ÞgG · ẑ

�

−
1

6πμ

�
−
kq1q2
jdj3

�
1

a1
þ 1

a2

�
dþ

�
m2

a2
−
m1

a1

�
gẑ

�
: ð5Þ

Before we examine the properties of Eq. (5), we describe
physical properties of the system using nondimensional
parameters, which are independent of each other and
constant during particle motion

γ ¼ a1
a2

; δ ¼ m1

m2

; β ¼ −
kq1q2
L2m2g

; ð6Þ

so that γ is the ratio of particle radii, δ is the ratio of reduced
particle masses, and β is the ratio of characteristic Coulomb
force Fe ¼ −kq1q2=L2 to the characteristic gravitational
force Fg ¼ m2g. The sign of Fe is chosen to be positive
when the charges attract each other. There are some
physically interesting functions of these parameters. For
instance, the ratio of reduced densities is δ=γ3 and the ratio
of Stokes velocities is δ=γ.
We now choose the units

L ¼ a1 þ a2; V ¼ m2g
6πμL

ð7Þ

where L—the characteristic length—is the distance the
particle centers would have if the particle surfaces were in
contact, and V is a characteristic velocity. These scales
define a characteristic timescale T ¼ L=V. Notice that
changing the viscosity μ modifies only the velocity and
timescales. The nondimensional parameters [Eq. (6)] are
invariant. In the Stokes regime, changes in viscosity do not
alter the paths on which the particles move but only the rate
at which they move on said paths [24,25].
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Finally, we nondimensionalize the relative position

α ¼ d
L

ð8Þ

so that, if the particle surfaces were in contact, jαj ¼ 1. We
can now write Eq. (5) involving only the nondimensional
ratios

_α ¼ 3

2jαj3 βG · αþ 3

4
ð1 − δÞG · ẑ − β

ð1þ γÞ2
γjαj3 α

−
ðγ − δÞð1þ γÞ

γ
ẑ; ð9Þ

where Gij ¼ δij=jαj þ αiαj=jαj3 and from now on the dot
denotes derivative with respect to nondimensional time
ratio t=T.
We now analyze Eq. (9) and discover a class of vertical

configurations that are stable to any perturbation.
We denote a nondimensional stationary configuration

by α� ¼ α�ẑ, with α� > 0. Our convention is then to assign
label 2 to the particle with larger ẑ component in the steady
state. To examine the stability of such a configuration, we
investigate how the system evolves if we have a first order
perturbation ϵ in the direction perpendicular to gravity and
a positive component α in the ẑ direction (not necessarily
close to α�). If α ¼ ϵx̂þ αzẑ and we neglect second and
higher order terms in ϵ then α ¼ jαj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2z þ ϵ2

p
≈ αz.

With this, Eq. (9) becomes

_ϵ ¼ gðαÞϵ ð10Þ

_α ¼ fðαÞ ð11Þ

where

fðαÞ¼ 6γβ−2βð1þ γÞ2αþ3γð1−δÞα2−2ðγ−δÞð1þ γÞα3
2γα3

ð12Þ

gðαÞ ¼ 12γβ − 4ð1þ γÞ2βαþ 3γð1 − δÞα2
4γα4

: ð13Þ

In the numerator of f the four terms are, consecutively, the
mutual and self-parts of velocity arising from electrostatic
forces, and the mutual and self-parts of velocity arising
from the gravitational forces. This is similar for g, except
that there is no self-part of horizontal velocity arising from
vertical gravitational force.
For any system of differential equations of the form (10)

and (11), if g and f are continuous, then the condition for
α� ¼ α�ẑ to be an steady state is

fðα�Þ ¼ 0: ð14Þ

If f is continuously differentiable and g is continuous in an
open neighborhood of a steady state α�, then α� is stable if
and only if

gðα�Þ < 0 ð15Þ

f0ðα�Þ < 0: ð16Þ

A proof that Eqs. (14)–(16) are necessary and sufficient for
local asymptotic stability [35] is given in section II of the
Supplemental Material [33].
Finally, we impose the feasibility condition

1 < α� ð17Þ

in order to rule out ghostlike overlapping particles.
We now demonstrate that there exist solutions to

Eqs. (14)–(17). We provide examples of stable stationary
feasible configurations in Fig. 1 with the parameters in
Table I. In Fig. 1, the density of particle 2 is held constant
and painted black, while brighter colors are used to
represent denser particles. Similarly, radius a2 of the upper
particle is taken to be the same across columns and the
radius a1 of the lower particle is drawn to scale.
In case A, small δ and γ are chosen. This corresponds to

the higher particle being much larger and more massive
than the lower particle. Case B shows that stability is
possible when δ ¼ γ. This corresponds to particles that

A B C D E F   HG

FIG. 1. Examples A–H illustrate stable stationary configura-
tions of charged particles settling under gravity in a Stokes flow
for the parameter values listed in Table I. Gravity points down.

TABLE I. Positions and parameters of the stable stationary
configurations shown in Fig. 1.

α� β δ γ δ=γ δ=γ3

A 2.5 0.160… 0.075 0.1 0.75 75
B 1.2 0.45 0.5 0.5 1 4
C 12.4 2.18… 0.5 0.51 0.980… 3.76…
D 3 0.361… 0.5 0.54 0.925… 3.17…
E 1.03 0.930… 1.1 0.6 1.83… 5.09…
F 2.5 0.523… 1 0.75 1.33… 2.37…
G 1.24… 0.125 0.875 0.885 0.988… 1.26…

4.13…
H 2.33… 0.009 97… 0.986 0.988 0.998… 1.02…
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have identical Stokes velocities. Next we look at cases C
and D where the separation distance α� is large. Cases E
and F give examples where δ=γ > 1, so that the lower
particle has a greater Stokes velocity than the upper
particle. Case G illustrates that, for the same parameters,
two distinct stable stationary configurations can exist.
In case H, γ ≈ 1, δ ≈ 1, and β ≈ 0, showing that there
are stable stationary configurations very close to the classic
case of two identical uncharged particles.
Now that we know that the solution set is nonempty,

we investigate the range of parameters consistent with
a stable feasible steady configuration. The range will
come directly from the necessary and sufficient conditions
[Eqs. (14)–(17)]. The physical implications of these bounds
will also be discussed.
We start with the ratio of characteristic electrostatic to

characteristic gravitational force β. By manipulating the
conditions [Eqs. (14)–(17)], one can see

3β

α�3
¼ 3fðα�Þ − α�½f0ðα�Þ þ 2gðα�Þ� > 0: ð18Þ

Therefore, if a solution exists, then β > 0. This means
that the particles must attract each other in order for the
system to be stable, in agreement with our predictions that
motivated this Letter. This is also important because it
allows for stable systems that have a zero net charge,
q1 þ q2 ¼ 0.
Next, we show that the ratio of reduced masses δ > 0.

We use that fðα�Þ − α�gðα�Þ > 0 to solve for a bound on δ
to get

δ >
3γ − 4γð1þ γÞα�
3γ − 4ð1þ γÞα� > 0; ð19Þ

because the denominator and numerator are both neces-
sarily negative if γ > 0 and α� > 1. This demonstrates that
if m2 > 0, then m1 > 0. In the Supplemental Material [33],
we extend this to show that stable doublets can exist only in
the m2 > 0 and m1 > 0 case and the symmetric case when
buoyancy dominates over gravity m2 < 0 & m1 < 0.
Moreover, the upper particle must have a larger radius

than the lower particle

γ < 1: ð20Þ
The demonstration is somewhat tedious, so it is given in

the Supplemental Material [33].
If we divide both sides of Eq. (19) by γ3, we can use

γ < 1 and Eq. (17) to show that the middle term in Eq. (19)
will be larger than 1. Therefore,

δ=γ3 >
3 − 4ð1þ γÞα�

ð3γ − 4ð1þ γÞα�Þγ2 > 1: ð21Þ

This means that the lower particle has to be more dense
than the upper one. This has the interesting implication that

in our model stable doublets only form between particles of
different material.
With these bounds in mind, we give Fig. 2 in order to

illustrate the way α� and the parameters δ, γ, and β are
interrelated. These plots visually demonstrate that the set
of parameters that allow a feasible stable steady state is large.
One can also see that there exist stable stationary configu-
rations in the “tail” where α� gets large. Examination of
this tail introduces some facts of physical interest. By
expanding the relations [Eqs. (14)–(17)] in powers of
1=α�, we deduce that, in the tail, the upper particle must
have a slightly greater Stokes velocity than the lower one:
1 − ðδ=γÞ ≈ 3ð1 − γÞ=½4ð1þ γÞ�ð1=α�Þ ≪ 1. Looking at
the ratio of forces, we see that β ≈ 3γð1 − γÞ=
½4ð1þ γÞ2�α� ≫ 1 in the tail. This means that in the tail
electrostatic interactions are strong relative to gravitational
force. This demonstrates how electrostatic forces can stabi-
lize a doublet even when the distances involved are large.
In another limit, we keep α� constant and move values of

δ and γ closer and closer to unity. In this limit, the ratio of
Stokes velocities δ=γ and relative densities δ=γ3 approach
1—that is, the particles get more similar. As a consequence
of Eq. (14), β scales down to β ≪ 1. We are seeing
therefore that a small charge can be expected to stabilize
the system in this limit.
In order to aid physical intuition in interpreting the above

results, we will demonstrate the role of charge in stabilizing

 =0.3

1 1.5 2 2.5 3 3.5 4
*

0.2

0.25

0.3

0.2

0.4

0.6

0.8

1

 =0.6

1 1.5 2 2.5 3 3.5 4
*

0.6

0.8

1

1.2

0.2

0.4

0.6

0.8

1

FIG. 2. Regions of stable steady states in parameter space
are plotted. Given γ and δ, the shade at a point is chosen by
characteristic force ratio β necessary to stabilize the system at α�.
If no amount of charge would stabilize a system with the given
parameters, the point is left white.
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a system of settling particles. For an uncharged system, the
analog of Eq. (14) is 3γð1 − δÞ − 2ðγ − δÞð1þ γÞα� ¼ 0.
The first and second terms are the contributions of gravity
to the mutual and self-parts of velocity. The semistability
condition—the analog of Eq. (16)—can be combined with
the analog of Eq. (14) to get −2ðγ − δÞð1þ γÞ < 0.
Therefore the semistability condition entails the ratio of
Stokes velocities δ=γ < 1, so that the self-term tends to
bring the particles together. We also have that δ < 1;
therefore the mutual term must tend to push the particles
apart. These contributions to the velocity balance exactly at
a certain distance α’. However, if the particles are perturbed
even slightly in the horizontal direction, the story is
different. The analog of Eq. (16) is 3γð1 − δÞ < 0, which
cannot be satisfied if δ < 1. The horizontal velocity—
which contains only this mutual term—is tending to push
the particles apart. There is no asymptotically stable α�.
At α’ the system is “semi-stable”—it is stable only to
perturbations in the vertical direction. For example, α’
≈5.21… in the uncharged system H’, which has the same
mass ratio δ and ratio of radii γ as systemH given in Table I
and illustrated in Fig. 1.
Now consider adding a very slight charge to the system

so that β ¼ 0.009 97…, in other words system H. In a
vertical arrangement, the electrostatic force adds to the self
and mutual contributions to velocity without changing their
signs, so that the first thing we find is that the stationary
configuration of the system contracts to α� ≈ 2.33…. Now
consider horizontal perturbations. There are two electro-
static contributions to the horizontal motion. A mutual
term, 12γβ ¼ 0.118…, which tends to push the particles
apart and a self term, −4ð1þ γÞ2βα� ¼ −0.367…, which
tends to bring them back. As before, the gravitational
contribution to horizontal velocity, 3γð1 − δÞα2 ¼ 0.225…,
tends to push the particles apart. The restoring term
dominates. Therefore, system H is stable.
In this way, we have demonstrated ostensively how

settling charged particle systems (even with small charge)
can have qualitatively new behavior (local asymptotic
stability) absent in their uncharged counterparts. It
applies also to semidiluted polydispersed suspensions of
microparticles.
The core prediction of the model presented in this

Letter is the formation of stable asymmetric doublets.
The existence of such doublets is experimentally testable.
These doublets are not stable without charge, indicating the
novelty of the settling dynamics explored here.
In future work, we will expand the model to include

electrostatic screening and precise treatment of hydro-
dynamic interactions between hard spheres with stick
boundary conditions, applying the multipole expansion
corrected for lubrication [36]. We will also investigate the
influence of charge on essential features of the dynamics,
such as existence of periodic motions [32].
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Correction

Table I should read

Table 1: Positions and parameters of the stable stationary configurations shown in Fig.1.
α∗ β δ γ δ/γ δ/γ3

A 2.5 0.160... 0.075 0.1 0.75 75
B 1.2 0.45 0.5 0.5 1 4
C 12.4 1.12... 0.5 0.51 0.980... 3.76...
D 3 0.360... 0.5 0.54 0.925... 3.17...
E 1.03 0.930... 1.1 0.6 1.83... 5.09...
F 2.5 0.212... 0.72 0.75 0.960... 1.70...

G
1.24...
4.13...

0.125 0.875 0.885 0.988... 1.26...

H 2.33... 0.00997... 0.986 0.988 0.997... 1.02...

”Cases E & F give examples” should be ”Case E gives an example”.
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Stable Configurations Of Charged

Sedimenting Particles: Supplemental

Material

C I Trombley & M L Ekiel-Jeżewska
Institute of Fundamental Technological Research,

Polish Academy of Sciences,
Pawińskiego 5b, 02-106 Warsaw, Poland

1 Searching For Feasible Stable Stationary States
When Particle 2 Is Not More Dense Than The
Surrounding Fluid

In the text we assumed that the reduced mass m2 of particle 2 was greater than
zero - i.e. particle 2 was more dense than the fluid. In this section, we will
examine the dynamics for m2 ≤ 0. When particle 2 is not more dense than the
fluid, the normalization scheme used in the text is not applicable because the
characteristic velocity scale must be positive and finite. We now will consider
four remaining cases: Case 1 m2 ≤ 0 & m1 < 0, Case 2 m2 < 0 & m1 ≥ 0,
Case 3 m2 = 0 & m1 > 0 and Case 4 m1 = m2 = 0.

Table 1: We summarize our results in this table. First we show whether there
exist feasible stable stationary state. Next, we give where to find a proof.

m2

<0 =0 >0
<0 Yes: No: No:

Case 1 Case 1 Main Text
m1 =0 No: No: No:

Case 2 Case 4 Main Text
>0 No: No: Yes:

Case 2 Case 3 Main Text

Case 1: m2 ≤ 0 & m1 < 0

We choose our new characteristic velocity as follows:

1



V ′ = − m1g

6πµL
(S.1)

And choose our non-dimensional parameters to be

γ′ =
a2
a1

(S.2)

δ′ =
m2

m1
(S.3)

β′ =
kq1q2
L2m1g

(S.4)

This makes the dynamics of the system evolve according to the non-dimensional
ordinary differential equation

α̇ =
3

2|α|3
β′ G ·α+

3

4
(1− δ′)G · ẑ− β′ (1 + γ′)2

γ′|α|3
α

− (γ′ − δ′)(1 + γ′)

γ′
ẑ (S.5)

This equation is formally the same as the original equation (9), so the anal-
ysis can be repeated in exactly the same way as in the text with the appropriate
reinterpretation of parameters. In particular, there exist feasible stable station-
ary state with the conditions analogous to those in the main text.

We can derive β′ > 0 & δ′ > 0 as necessary conditions for stability as in
the main text. This rules out feasible stable stationary states when m2 = 0
& m1 < 0. There can exist feasible stable stationary states when m2 < 0 &
m1 < 0 and the charges are opposite in sign. In fact, there is a one-to-one
correspondence between the feasible stable stationary states in the m2 < 0 &
m1 < 0 case and those that exist in the main text - i.e. in the m2 > 0 & m1 > 0
case. In both cases, particle 2 is ”above” particle 1 with respect to the sum of
gravitational and buoyancy force.

Case 2: m2 < 0 & m1 ≥ 0

If particle 2 is less dense than the fluid and particle 1 not less dense - then there
again needs to be a change of parameters. We choose our new characteristic
velocity and characteristic force ratio:

V ′′ = − m2g

6πµL
(S.6)

β′′ =
kq1q2
L2m2g

(S.7)

And choose the other parameters as before. We now get
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α̇ =
3

2|α|3
β′′ G ·α− 3

4
(1− δ)G · ẑ− β′′ (1 + γ)2

γ|α|3
α

+
(γ − δ)(1 + γ)

γ
ẑ (S.8)

The stability conditions for this differential equation can be worked out as
in the main text. It will now be shown that there is no feasible stable stationary
state in this case. This will be a proof by contradiction. We start by finding
the conditions analogous to equation and inequalities (14) - (17) for our new
equation. The new dynamics will be of the form

ε̇ = G(α)ε (S.9)

α̇ = F (α) (S.10)

where G is analogous to g in (12) and F is analogous to f in (13). Explicitly:

G(α) =
12γβ′′ − 4(1 + γ)2β′′α− 3γ(1− δ)α2

4γα4
(S.11)

F (α) =
6γβ′′ − 2(1 + γ)2β′′α− 3γ(1− δ)α2 + 2(γ − δ)(1 + γ)α3

2γα3

(S.12)

Just as before, the necessary and sufficient conditions for a feasible vertical
asymptotically stable stationary state are

F (α∗) = 0 (S.13)

G(α∗) < 0 (S.14)

F ′(α∗) < 0 (S.15)

1 < α∗ (S.16)

The first task is showing that if such an α∗ obtains, then β′′ > 0. Exactly
as (18) in the main text, we get

3β′′

α∗3
= 3F (α∗)− α∗(2G(α∗) + F ′(α∗)) > 0 (S.17)

Where the last inequality comes from combining all four conditions (S.13) -
(S.16). By (S.16), this entails β′′ > 0.

Next we partition equation (S.13) into 0 = 2γα∗3F (α∗) = 2
3γα

∗4F ′(α∗) +
r1(α∗)+r2(α∗) where r1(α∗) = −γ(1−δ)α∗2 and r2(α∗) = − 2

3β
′′(2(1+γ)2α∗−

9γ). Notice that, since γ > 0 and δ < 0, r1 < 0. This and (S.15) imply r2 > 0,
therefore

3



α∗ <
9

2

γ

(1 + γ)2
<

9

8
(S.18)

This also gives us a bound on γ

1

2
< γ < 2 (S.19)

We will now derive a bound on 1 − δ and show that the bound cannot be
satisfied if δ ≤ 0. Let A = γ

(1+γ)2 and B = γ
1+γ . The above bounds then

entail 2
9 < A < 1

4 and 1
3 < B < 230

3 . To eliminate β′′, we rewrite (S.13)
as 2β′′(α∗ − 3A)(1 + γ) = 2α∗2

[
(1 − δ)(α∗ − 3

2B) + (γ − 1)α∗
]

Notice that

(α∗−3A) > 0. Therefore, inequality (S.15) becomes α∗
[
(1−δ)(α∗− 3

2B)+(γ−
1)α∗

]
> 3(α∗ − 3A)

[
(1− δ)(α∗ −B) + (γ − 1)α∗

]
Collecting the 1− δ terms on

one side gives

−2(γ − 1)α∗(α∗ − 9

2
A) > (1− δ)

[
3(α∗ −B)(α∗ − 3A)− (α∗ − 3

2
B)α∗

]
(S.20)

The term in the square brackets on the RHS is an increasing function of
α∗ in the relevant range. Therefore, the term in the square brackets is lower
bounded by its value at α∗ = 1, i.e. 3(1 − B)(1 − 3A) − (1 − 3

2B). This can
be seen numerically to be positive over the relevant range. Since the RHS of
(S.20) is positive, the LHS must also be positive. By (S.18), −2(α∗ − 9

2A) > 0.
Combining this with (S.20) gives γ > 1. Further, the term inside of the square
brackets of (S.20) is positive, so we can get a function of γ and α∗ which bounds
1− δ

1− δ <
−2(γ − 1)α∗(α∗ − 9

2A)

3(α∗ −B)(α∗ − 3A)− (α∗ − 3
2B)α∗

(S.21)

We will examine this bound by first showing the RHS is a decreasing function
of α∗ in the relevant range. The derivative of the numerator is −2(γ− 1)(2α∗−
9
2A), which is negative. The derivative of the denominator is 4α∗ − 9A − 3

2B,
which is positive. Putting these together in the usual quotient rule - along with
the already established fact that the numerator and denouement are positive -
one sees that the whole derivative is negative. Therefore the right hand side is
upper bounded by its value at α∗ = 1, giving a bound on 1− δ

1− δ <
−2(γ − 1)(1− 9

2A)

3(1−B)(1− 3A)− (1− 3
2B)

(S.22)

Numerically, the RHS has a maximum less than one, contradicting the claim
that δ < 0. Therefore, there is no feasible stable stationary state in this case.

4



Case 3: m2 = 0 & m1 > 0

We choose as a new characteristic velocity & characteristic force ratio

V ′′′ =
m1g

6πµL
(S.23)

β′′′ = − kq1q2
L2m1g

(S.24)

These choices give as a nondimensional dynamic equation

α̇ =
3

2|α|3
β′′′ G ·α− 3

4
G · ẑ− β′′′ (1 + γ′)2

γ′|α|3
α

+ (1 + γ′)ẑ (S.25)

This equation is the same as (S.8) with δ → 0, β′′ → β′′′ and γ → γ′.
Therefore there is no feasible vertical stable stationary state in this case.

Case 4: m2 = m1 = 0

If both particles are neutrally buoyant we have as a dimensional dynamic equa-
tion

ḋ =
1

8πµ

(
− 2kq1q2
|d|3

G · d
)
− 1

6πµ

(
− kq1q2
|d|3

(
1

a1
+

1

a2
)d

)
Owing to the rotational symmetry of this system, there is clearly no feasible

stable stationary state in this case.

2 Necessity And Sufficiency Of Stability Condi-
tions

We now examine formally the local stability conditions for a class of systems that
evolve according to equation (9). We will show that (14) - (16) are necessary
and sufficient conditions for the stability of equilibria of the form α∗ = α∗ẑ.
We denote the relative position of the particles by α = αzẑ + εx̂. We assume
that ε � 1 so that third and higher order terms in ε of (9) are neglected. In
this approximation the dynamics are

α̇z = f(αz)− ε2r(αz) (S.26)

ε̇ = g(αz)ε (S.27)

where the algebraic form of f and g are given in equations (13) & (12) and the
forms of r is
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r(αz) =
6β

α5
z

− 3β(1 + γ)2

2γα4
z

+
3(1− δ)

2α3
z

(S.28)

The dynamic equations (S.26) & (S.27) are valid for ε � 1 and any αz.
However, it will become necessary to assume |αz − α∗| � 1 to complete the
proof. It is important to notice that if αz > 0, then f(αz) is continuously
differentiable and g is continuous in an open neighborhood of a steady state α∗.

That equation (14) and inequalities (15) & (16) are necessary for an stable
steady state α∗ is clear. If equation (14) does not hold, the system isn’t even
in a steady state. We now move on to the inequalities. Use the fact that, by
continuity, if these inequalities hold at α∗ then they hold approximately in an
open neighborhood of α∗. Suppose, for contradiction, one of the inequalities
(15) & (16) is violated. If we perturb the system in whichever direction the
relevant function is nonnegative, there will not be a restoring force in that
direction. This contradicts the claim that the system is stable.

We now check the sufficiency of inequalities (15) and (16). Call a system
”locally Lypunov stable” if the so-called Lypunov function V has a root at the
given stationary state α∗, is positive off of the stationary state and has negative
time derivative in an open set around the stationary state. We examine the
simple Lypunov function V (α) = (α − α∗)2. This obviously has the desired
properties V (α∗) = 0 and V (α) > 0 if α 6= α∗. Taking the non-dimensional
time derivative one finds

V̇ (α) = 2(αz − α∗)α̇z + 2εε̇ (S.29)

We will now show that this is negative in an open neighborhood containing
α∗. We will do so by relating the above equation to the dynamics (S.26) &
(S.27). Start with the ε̇ term. Combining (S.27) with (S.29), one sees that

V̇ (α) = 2(αz − α∗)α̇z + 2g(αz)ε
2 (S.30)

We now move on to work out the α̇z term. From (S.26), one finds that (S.30)
becomes

V̇ (α) = 2(αz − α∗)f(αz) + 2g(αz)ε
2 − r(αz)(αz − α∗)ε2 (S.31)

Finally we must assume that αz is approximately α∗ so that (αz−α∗)ε2 ≈ 0.
Therefore the remainder term r(αz) disappears and one has

V̇ (α) = 2(αz − α∗)f(αz) + 2g(αz)ε
2 (S.32)

If (15) holds, then the second term is negative. If (14) & (16) holds, then the
first term is negative in a neighborhood of α∗. This demonstrates the sufficiency
of (14) - (16).

Therefore, (14) - (16) are necessary and sufficient conditions for this system
to have a locally asymptotically stable configuration at α∗ẑ.
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3 Bounds For Ratio Of Particle Radii When The
Particles Are In Feasible Stable Stationary
States

We will now show that in the m1 > 0 and m2 > 0 case there are stable config-
urations only if the higher particle 2 is larger in radius than the lower particle
1 - i.e. the ratio of radii γ = a1

a2
< 1. This will be a proof by contradiction. We

will start by showing that there cannot be a solution when γ = 1. Following
this, we will establish that if γ > 1 then a feasible, asymptotically stable steady
state does not exist.

3.1 Radii Cannot Be Equal

By way of contradiction, assume both γ = 1 and there exists at least one feasible
attractive steady state configuration α∗ = α∗ẑ. We can now write (14) as

f(α∗) = (4α∗ − 3)((δ − 1)α∗2 − 2β) = 0. (S.33)

The first term cannot be zero because of the feasibility condition (17). By
inequality (18), we know that β > 0. Therefore, α∗2 = 2β

δ−1 . Therefore in order
for a feasible stable steady state to exist in the γ = 1 case, one must have δ > 1.
Take the derivative of (S.33) to find

f ′(α∗) = 4((δ − 1)α∗2 − 2β) + 2(δ − 1)α∗(4α∗ − 3) (S.34)

The first term is zero by (S.33) and the second term is positive by δ > 1
& (17). This contradicts inequality (16). Therefore, there cannot be a feasible
stable stationary state in this case.

3.2 Upper Particle Cannot Be Smaller Than The Lower
One In Feasible Stable Steady State

We move on to the γ > 1 case. We will use proof by contradiction, supposing
that we have a set α∗, β, δ, γ where γ > 1 and conditions (14) - (17) obtain.
Recall that β and δ must both be positive by inequalities (18) & (19). We will
start the demonstration by showing that γ > 1 implies that δ > 1. Then we will
show that conditions (14) and (15) combine in a way that contradict condition
(17).

We start by taking advantage of the fact that, by equation (14) and inequal-
ities (15) (17), f(α∗)− α∗g(α∗) > 0. Simplifying, we find

(1− δ)(3γ − 4α∗(1 + γ))− 4α∗(γ2 − 1) > 0 (S.35)

Because of condition (17), 3γ − 4α∗(1 + γ) < 0. Further, if γ > 1, then
γ2 > 1 so the second term is negative. Therefore, in order for the above relation
to hold, δ > 1.

7



Now that we have δ > 1, we aim toward eliminating β by writing (14) as

−2β(1 + γ)2(α∗ − 3γ

(1 + γ)2
) =

(
2(γ − δ)(1 + γ)α∗ + 3γ(δ − 1)

)
α∗2 (S.36)

The left hand side is negative, therefore the right hand side must be negative,
in other words

(γ − 1)α∗ < (δ − 1)(α∗ − 3

2

γ

1 + γ
) (S.37)

Because γ > 1, the left hand side is positive. Therefore, α∗ > 3
2

γ
1+γ . We

now use equation (S.36) to eliminate β from (16). This gives that

(δ− 1)

(
2α∗2− 3γ(7 + γ)

2(1 + γ)2
α∗+

9γ2

(1 + γ)3

)
< 2(γ− 1)α∗(α∗− 9γ

2(1 + γ)2
) (S.38)

The left hand side must be positive or non positive. Because δ > 1, if the
the left hand side in the above inequality is positive, then one can combine the
above with (S.37). Simplifying, one finds α∗ < 3γ

(1+γ)2 which violates condition

(17). Therefore the left hand side must be nonpositive:

2α∗2 − 3γ(7 + γ)

2(1 + γ)2
α∗ +

9γ2

(1 + γ)3
≤ 0 (S.39)

Notice that if α∗ is very large then the polynomial in (S.39) is positive and,
speaking formally, if α∗ = 0 it is also positive. Therefore the above can only be
negative for α∗ > 1 if the polynomial has two distinct positive real roots. We
now look at the discriminant, which must be positive for the roots to be real
and distinct

0 < ∆ =
9γ2(γ − 1)(γ − 17)

4(1 + γ)4
(S.40)

We therefore have γ > 17. Further, notice that the only negative term in
(S.39) is the middle term. Therefore, we have

α∗2 +
9γ2

2(1 + γ)3
≤ 3γ(7 + γ)

4(1 + γ)2
α∗ (S.41)

α∗ <
3γ(7 + γ)

4(1 + γ)2
(S.42)

But right hand side in (S.42) is less than 1 for all γ > 17. This is a contra-
diction to condition (17). Therefore conditions (14) & (16) and condition (17)
cannot be simultaneously satisfied if γ > 1. Thus we have γ ≤ 1.

8



3.3 Conclusion

We have established γ 6= 1 and that γ ≤ 1. This establishes that γ < 1, that
the upper particle in the feasible stable steady state must have a larger radius
than the lower particle.

9
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Relative Trajectories Of Two Charged Sedimenting

Particles In A Stokes Flow

Chris I. Trombley, Maria L. Ekiel-Jeżewska‡
Institute of Fundamental Technological Research, Polish Academy of Sciences,

Pawińskiego 5b, 02-106 Warsaw, Poland

Abstract. We study the dynamics of two charged point particles settling in a Stokes

flow. We find what ranges of initial relative positions and what ranges of system

parameters lead to formation of stable doublets. The system is parameterized by the

ratio of radii, ratio of masses and the ratio of electrostatic to gravitational force. We

focus on opposite charges. We find a new class of stationary states with the line of

the particle centers inclined with respect to gravity and demonstrate that they are

always locally asymptotically stable. Stability properties of stationary states with the

vertical line of the particle centers are also discussed. We find examples of systems

with multiple stable stationary states. We show that the basin of attraction for each

stable stationary state has infinite measure, so that particles can capture one another

even when they are very distant, and even if their charge is very small. This behavior

is qualitatively different from the uncharged case where there only exists a bounded set

of periodic relative trajectories. We determine the range of ratios of Stokes velocities

and ratio masses which give rise to non-overlapping stable stationary states (given

the appropriate ratio of electrostatic to gravitational force). For non-overlapping

stable inclined or vertical stationary states the larger particle is always above the

smaller particle. The non-overlapping stable inclined stationary states exist only if the

larger particle has greater Stokes velocity, but there are non-overlapping stable vertical

stationary states where the larger particle has higher or lower Stokes velocity.

‡ Email: mekiel@ippt.pan.pl
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 2

1. Introduction

Motion of particles in a Stokes flow, such as sedimentation, [1–3] has applications

including medical technology [4–6], microfluidics [7–11], swimming of microorganisms

[12–14], deformation of vesicles [15], waste water treatment [16], marine snow [17],

mantle plums [18] and motion within volcanic magma [19, 20]. There are many

introductions to the physics of Stokes flows, introduced in [21], such as [22–30] and

the included references.

There has recently been interest in bound states of particles in viscous flows. For

example, formation of doublets and other bound states of particles in viscous flows have

been explored for drops [31], pairs of magnetically active rollers near a repelling wall [32]

and for pairs of identical rigid spheres in a background flow with walls [33]. There are

also results about large scale spontaneous self-organization into ordered structures with

many drops [34] or many rollers [35].

There is also a rich literature in bound states of sedimenting particles. A

fundamental problem for the motion of a group of particles close to each other is

understanding whether they stay together for a long time or disperse and what are the

physical mechanisms responsible for keeping them together, see [36–45]. To make the

notion of capturing precise, we define a capturing state of two particles as a configuration

whose relative trajectories do not go to infinity in future time. The capturing set is then

the set of all capturing states.

In [46] it is shown that there can exist a capturing set of a finite non-zero measure

for two uncharged spherical particles of different radii and different masses settling under

gravity in a Stokes flow. This set consists of neutrally stable periodic orbits. Because of

the neutral stability, there are no basins of attraction, so that even a small perturbation

can have a destabilizing effect. Further, because the capturing set has finite measure,

if particles begin very distantly they come closer to each other but later move away,

and are not trapped. This structure of the capturing set is often used to predict that

trajectories of two captured particles are likely to be disturbed by the presence of other

particles in a suspension, and therefore capture will probably have no significant effect

on the dynamics of sedimenting suspensions e.g. [47–50].

In this paper we study pairs of charged sedimenting particles, in order to see if the

charge can create large basins of attraction for bound states. Our interest in electrostatic

forces originates from the simple observation that systems of charged particles settling

in viscous fluids are common, and therefore stable doublets of charged particles could be

potentially used in many practical applications. In a vacuum, electrostatic interactions

are destabilizing. This fact is known as Earnshaw’s Theorem. However, in [51] it was

shown that even a very small charge can stabilize pairs of sedimenting particles; two

charged spherical particles of different radii and different masses settling under gravity

in a Stokes flow can have locally asymptotically stable stationary states with particle

centers in line with gravity.

The stability result in [51] is local. To understand the practical significance of this
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 3

local result, in this paper we will investigate how two charged point particles sedimenting

in a Stokes flow can capture one another, depending on the characteristic parameters of

the system: the ratios of the particle radii and masses. We will determine the regions in

the phase space of these parameters where stable stationary states of a given interparticle

distance can exist. We will determine the capturing set and its structure. We will also

find a new class of stable stationary states with particle centers inclined with respect

to gravity. We will show that the capturing set of a stable stationary state for two

charged point particles settling in a Stokes flow is infinite in measure and consists of

one or several basins of attraction to a stable stationary state. These findings open the

path toward future experimental observation of these stable doublets. Such doublets

could have relevance in dilute charged suspensions [52], for particles in flows at non-zero

Reynolds number [53–55] and in plasma [56].

We start our investigation with the mathematical model of point-like particles in

section 2. We examine the benchmark case of uncharged pairs of sedimenting point

particles (as in [46]) in section 3. In section 4 we present the stability conditions by

looking at the linearized dynamics near three kinds of stationary states: centers of

particles aligned with gravity with larger particle up, centers of particles aligned with

gravity with larger particle down and stationary states where centers of particles are

inclined with respect to gravity. In section 5 we discuss generic examples of the relative

motion. The vector field of the particle relative velocities and relative trajectories

determined numerically on a grid of initial conditions for the case when the larger

particle has a greater Stokes velocity. We find the capturing set in physical space of

the relative positions using the Poincare-Bendixson theorem. The other case - when the

smaller particle has a greater Stokes velocity - is examined in section 6. In section 7

we give the phase diagram for non-overlapping stable stationary states in terms of the

ratio of Stokes velocities and ratio of particle radii. We conclude with a summary of our

results.

2. Mathematical & Physical Model

We investigate the dynamics of pairs of charged spherical particles of different radii and

masses settling under gravity in a viscous fluid, in the range of the Reynolds number

much smaller than unity. A schematic of the system is shown in figure 1. Our goal

is to construct the simplest possible analytical model. Therefore, we assume that the

particles are point-like and use Coulomb force to model their electrostatic interactions.

We also use the point-like model to describe the hydrodynamic interactions. It means

that the two-particle mutual mobility is given by the Oseen tensor [26], taken at the

relative position of the particles, and self-mobility follows from the Stokes law. The

hydrodynamic point-like model is valid when the particles are distant. Further, the

electrostatic point-like Coulomb force does not describe effects of, e.g., anisotropic

distribution of mobile charges on the particle surface, nor electrostatic screening.

Therefore, our approach is an approximation.
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 4

The particle pair is labeled so that radius a1 of particle 1 is greater than or equal

to the radius a2 of particle 2. Via the Stokes equations, we will arrive at equations

of motion in terms of the electrostatic and gravitational forces. These are then non-

dimensionalized, parameterized and expressed in terms of coordinates.

Figure 1: A representation of the geometry of two charged particles with different

reduced masses m1 & m2 and radii a1 & a2 settling under gravity in a viscous fluid.

The directions of g & d are the directions of the gravitational and electrostatic forces

respectively. The angle θ of the interparticle position d from the direction perpendicular

to gravity is shown.

2.1. Force Diagram and Dynamics in the Point-Force Approximation

2.1.1. External Forces We start our diagram of forces with gravity. Let ẑ be a unit

vector pointing anti-parallel to the constant gravitational field g. Further, let mi be the

reduced mass of particle i = 1, 2. This means that the particle weight is corrected for

the buoyancy force of the fluid. If the fluid has density ρ and the particle has radius ai
and mass Mi, mi=Mi− 4

3
πa3i ρ. The gravitational force on particle i is

fm,i = −migẑ (1)

In this paper, we will assume that mi > 0. The case of mi ≤ 0 can be studied in an

analogous way as seen in the supplemental materials of [51]. Now we move on to the

electrostatic field. Let r1 and r2 be the positions of the centers of particle 1 and 2, so

that the relative position is

d=r2−r1 (2)

We now move on to the electrostatic forces. We denote the charge on particle i by qi.

Then the Coulomb electrostatic force which acts on particle i is

fq,i = (−1)ikqiqj
d

|d|3 (3)
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 5

where k is Coulomb’s constant and j = 3− i. The sum of the external forces acting

on particle i is

fi = fm,i + fq,i. (4)

2.1.2. Fluid Forces And Point Force Dynamics We now move on to discuss the fluid

forces. We assume that the particles are suspended in an infinite fluid with viscosity µ.

We assume that Brownian motion, fluid compressibility and inertia are irrelevant and

we describe the fluid flow by the Stokes equations.

µ∇2u−∇p = 0 (5)

∇ · u = 0 (6)

where p is the pressure and u is the velocity field of a fluid [22, 23]. Physically,

modeling fluid interactions by equations (5) & (6) entails that the external forces on

the particles in a Stokes fluid are in balance with the resistance forces exerted on the

particles by the fluid so that inertia may be neglected.

In the point particle approximation, the hydrodynamic interactions between the

particles are described by a linear dependence of the particle velocities ṙi on the external

forces fj acting on them. The mutual interaction is determined by the Oseen Tensor [26]

G(d) =
1

|d|(I+
d⊗ d

|d|2 ) (7)

where |d| is the length of the vector d, I is the identity tensor and ⊗ is the tensor

product. We assume the self-interaction is determined by the Stokes Velocity for the

particle given by the external forces the particle is experiencing. To sum up, our dynamic

equation will be of the form

ṙi =
1

8πµ
G(d) · fj +

1

6πµai
fi (8)

where j = 3 − i. Notice the above dynamics are first order, which means that

the velocities of the particles are given by their positions. This is the mathematical

expression of the irrelevance of inertia.

2.2. Characteristic Dimensions

In order to aid our analysis we will choose characteristic dimensions. In particular, we

choose

L = a1 + a2, (9)

V =
m2g

6πµL
(10)

as our characteristic length and velocity scale. The time scale is therefore T = L/V .

We will use the non-dimensional separation vector

α =
d

L
(11)
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 6

and the time normalized by T to nondimensionalize (8). We further define three

independent non-dimensional numbers

β = − kq1q2
L2m2g

(12)

γ =
a1
a2
, (13)

δ =
m1

m2

(14)

which parameterize our equation of motion. One can see that β is the ratio of

characteristic electrostatic force to characteristic gravitational force, γ is the ratio of

particle radii and δ is the ratio of reduced particle masses. Our assumption that mi > 0

entails that δ > 0 and our labeling convention entails γ ≤ 1. An important physical

parameter is also the ratio δ/γ of the particle Stokes velocities.

2.3. Dimensionless Equations Of Motion And Their Basic Properties

Having set up our diagram of forces and nondimensionalization choices, starting from the

point-force model (8) we arrive at the following non-dimensional dynamical equation [51]

α̇ =
3

2α3
β G ·α− β

(1 + γ)2

γα3
α+

3

4
(1− δ)G · ẑ− (γ − δ)(1 + γ)

γ
ẑ (15)

where dot denotes the non-dimensional time derivative, α = |α| and G is the non-

dimensional Green tensor given by

G(α) =
1

α
(I+

α⊗α

α2
) (16)

It is helpful to write equation (15) in terms of coordinates of α. To give a convenient

geometry to work in, we will choose x and y axes of the coordinate system so that the

particle centers are in the plane y=0 (the direction of gravity has been already chosen

along the z axis). Any orbit with an initial condition in this plane will never experience

a force pointing out of this plane, so we will suppress the y-coordinate for the rest of the

paper. Using these conventions, equation (15) transformed into Cartesian co-ordinates

becomes

α̇x = 3β
αx

α4
− β

(1 + γ)2

γ

αx

α3
+

3(1− δ)

4

αxαz

α3
(17)

α̇z = 3β
αz

α4
− β

(1 + γ)2

γ

αz

α3
+

3(1− δ)

4

α2
x + 2α2

z

α3
− (γ − δ)(1 + γ)

γ
(18)

A few words can be said about what writing the dynamics in these coordinates

entails. First of all, (17) entails that if the particles begin with their centers vertically

aligned there are no forces pushing the particles off vertical. This means that, for

instance, there is never a periodic orbit which intersects the z-axis. Looking at the

signs, we see that (17) is anti-symmetric in αx and αz while (18) is symmetric in αx.

Because the dynamics in this coordinate system are given by analytic functions, the

pole and the zeros are always isolated points. Further, away from the pole at the origin
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 7

the dynamics are differentiable, so that orbits never intersect. Finally, the stationary

states are given when the LHS of (17) & (18) are both zero, which provides limits on

the count of stationary states. When examining the dynamics it is useful to also write

the equations in polar co-ordinates and θ the angle from the x-axis. We use polar rather

than cylindrical coordinates because there are no forces in the y-direction. These defined

so that

αx = α cos(θ) (19)

αz = α sin(θ) (20)

where α > 0. This definition entails that the positive x-axis is the ray such that

θ = 0, the positive z-axis is θ = π
2
, the negative x-axis is θ = π and the negative z-axis is

θ = 3π
2
. We could also use ψ = π

2
−θ, the angle from the z-axis. Applying this definition

to equation (15), we derive

α̇ =
β

α2

(

3

α
− (1 + γ)2

γ

)

+

(

3(1− δ)

2α
− (γ − δ)(1 + γ)

γ

)

sin(θ) (21)

αθ̇ =

(

3(1− δ)

4α
− (γ − δ)(1 + γ)

γ

)

cos(θ) (22)

Writing the dynamics in these coordinates also has a few obvious implications worth

making explicit. First of all, the stationary states are given when the LHS of (21) &

(22) are both zero. Therefore, equation (22) means that any stationary state must have

either cos(θ) = 0 (i.e., the line of the particle centers must be parallel with gravity) or

have radial coordinate α equal to

α† =
3(1− δ)γ

4(γ − δ)(1 + γ)
(23)

Because α > 0, this second option exists only if

(1− δ)(γ − δ) > 0 (24)

3. Dynamics Of Uncharged Particles

We begin our enumerative strategy by considering the case when at least one particle

is uncharged and there is no electrostatic interactions between them. Our analysis

will demonstrate the importance of non-stable stationary states in establishing the

qualitative global dynamics as well as allow us to discuss later the limit of β → 0.

We will also compare the output of this model to the classical results [46].

We start by giving the dynamical equations. If there is at least one uncharged

particle, then β = 0 and the equations of motion (21) & (22) become

α̇ =

(

3(1− δ)

2α
− (γ − δ)(1 + γ)

γ

)

sin(θ) (25)

αθ̇ =

(

3(1− δ)

4α
− (γ − δ)(1 + γ)

γ

)

cos(θ) (26)
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 8

There are a few trivial cases we will quickly deal with. If δ = 1 then a stationary

state only exists if γ = 1 also. In this case, the particles are totally identical and there

is no relative motion no matter where the particles begin. Similarly, if δ = γ, either

δ = γ = 1 as before or no finite separation can be a stationary state. Either way, this

would eliminate any interesting behavior such as bounded orbits. Moreover, only if (24)

holds can there be stationary α.

Finally we come to the non-trivial cases, those in which the above inequality is

satisfied. Solving for the stationary states gives four solutions: two horizontal and two

vertical. The vertical cases haves θ∗ = π
2
or 3π

2
and give

α∗ =
3(1− δ)γ

2(γ − δ)(1 + γ)
(27)

The horizontal cases have θ† = 0 or π and lie at a distance (23) from the origin.

A few points can be established about these stationary states just from equations (23)

and (27). First we note that α∗ = 2α†. Next, if δ > 1, then the right hand side of (27)

is an increasing function of γ in our range of 0 < γ ≤ 1. Therefore we have that α∗ < 1

in this case. Stationary states of particles with different radii or different masses can be

feasible, i.e., non-overlapping and non-touching, with α∗ > 1, only if δ < γ < 1.

We illustrate these parameter space results in figure 2(a). The solid line is δ/γ = 1,

when the particles have equal Stokes velocities. The short dashed line is equal reduced

masses δ = 1. Below this line and above the solid line stationary states do not exist

(region D), while above this line stationary states exist but are infeasible (region E). As

we have already shown, there is no stationary states on the solid line and short dashed

lines except at δ = γ = 1 where every separation is a stationary state.

The dash-dot line is α† = 1, so that above this line but below the solid line (region

C) all stationary states are feasible. On the long dashed line is α∗ = 1, so that above

this line but below the dash-dot line (region B) vertical stationary states are feasible

but the horizontal ones are not feasible. Below dashed line (region A) all stationary

states are not feasible. Properties of the regions are outlined in table 1.

With the locations of the stationary states in mind, we now turn to characterizing

the orbits in the large. We can do this by solving exactly a few special cases of the

equations of motion. If our initial condition involves α = α∗ but θ is non-vertical, then

the system evolves along the curve given by

θ̇ = −(γ − δ)2(1 + γ)2

3γ2(1− δ)
cos(θ) (28)

This differential equation has the solution

θ +
π

2
= 2 tan−1

[

k1 exp

(

− (γ − δ)2(1 + γ)2

3γ2(1− δ)
t

)]

(29)

where k1 is from the initial condition. This solution forms two heteroclinic curves,

so designated because each connect two stationary states in infinite time.
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 9

Table 1: Properties of stationary states of uncharged particles.

region do stationary are vertical are horizontal

states exist? stationary states stationary states

feasible? feasible?

(A) δ
γ
≤ 2γ−1

2−γ
yes no no

(B) 2γ−1
2−γ

< δ
γ
≤ 4γ+1

4+γ
yes yes no

(C) 4γ+1
4+γ

< δ
γ
< 1 yes yes yes

(D) 1 ≤ δ
γ
≤ 1

γ
and γ 6= 1 no N/A N/A

(E) δ
γ
> 1

γ
yes no no

γ

0 0.5 1

δ
 /
 γ

0

0.2

0.4

0.6

0.8

1

1.2

(A)

(B)

(C)

(D)
(E)

(a) (b)

Figure 2: Dynamics of uncharged particles. (a) Phase space of the ratio γ of particle

radii and the ratio δ/γ of the particle Stokes velocities, with the indicated regions defined

by equations in Table 1. Feasible horizontal and feasible vertical stationary states exist

only in region (C). Properties of other regions are given in Table 1. (b) Example of

relative trajectories for δ = .986 & γ = .988. The orbits of the larger particle, labeled

2, are shown in the reference frame of particle 1, located at the origin. The open

circles represent not stable stationary states. The colors are used to facilitate tracing

streamlines close to each other.
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 10

The other pair of heteroclinic curves are vertical, θ∗ = π
2
or 3π

2
. These heteroclinic

are symmetric. In this case the equations of motion are

α̇ = ±
(

3(1− δ)

2α
− (γ − δ)(1 + γ)

γ

)

(30)

These differential equations have the implicit solutions

±t=k2 −
γ

(γ−δ)(1+γ)α− 3(1−δ)γ2
2(γ−δ)2(1+γ)2 ln

∣

∣

∣

∣

α− 3(1−δ)γ
2(γ−δ)(1+γ)

∣

∣

∣

∣

(31)

where k2 is from the initial conditions. This form of the solution makes it clear

that a particle approaches θ∗ in infinite time.

Collectively, the curves sketched out by these four heteroclinic orbits make two half

circles. The interior of the curves contain two neutrally stable stationary states at (23).

Finally, the two vertical stationary states at (27) are not stable but rather saddle points.

We can now fully characterize the orbit traced out by any initial position. By the

Poincare-Bendixson Theorem every point on the interior of those closed heteroclinic

curves will move in periodic motion: moving toward a stable fixed point is ruled out by

linear stability analysis, the heteroclinics have all been found and wandering to infinity

is impossible because they cannot touch the closed curves which initially bound them.

Finally, every point not vertical and exterior to the circle with radius α∗ will go to

infinity, by similar reasoning.

We complete the analysis by returning to figure 2 (a) in order to characterize the

qualitative dynamics as a function of the parameters. Regions (A) - (C) & (E) have

qualitatively similar dynamics: in all cases there is periodic behavior. Region (D) has

no stationary states and therefore all orbits are unbounded. Region (C) has the special

property that some of the periodic orbits found are non-overlapping. This case is the

most physically interesting and the corresponding relative trajectories are illustrated in

figure 2(b). This completes the analysis of the qualitative behavior of uncharged point

particles settling in a Stokes flow.

We will now briefly compare the results in this section to those in [46]. This seminal

paper uses a precise model of hydrodynamic interactions, allowing for more realistic

treatment of finitely sized particles. For reference, figure 2(a) can be compared directly

to figure 5 in [46].

The essential similarity between the results of both approaches is that there appear

such regions of the phase space γ & δ/γ that all the trajectories are unbounded, and such

regions that some of the trajectories are unbounded, but the other ones are bounded. In

case of the point-particle model, one should focus on the orbits (or their parts) outside

the particle “surface” determined by its radius. For the point-particle model, region (A)

and regions (D) and (E) of figure 2(a) contain only unbounded feasible orbits. Regions

(D) and (E), where the larger particle moves slower than the smaller one, are the same

as the region of unbounded orbits in [46]. Region (A), in which the larger particle moves

faster than the smaller one, is smaller than the region of unbounded orbits in [46].

In the region labeled (C) the feasible point-particle orbits are periodic or

unbounded. Analogous (but lager) range was also found in [46] for the more
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 11

precise hydrodynamic model. In the point-particle region (B) there are feasible

unbounded orbits and feasible parts of periodic orbits, bounded owing to the non-

overlapping vertical stationary states while the horizontal stationary states responsible

for periodicity are overlapping. For the more precise hydrodynamic interactions used

in [46], the analogous (but smaller) range exists. However, in this range there are

no horizontal stationary states and the bounded orbits are not periodic. Rather, the

bounded orbits are heteroclinics going from one vertical stationary state to the other.

This comparison suggests that the existence of periodic or bounded orbits is predicted

by the point-particle and the more precise hydrodynamic model in a qualitatively similar

way when all or at least some of the stationary states are feasible.

4. Linear Stability Analysis Of Pairs Of Charged Sedimenting Particles

We now move on to charged systems of particles. We will find conditions for stationary

states and, in order to investigate stability properties, gather information from the

dynamics linearized around the stationary states. This information will then be used to

understand global dynamics in the next sections.

Following the discussion of equation (22), we have divided all the stationary

arrangements into three categories. In the first, the particle centers are aligned vertically

and the larger particle is above the smaller particle, i.e. θ = π/2 (see figure 1 for

illustration). We will call these larger up vertical stationary states. In the second case,

the particle centers are also aligned vertically but the larger particle is below the smaller

particle, therefore θ = 3π/2. We will call this second configurations larger down vertical

stationary states. Finally, there are the inclined stationary states where θ takes on any

other value.

The conditions for stability of vertical stationary states were found in [51]. Here we

add a systematic analysis of vertical stationary states§, both stable and not stable.

In this section we also investigate a new class of stationary states: the inclined

configurations, focusing on their stability.

4.1. Vertical Larger Up Stationary States

We will first analyze properties of vertical stationary states with the larger particle

above the smaller one, i.e. θ = π/2. In this case equation (21) becomes

α3α̇ = 3β − β
(1 + γ)2

γ
α+

3(1− δ)

2
α2 − (γ − δ)(1 + γ)

γ
α3 (32)

This equation gives rise to the following condition (equivalent to (14) in [51]) for a

stationary state α = α∗ and θ = π
2

0 = 6γβ − 2β(1 + γ)2α∗ + 3γ(1− δ)α∗2 − 2(γ − δ)(1 + γ)α∗3 (33)

§ Though [51] used Cartesian co-ordinates, the resulting stability conditions of vertical stationary states

are of course the same as in polar coordinates.

Page 11 of 29 AUTHOR SUBMITTED MANUSCRIPT - JPCO-101986.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 12

It follows from this condition that it is possible to choose a β to make any particular

α∗ stationary. Therefore, there are stationary states that have no analogue with the

uncharged case. We will return to the parameter space (γ, δ) behavior of vertical

stationary states in a later section. For instance, in the range 1 > δ > γ, there are

no stationary states for uncharged particles, but there are some if a charge is added.

We now address linear stability of a stationary state (α∗, π
2
), given by equation (33). If

we assume that α = α∗ + ǫr and θ = π
2
+ ǫθ, then the dynamics linear in epsilon are

ǫ̇r ≈ − 1

γα∗3

(

β(1 + γ)2 − 3γ(1− δ)α∗ + 3(γ − δ)(1 + γ)α∗2
)

ǫr (34)

ǫ̇θ ≈ − 1

4γα∗2

(

3γ(1− δ)− 4(γ − δ)(1 + γ)α∗
)

ǫθ (35)

Because the matrix of coefficients is diagonal, the constants within the parentheses

must be positive in order for the system to be linearly stable. That is,

0<β(1 + γ)2 − 3γ(1− δ)α∗ + 3(γ − δ)(1 + γ)α∗2 (36)

0<3γ(1− δ)− 4(γ − δ)(1 + γ)α∗ (37)

It can be shown by Lypunov’s method that equation (33) and inequalities (36) &

(37) form necessary and sufficient conditions for a stationary stable state.

4.2. Vertical Larger Down Stationary States

We will now discuss the stationary states with the larger particle below the smaller one.

Similarly to equation (32), on the ray θ = 3π/2, equation (21) becomes

α3α̇ = 3β − β
(1 + γ)2

γ
α− 3(1− δ)

2
α2 +

(γ − δ)(1 + γ)

γ
α3 (38)

This gives rise to the following equations for the stationary state (α∗, 3π
2
)

0 = 6γβ − 2β(1 + γ)2α∗ − 3γ(1− δ)α∗2 + 2(γ − δ)(1 + γ)α∗3 (39)

and for the local dynamics

ǫ̇r≈ − 1

γα∗3

(

β(1 + γ)2 + 3γ(1− δ)α∗ − 3(γ − δ)(1 + γ)α∗2
)

ǫr (40)

ǫ̇θ≈ − 1

4γα∗2

[

− 3γ(1− δ) + 4(γ − δ)(1 + γ)α∗
]

ǫθ (41)

In order to be linearly stable, the constants within the parentheses must be positive.

That is,

0<β(1 + γ)2 + 3γ(1− δ)α∗ − 3(γ − δ)(1 + γ)α∗2 (42)

0< − 3γ(1− δ) + 4(γ − δ)(1 + γ)α∗ (43)

We have previously shown in [51] that there are no stable stationary states with

the larger particle below the smaller one if we also require the particles do not overlap

(α∗ > 1). However, conditions (42) & (43) will still aid in our understanding of the

global dynamics because of the properties of non-stable stationary states.
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 13

4.3. Inclined Stationary States

In the previous section, we showed how to count and classify the vertical stationary

states of charged particles. We will now show how to do the same for non-vertical

stationary states, which have a simpler form, given by equations (21), (22) & (23). This

simplicity will allow us also to easily analyze typical behaviors in the parameter space

(γ, δ).

We can discuss the stationary states of charged particles using figure 2(a) and

relations in Table1. The same parameter space curves and regions are of interest but

require new interpretations when conceived as relating to charged inclined stationary

states. We start from considering two special cases. The short dashed line in figure

2(a) represents equal reduced masses, δ = 1. Equation (22) entails that there exists an

inclined stationary state of charged particles only if further δ = γ = 1. Similarly, the

solid line, the special case of equal Stokes velocities δ/γ = 1, has an inclined stationary

state only if further δ = 1. That is to say, those lines are consistent with the existence of

an inclined stationary state only on their intersection point. However, the interpretation

of that point is different between the uncharged and the charged inclined case. In the

uncharged case, all the relative positions of identical particles are stationary, while in the

charged case only stationary states of identical particles must have separation distance

α† = 3γ
(1+γ)2

(and an arbitrary orientation). This never feasible distance is the same for

all β 6= 0. Moving on to the general case of unequal Stokes velocities & unequal reduced

masses, a general inclined stationary state must have

sin(θ†)=β
16(γ − δ)(1 + γ)2(1 + 3δ − 3γ − δγ)

9γ2(1− δ)3
(44)

α† =
3(1− δ)γ

4(γ − δ)(1 + γ)
(45)

Equation (45), identical to (23), corresponds to α̇θ = 0. Therefore, the RHS of (45)

cannot be negative, and there are no inclined stationary states of charged particles in the

region (D) defined in table1 and shown in figure 2(a). Moreover, the distance between

the particles in an inclined stationary state is independent of the charge/mass ratio β.

However, unlike the uncharged case, the condition (44) for α̇r = 0 has a nontrivial form

that does not allow for stationary states if charges are too large, because the sine of the

stationary angle θ† is proportional to charge/mass ratio β. In terms of phase diagram as

in figure 2(a), equation (45) entails that all and only values of the parameters γ and δ in

region (C), given in table 1 have feasible inclined stationary states of charged particles,

providing that value of β is sufficiently small to satisfy (44). Horizontal stationary states,

generic for the dynamics of uncharged particles, are exceptional for charged systems.

One can see from equation (44) that there is a horizontal stationary state with the

particle centers aligned perpendicular to gravity (i.e sin(θ) = 0) if and only if either a)

the particles are uncharged (β = 0) or b) the particles have Stokes velocity ratio given

by the relation δ
γ
= 3γ−1

γ(3−γ)
(and they overlap with α† = 3γ

(1+γ)2
). Because the curve traced

by this relation is lower than the dash dot line representing the boundary of feasible
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Relative Trajectories Of Two Charged Sedimenting Particles In A Stokes Flow 14

inclined stationary states (except at their intersection δ = γ = 1) the angular part of

an inclined feasible stable stationary is always less than π, which means that the larger

particle is higher than the smaller one.

We now analyze the conditions for linear stability of inclined stationary states. Let

α = α†+ ǫr and θ = θ†+ ǫθ where ǫr and ǫθ are first order perturbations. One finds that

to a first order

ǫ̇r ≈ − 3β

α†4
ǫr +

(γ − δ)(1 + γ)

γ
cos(θ†)ǫθ (46)

ǫ̇θ ≈ − (γ − δ)(1 + γ)

α†2γ
cos(θ†)ǫr (47)

The above linearized dynamics can be easily analyzed. A linear system of ODE

with a matrix of constant coefficients is called stable if and only if the real parts of

eigenvalues of the matrix are negative. Recall that the determinant is the product of

the eigenvalues and the trace is the sum. Therefore, a necessary and sufficient condition

for this stationary state to be linearly stable is the determinant to be positive and the

trace negative. The determinant

(γ − δ)2(1 + γ)2

α†2γ2
cos2(θ†) (48)

is positive if and only if the particles have different Stokes velocities (recall that

cos(θ†) 6= 0 for inclined stationary states),

δ

γ
6= 1 (49)

Further, the trace is equal to

− 3β

α†4
, (50)

which is negative if and only if

β > 0 (51)

Inequalities (49) & (51) entail that if the charges on the particles are opposed then

the stationary states are stable whenever they exist: off of the solid and short dashed

line in figure 2(a) and with β small enough that equation (44) has a solution. It is

interesting to note that the particles having opposite charges, expressed in the inclined

case by inequality (51), is also a necessary condition for a vertical stable steady state [51].

Therefore in the next sections we will focus on systems with oppositely charge particles

(i.e. β > 0).

5. Example Dynamics Of Systems Of Pairs Of Charged Particles

The local information derived in the previous section can be used to find the qualitative

behavior of pairs of charged particles sedimenting in a Stokes flow. For instance, as just

mentioned, we have shown that the local analysis entails that if there is to be a stable

stationary state then the charges on the particles must be opposed. In this section we
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show some generic examples of the dynamics of charged sedimenting particle doublets

with large capturing sets. It means that starting from a wide range of initial relative

positions, both particles and will not separate from each other, and, on the contrary,

they will decrease their distance for ever.

We choose four sets of parameters to demonstrate a variety of behaviors with the

above capturing property. In this section we will choose parameters with β > 0 and

δ/γ < 1, so that the particles have opposite charges and the larger particle has greater

Stokes velocity when the particles are well separated. The dynamics for when δ/γ > 1

will be discussed in the next section. We organize by the count and arrangement of stable

stationary states: one stable vertical stationary state, two stable vertical stationary

states, two stable inclined stationary states and finally two stable inclined stationary

states with one stable vertical stationary state.

Example orbits solving the nonlinear vector ordinary differential equation (15) are

plotted in figure 3. Each orbit describes the relative motion of the larger particle 2

with the origin as the center of the smaller particle 1, and with the given initial relative

positions of the larger particle. The orbits were calculated using a fourth order Runga-

Kutta method with constant step size ∆t = .1. We have decided to use (αx,αz) space in

this figure and this section for easy comparison with observations. One can see visually

that the basins of attraction in our characteristic cases are large. We have also provided

in figure 4 a visual way of demonstrating the local stability (or instability) of vertical

stationary states. The solid curves are the vertical velocity α̇z of particle 2 relative

to particle 1 when their line of centers is vertically aligned and the relative vertical

position is αz. On vertical axis, α̇z = α̇ which can be obtained from (32) & (38). When

the solid curve goes down through the horizontal dash-dot line (which corresponds to

α̇z = 0) when αz is increased, then separation between the particle centers is a stationary

state which is vertically stable as given by inequalities (36) & (42). The two dashed lines

capture the angular stability conditions (37) & (43) for the given parameters, separately

for αz > 0 and αz < 0. In each of these ranges of αz, if a stationary state is to the

left of a dashed line, then it is horizontally stable. In the following we will demonstrate

that using properties of the stationary states we are able to determine basic features of

the dynamics and qualitatively describe the boundary of the basin of attraction in all

of these generic cases.

5.1. One Vertical Stable Stationary State

We will now apply the results we have derived to find a typical phase portrait of the

relative dynamics. As an example, we look at a system with a single stable stationary

configuration. We choose the parameters δ = 0.986 & γ = 0.988 from the region (C)

and β = 0.01 too large for the existence of inclined stationary states. In this case all of

the stationary states have particle centers aligned in the direction of gravity. Relative

orbits for different initial positions are illustrated in figure 3(a). It seems that there are

two generic classes of orbits visible in this figure, a capturing set and a separating set.
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Figure 3: These orbits illustrate the relative motion of the larger particle with the origin

defined as the center of the smaller particle. The parameters are (a) β = .01, δ = .986

& γ = .988, (b) β = .125, δ = .875 & γ = .885, (c) β = 0.22, δ = 0.45 & γ = 0.5 and

(d) β = .42, δ = .47 & γ = .5. The colors are used to facilitate tracing streamlines close

to each other.

In the first one, the particle come closer to each other. In the second one, the particles

separate from each other. This informal visual analysis can be deduced by classifying

the local behavior of the stationary states and examining the behavior of separatrix and

other special orbits.

Figure 4(a), which illustrates the behavior of the system when the particle centers

are aligned vertically, is helpful for classifying the stationary states. There are three
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Figure 4: Stability analysis of the vertical stationary configurations shown in figure 3.

The dash-dot lines are axes; the horizontal one corresponds to the stationary condition

α̇z = 0. The solid curves are the vertical relative velocities α̇z = α̇, evaluated as functions

of αz from (32) & (38). When the solid curve goes down through the horizontal dash-

dot line when αz increases from the stationary position, then that stationary state is

vertically stable. In each of the ranges αz > 0 or αz < 0, if a stationary state is to the

left of a dashed line, given by (37) or (43), then it is horizontally stable.

stationary states and a discontinuity at the origin. The stationary state with the larger

particle directly above the smaller is αz = 2.31.... This is the sole ”larger up” stationary

state. The stationary states with the larger particle directly below the smaller one are

αz = −6.56... and αz = −.588.... We will call these the ”far” and ”close” larger down

stationary states respectively. We can now classify the stationary states based on their

local behavior. Again referring to 4(a), we see the larger up stationary state is stable

while the stationary states on the negative z-axis are saddle points. Further, one can

see that the far larger down state is stable with respect to horizontal perturbations and

unstable with respect to vertical perturbations. Similarly, the close larger down state
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is unstable with respect to horizontal perturbations and stable with respect to vertical

perturbations. Finally, if we briefly and informally consider the origin by considering a

point in a punctured neighborhood of the origin we see that it is unstable in the sense

that all arrows sufficiently near the origin lead away from the origin.

Now we supplement the local information by considering some special orbits. To

simplify language, we will use ”end” to mean the limit in positive infinite time and

”begin” to mean the limit in negative infinite time, taking care to only use this language

when it makes sense. There are four special orbits which end on the saddle points. Two

vertical special orbits end on the close larger down stationary state: one which begins

on the origin and one which begins on the far larger down stationary state.

The most important special orbits, however, are the pair which end on the far

larger down stationary state. These non-vertical orbits form the separatrix curve of the

system. We use ”separatrix” informally to mean a curve which separates the plane into

two sets where the interior and exterior have different qualitative behavior. It is clear

to the eye from figure 3(a) that the separatrix cuts the plane into two sets. In fact, the

separation property follows from the local information about saddle stationary states.

The separatrix and its interior form the capturing set of the system. In fact, the

topology of the vector field shows us a stronger result: all orbits on separatrix or in its

interior must go to a stationary state. We start by considering the off vertical orbits

on the interior of the separatrix. Such an orbit cannot go to infinity because the orbit

cannot cut the separatrix. The orbit cannot be periodic, as a closed orbit in the plane

must have a stationary state in its interior - the Poincare-Bendixson Theorem - and

there are no stationary states off the vertical axis. With periodic motion and separation

eliminated, we have shown that all non-vertical orbits on the interior of the separatrix

go to a stationary state. Mopping up the remaining special orbits, by examining 4(a)

we see the vertical orbits on the interior of the separatrix go to the close larger down

stationary state or the stable stationary state. Finally, the orbits that make up the

separatrix end on the far larger down stationary state by definition. We have now

shown that all orbits in the capturing set go to a stationary state. The demonstration

that all orbits in the exterior of the separatrix have the particles drift apart is similar.

This is already a powerful qualitative characterization of the orbits. The local

information tells us even more than this. In fact, because any state close to the higher

larger down stationary state with non-zero horizontal component is repelled, we see

that the vertical special orbits that end on the higher larger down stationary state are

the only orbits on the interior of the separatrix which end on the higher larger down

stationary state at all. Therefore, almost all points on the interior of the separatrix end

on the stable stationary state. This includes, for instance, those orbits on the interior

of the curve formed by special orbits which begin on the close larger down stationary

state and end on the stable stationary state, which appears as a teardrop shape in figure

3(a).

We have now shown the manner in which the local behavior of the stable and not

stable stationary states come together to give us the global dynamics by applying some
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simple topological reasoning. This completes the description of the qualitative dynamics

for this example. We end by again noting that any set of parameters which gives rise

to the same structure of stationary states will result in the same qualitative dynamics.

5.2. Two Stable Vertical Stationary States

Similar to the previous example, we can give the global dynamics for when all stationary

states are vertical and there are two stable stationary states. As an example of such a

system we choose β = .125, δ = .875 & γ = .885. Orbits of particle 2, relative to particle

1, in such a system are illustrated in figure 3 (b). One can see that the capturing set is

still large in this case.

In figure 4(b), we plot the relative vertical velocity of the system when the particle

centers are aligned vertically, find all vertical stationary configurations and determine

their stability against vertical and horizontal perturbations. As before, we can reason

from the local information about the stationary states to the global dynamics. The

larger up stationary states at αz = 1.242... and αz = 4.130.... are stable. We will call

them the near and far stable stationary states, respectively. The stationary state at

αz = 3.429... is a saddle point not stable to vertical perturbations, so we will call it the

not stable larger up stationary state. Similarly, the two larger down stationary states

at αz = −10.829... and αz = −0.615... are saddle points and will be called near and far

larger down stationary states, respectively.

We shall soon see that all orbits in the capturing set go to a stationary state and

furthermore almost all go to a stable steady state. We do this by examining some

important orbits and the curves they trace. Once again, the curve made up of orbits

which end on the far larger down stationary state is the separatrix that forms the

boundary of the capturing set. One can use the argument from the last section to show

the separatrix is unbounded. Another important curve is made of the orbits that end

in the not stable larger up stationary state. All points on the interior of this curve go

to the far stable stationary state and, more obviously, no point on its exterior goes to

the far stable stationary state. This curve is also a separatrix, since it is the boundary

between basins of attraction of both stable stationary states. It’s easy to see that all

the orbits off the vertical go to one of these two stable stationary states. From figure

4(b) it is clear that some vertical orbits go to the far larger up stable stationary state,

and others go to the near larger down unstable stationary state. This gives us all the

qualitative dynamics for systems with two stable vertical stationary states.

5.3. Inclined Stable Stationary States

We will now examine a characteristic example of dynamics when there are inclined

stable stationary states, and they are the only stable stationary states. We choose as

our parameters β = 0.22, δ = 0.45 and γ = 0.5. This results in a stable stationary state

with α = 2.75..., θ = 0.722... and another one symmetric across the z-axis. One can see
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by figure 4(c) that these parameters entail there are no vertical stable stationary states.

All vertical stationary states are saddle points.

Orbits are illustrated in figure 3(c). Once again, the capturing set is quite large,

even though there are no vertical stable stationary states.

We now discuss how the global dynamics is related to the local properties of the

stationary states. Once again all orbits in the capturing set go to a stationary state

and almost all go to a stable stationary state. However because there are inclined

stationary states we must use a new method to show this. Consider pair of orbits that

begin on the close larger down saddle point and end on an inclined stable stationary

state. These prevent periodic orbits, because any periodic orbit would have to contain

an inclined stationary state and therefore cut one of these orbits which is impossible.

Further we once more see the boundary of the capturing set is a separatrix coming

from infinity and going into the far larger down saddle point. With periodic and

unbounded orbits eliminated as possibilities for orbits in the capturing set, the Poincare-

Bendixson theorem entails they must all go to some stationary state. The only orbits

in the capturing set that do not go to an inclined stationary state are those with initial

conditions such that the particle centers are aligned with gravity, which separate the

orbits that go to different stable stationary states. We have see again the importance of

saddle stationary states in characterizing the qualitative dynamics of particle motion.

In this case, the orbits coming out of a saddle point prevented periodic motion. Further,

we have repeatedly seen that the seperatrices that form the boundary of the capturing

set contain a saddle stationary state. We will see this pattern again in the next case.

5.4. Dynamics With Both Inclined And Vertical Stable Stationary States

Inclined and vertical stable stationary states can coexist. For example, the parameters

β = .42, δ = .47 & γ = .5 have inclined and vertical stationary states. The dynamics of

this case can be seen in figure 3(c). We analyze the vertical dynamics in figure 4(d). This

example has five vertical and two inclined stationary states. The only vertical stable

stationary state has the large particle over the smaller one at αz = 1.15.... The inclined

stable stationary states are at α = 4.41.. and θ = 1.15.... The not stable stationary

states are the far larger down stationary state at αz = −10.6..., the close larger down

stationary state at αz = −.548..., the close larger up stationary state at αz = 2.22.. and

the far larger up stationary state at αz = 5.45.... All the not stable stationary states

are saddle points.

All orbits in the capturing set go to some stationary state, for the same reason as

the previous case. In particular, the orbits coming out of the far larger up stationary

state approach the inclined stable stationary states and therefore prevent periodic orbits

as seen in figure 3(c). As before, the separatrix which bounds the capturing set is made

up of the orbits which end in the far larger down stationary state. The orbits coming

from infinity and ending at the the close larger up stationary state form the boundary

between the basins of attraction of the inclined and vertical stable stationary states. This
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Figure 5: An example system with inverted Stokes velocity ratio δ/γ ≥ 1. One can see

from the example orbits in (a) that the larger particle moves against gravity relative to

the smaller particle when the separation between them is large. The dynamics when the

particle centers are aligned with gravity can be read from (b). The parameters chosen

are β = .293... δ = .82 & γ = .8.

completes our analysis of the global dynamics from the local behavior of the stationary

states for a system with both stable and inclined stable stationary states.

6. Inverted Stokes Velocity Ratio Dynamics

In all the cases of the previous section, when particle separation is large the larger

particle moves in the direction of gravity relative to the smaller particle. This is

because in all the cases examined the ratio of Stokes Velocities δ/γ < 1. It is also

possible to have δ/γ ≥ 1, so that the larger particle moves against gravity relative to

the smaller particle when the particle separation is large. We will call this case that

of ’inverted Stokes velocity ratio”. The stability considerations from section 4 do not

change in form for Inverted Stokes velocity ratios. We will see by example that the

Poincare-Bendixson theorem used throughout the previous section still allows us to

make qualitative conclusions about the global dynamics.

As our example, we choose parameters β = .293... δ = .82 & γ = .8. This

corresponds to the range (D) of the phase space γ & δ/γ, see figure 2(a) and table 1.

The corresponding orbits of the larger particle (with the label 2) relative to the smaller

particle (with the label 1) are illustrated in figure 5(a). One can see that even though

the stable stationary state is still ”larger up” (αz > 0), the part of the capturing set

when the larger particle is above the smaller particle is now bounded, whereas in figure

3 it was not bounded. The part of the capturing set with the larger particle below
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the smaller particle is now unbounded, whereas before it was bounded. This property

of the capturing set corresponds to the inverted direction of the relative trajectories,

which have now vertical components coming from −∞ while in the previous section,

they arrived from +∞, in agreement with the inverted Stokes velocity ratio.

We can now extract qualitative information about the dynamics of this system.

The dynamics when the particle centers are aligned with gravity are displayed in figure

5(b). The stationary state at α∗
z = 1.01... is stable and the stationary states at α∗

z = 2.12

and α∗
z = −0.63 are saddle points. There are no inclined stable stationary states. The

separatrix coming into the larger up saddle point must come in from infinity. This

is due to the Poincare-Bendixson theorem: the only other place the separatrix could

begin is the larger down saddle point, but this would require a closed curve of orbits

without a steady state in the interior. The heteroclinics coming out of the larger down

saddle point must go to the stable stationary state. This is also an application of the

the Poincare-Bendixson theorem: the orbit cannot diverge without crossing over the

heteroclinic coming into the larger up saddle point and cannot be closed because there

is no inclined stationary state to be on a closed orbit’s interior. Therefore it must end

in a stationary state and the only choice is the sole stable one. The curve ending in

the larger saddle point is the boundary of the capturing set. Almost all the orbits on

the interior of these curves end up on the stable stationary state. All the orbits on its

exterior diverge, which corresponds to separation of the particles.

7. Phase Diagram For Stationary States

In section 3, we gave a phase diagram of the potential stationary states of the pair of

uncharged point-particles as a function of the ratio δ/γ of Stokes velocities and the ratio

γ of particle radii. Further, in subsection 4.3, we demonstrated how to reinterpret this

graph in the case of inclined stationary states of charged particles. In this section we

will give the phase diagram appropriate to the case of ”larger up” vertical stationary

states, including a heatmap with information about the separation of particle centers at

the stable stationary state. We concentrate on such stationary states because we have

already shown that ”larger down” vertical stationary states are never stable [51]. We

will also compare the phase diagrams and heat maps for vertical and inclined stationary

states.

In the remainder of this section we will consider particles of the opposite charges,

β > 0, (52)

because only in this case there exist stable stationary states, as shown in [51]. We

will also assume, again following [51], that at the stationary state the particles are

non-overlapping (feasible), that is,

1 < α∗ (53)

This inequality along with equation (33) and inequalities (36) & (37) form necessary
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Figure 6: Phase diagrams of stationary states in the parameter space of the ratio of

particle radii γ and the ratio of the particle Stokes velocities δ/γ. (a) Non-overlapping

“larger up” stable stationary states exist in regions (C) and (G) but not in (A), (B) and

(H). See table 2 for the properties of “larger up” stationary states in different regions.

Vertical and inclined stable stationary states exist in the colored regions of (b) and (c),

respectively. Brighter colors correspond to greater values of the maximum distance αmax

between the particle centers at the stationary state, as indicated in the color bar.

and sufficient conditions for a ”larger up” feasible locally asymptotically stable vertical

stationary state.

To complete the list of the bounds imposed on the parameters, we remind that

0 < γ ≤ 1, δ > 0. (54)

Our goal is to identify the characteristic regions in the parameter space of δ/γ and

γ appropriate for feasible vertical ”larger up” stable stationary states of charged point

particles, for certain values of β & α∗. In fact, we will start by solving equation (33) for

β as a function of α∗

β =
3γ(1− δ)− 2(γ − δ)(1 + γ)α∗

2(1 + γ)2α∗ − 6γ
α∗2 (55)

The conditions (52) and (55) give the following bound on δ/γ as a function of α∗

and γ,

δ/γ >
2(1 + γ)α∗ − 3

2(1 + γ)α∗ − 3γ
. (56)

Because the right hand side of (56) is an increasing function of α∗, the greatest

lower bound for the ratio of Stokes velocities of oppositely charged particles at a feasible
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stationary state is reached at α∗ = 1. This bound is

δ/γ >
2γ − 1

2− γ
. (57)

The bound δ/γ = 2γ − 1/2− γ is plotted by dashed line (green online) in Figure

6(a). Below this line, in the range (A), there are no feasible stationary states.

We now analyze angular stability of stationary states. We write inequality (37) as

δ

γ
>

4(1 + γ)α∗ − 3

4(1 + γ)α∗ − 3γ
(58)

The minimum of the right hand side, reached at α∗ = 1, is the greatest lower

bound in the phase space (δ/γ, γ) for existence of feasible stationary states stable against

angular perturbations,

δ

γ
>

4γ + 1

4 + γ
(59)

The bound is plotted by dash-dot line (blue online) in Figure 6(a). Below this line,

in the range (B), all feasible stationary states are angularly unstable. We now analyze

radial stability of stationary states. We use equation (55) to eliminate β from (37).

After a careful analysis of signs we obtain

δ

γ
< P (γ, α∗) (60)

where

P (γ, α∗) =
18γ + 4(1 + γ)3α∗2 − 3(1 + γ)(1 + 7γ)α∗

18γ2 + 4(1 + γ)3α∗2 − 3γ(1 + γ)(7 + γ)α∗
. (61)

It leads to the following least upper bound in the phase space (δ/γ, γ) for existence of

stationary states stable against radial perturbations,

δ/γ < R(γ), (62)

where

R(γ)=

{

1 for γ ≤ 2−
√
3

P (γ, 1) for γ > 2−
√
3

(63)

The bound (62)-(63) is plotted in Figure 6(a) as the sum of the boundaries between

regions (C) and (H) & regions (G) and (H). Above it, in the range (H), all stationary

states are radially unstable.

Basic properties of “larger up” vertical stationary states in the regions (A)-(H) are

outlined in table 2. Recall that the ratio of forces β > 0 has been eliminated using

the stationary condition (33) and so remarks about stability should be interpreted with

the β so derived. For δ/γ < 1 the requirement of the opposite charges (56) and the

angular stability condition (58) give the upper bounds on the interparticle distance at

a stationary state, α∗ < 2M(δ/γ, γ) and α∗ < M(δ/γ, γ), respectively, with

M(δ/γ, γ) =
3γ( 1

γ
− δ

γ
)

4(1− δ
γ
)(1 + γ)

. (64)
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Table 2: Properties of “larger up” non-overlapping vertical stationary states (each with

a certain value of β > 0).

region properties of stationary states

(A) 0<
δ

γ
≤ 2γ − 1

2− γ
There are no stationary states with α∗>1.

or γ=1

(B)
2γ − 1

2− γ
<
δ

γ
≤ 4γ + 1

4 + γ
For any 1<α∗<2M(δ/γ, γ) there exists a stationary state.

There are no stationary states with α∗>2M(δ/γ, γ).

Each stationary state is unstable with respect to angular

perturbations.

(C)
4γ + 1

4 + γ
<
δ

γ
<1 For any 1<α∗<2M(δ/γ, γ) there exists a stationary state.

There are no stationary states with α∗>2M(δ/γ, γ).

For 1<α∗<M(δ/γ, γ) there exist stable stationary states.

For M(δ/γ, γ)≤α∗<2M(δ/γ, γ) stationary states are

angularly unstable.

(G) 1≤ δ

γ
<R(γ) For any α∗>1 there exists a stationary state.

Each stationary state is stable against angular

and 2−
√
3<γ<1 perturbations. There exist stable stationary states.

(H) R(γ)≤ δ

γ
For any α∗>1 there exists a stationary state.

Each stationary states is radially unstable and

angularly stable.

In general, for a given β, γ and δ/γ there might be several stable “larger up”

vertical stationary states with different values of the distance α∗. We focus on the

largest of them. We find the upper bound on the separation of particle centers, which

is graphed in figure 6(b), where the regions of increasingly bright color correspond to

regions of increasing separations. The white space corresponds to regions which do

not have feasible stable stationary states. Analytically, we choose αmax as the least

upper bound of the α∗ which satisfy inequalities (58) & (60) and we derive the following

relation in region (C),

δ

γ
=

3− 4(1 + γ)αmax

3γ − 4(1 + γ)αmax

(65)

In region (G) this relation is

δ

γ
= max [1, P (γ, αmax)] (66)
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For comparison, we graph in figure 6(c) the separations of particles for inclined

stationary states given by equation (45). As we previously noted, these are feasible

only in region (C). One must take care during interpretation because what is plotted

in this figure is the exact value rather than merely an upper bound. One can see that

for inclined equilbria the lines of constant interparticle separation are monotonically

functions of γ, that is that it takes an increasing ratio of Stokes velocities to balance a

system with increasing reduced masses at the same separation distance.

8. Conclusions

We have shown that coexistence of hydrodynamic and electrostatic interactions between

particles sedimenting in Stokes flows leads to the dynamics essentially different than in

the absence of charge or in the absence of fluid. Using the point-particle model, we

demonstrated analytically that charged particles can form stable doublets with basins

of attraction in the space of the particle relative positions which are very large in

comparison to particle radius. This result indicates that charged sedimenting particles

can capture one another, even if the initial distance between them is large. The captured

particles tend to a certain stable relative position, where the distance between the

particle centers is larger than the sum of their radii, so that their surfaces are separated

from each other by a fluid. In particular, there exist stable stationary configurations of

charged particles separated by large distances, with large basins of attraction, within

the range where the hydrodynamic interactions can be approximated as point-like.

Moreover, even if the ratio β of electrostatic to gravitational forces is very small, the

dynamics of pairs of charged particles is both quantitatively and qualitatively different

from the dynamics in the absence of any electrostatic interactions. The main qualitative

difference is the structure of the capturing set in the space of relative positions. For

charged particles, the capturing set consists of trajectories tending to a stationary state

while for uncharged particles, it consists of neutrally stable periodic orbits.

The existence of a capturing set in the space of the relative positions is associated

with the existence of stable stationary configurations of two charged sedimenting

particles. However, stable stationary states are formed only for certain ranges of the ratio

of particle radii γ and the ratio of Stokes velocities δ/γ. Therefore, we have determined

the region in the parameter space of γ and δ/γ where stable stationary configurations

exist for certain values of β, and for a certain range of values of the distance α∗ > 1

between the particles at the stable stationary state. In this way, we have shown that

the capturing of charged particles takes place in a large region in the parameter space

of γ and δ/γ. Interestingly, for some values of β, γ and δ/γ there exist multiple stable

stationary states inside the capturing set.

We have found stable stationary states with the line-of-centers at an angle ψ inclined

with respect to gravity. In the point-particle model, cos(ψ) is proportional to the ratio

β of electrostatic to gravitational force while the particle-to-particle separation distance

α† at the inclined stationary state does not depend on β.
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By analyzing examples of capturing sets, we have found that the basin of attraction

of all stable stationary states has a boundary which is a surface of revolution of a

trajectory which ends on a saddle point stationary state with the particle centers

vertically aligned. It seems that the difference between vertical positions of the particles

at this stationary state can be used as an estimate of “the cross-section” of the capturing

set. For example, in figure 3(b) and 3(d) the cross section is more than 10 times the

sum of the particle radii a1 + a2, and particle at the stable stationary configuration

are separated by more than 4(a1 + a2). For large capturing sets and large particle

separations, the particle dynamics is well-approximated by the point- particle model.

Therefore, the analysis presented here suggests that the existence of stable doublets

could be confirmed by future experiments.
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