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Introduction 1
At the time of writing this introduction, i.e. late 2020, it is hard not to start with a speci�c application of the
�uid-structure interaction (FSI) problems: modeling of the human respiratory system. Since the beginning
of the year the topic became discussed not only by scientists but it also commonly appears in the public
discussion. The most thought-provoking are oxygen and carbon dioxide exchange rates in presence of an
obstacle in front of the face [1]. The e�ciency of �ltration of inhaled and exhaled gases through permeable
membranes is similarly popular [2]. Growing public interest in the topic even led to its emergence in the
political discussion, including the �rst US presidential debate. The awareness of micro-�ow characteristics
and well-recognized advantages of the N-95 �ltering devices may be linked to its shortages in the �rst half of
the year.

Let us �x the de�nition, by �uid-structure interaction problem we mean the mathematical model of physical
phenomena involving both structure and �uid interacting with each other. The coupling between structure
and �uid usually occurs at the interface. The structure, also referred to as the solid, could be a point mass,
rigid body, elastic body or any other kind of solid model. The �uid is usually considered as continuous
medium but other models are possible. The coupling between solid and �uid usually occurs at the interface.
The FSI problems fall into the class of the so-called multi-physics problems, where two or more physical
models are combined. The other examples of such problems are magneto-hydrodynamics [3, 4] where
electrically conducting �uids are studied or magneto-thermodynamic where temperature change is caused
by exposing the material to a changing magnetic �eld. A common misconception in the last one resulted in
several arsons of 5G transmitters in UK.

Back to the FSI applications, the N-95 masks operate on three principles [2, 5]. The particles typically 1 micron
or larger slam into the mask �bers. The particles smaller than 0.1 micron undergo Brownian motion and
get stuck into the material. Finally, the particles between 0.1 and 1 micron are �ltered out by electrostatic
attraction to charged polymer �bers. The �rst two ones could be studied using a proper FSI model, while the
third additionally requires taking the electrostatic forces into account.

The other well-recognized incident this year that could be modeled as a FSI problem was the explosion
of ammonium nitrate stored at the port of Beirut. The vast amount of gas produced by the explosive
decomposition of the nitrate caused a shock wave and as the result, a signi�cant part of the city was destroyed
while the port alone was turned into a crater roughly 124 m in diameter and 43 m in depth. As a typical
illustration of the damage of a structure due to aerodynamic forces is Tacoma Narrows Bridge. The recording
from its collapse is a reminder of devastating potential of harmonic resonance. The bridge collapsed during
winds occurring seasonally in that area (of just 68 km/h) which unexpectedly produced aeroelastic �utter
that matched the bridge's natural frequency.

Among the spectacular examples of applications of FSI problems in civil engineering is design of tall building
such as Burj Khalifa, that is currently the world highest building with the tip at 828 m above the ground. The
wind-induced vibrations of the tall structures may have a destructive e�ect. In case of the Burj Khalifa this is
resolved by corner modi�cations of the cross-section and tapering along the height [6]. This ensures di�erent
vortex shedding frequency at each part of the building and prevents resonance. A similar e�ect is used to
suppress the vortex-induced vibrations by adding helical strakes at o�shore structures, such as riser [7] that
is the main connection between the o�shore platform and the subsea wellheads. A similar phenomena is also
exploited in the benchmark problem commonly used for testing FSI solvers [8].

Decarbonization of the energy generation system is considered the only way to stop advancing climate
changes. Among the renewable energy sources, wind turbines currently are becoming more e�cient and
cheaper. Rotor blades of diameter exceeding 120 m are being designed and built for better performance.
The arising engineering challenges must be addressed through research and development, which also
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involves large-scale simulations, in particular solving the FSI problem [9�11]. Similar problems arise in the
aerodynamic optimization of aircraft wings.

The simulation of FSI problems are also applied in biology and medicine. Heart valve dynamics [12, 13] is
one of the fundamental problems in understanding human cardiovascular system. According to WHO [14],
the heart attack is currently the number one cause of death globally, taking an estimated 17.9 million lives
each year. Developing better models and computational tools may help to save some of those lives.

A notable example of the FSI problem at the micro-scale is hydrodynamic lubrication [15, 16] that could be
observed in mechanical devices such as bearings or piston engines. Seemingly simple lubrication problem
usually results in attention-grabbing two-phase �ow as the occurrence of cavitation is common for this
type of problems. In this case, the �uid is modelled by the Reynolds lubrication equation usually with a
modi�cation for handling two-phase �ows.

The FSI problems may be an interesting physical phenomenon by itself. A noteworthy example is the
dynamics of groups of particles falling in the �uid may exhibit quasi-periodic motion. The phenomena were
studied both experimentally and numerically at low Reynolds numbers [17, 18].

Finally, at the nano-scale the FSI problems could be applied to model �ltration of particles, the problem
that we addressed in the �st paragraph. Also motion of particles or �laments suspended in �uids is studied
to provide a better understanding of cell movements, dynamics of proteins, DNA and other biological
polymers [19]. The advances in this �eld may also allow improvements in tissue engineering and drug
delivery methods.

1.1 State of the art

Currently, the research in the FSI problems covers a wide range of problems, we referred to some of them
in the previous section. Three collective volumes [20�22] on the subject have been published, as well as at
least two monographs: Bazilevs [23] and Richter [24]. Depending on the application, various models and
computation method could be employed, here we only consider problems with both solid and �uid modeled
as a continuous medium. In this setting, a FSI problem leads to a system of partial di�erential equations, that
is usually solved by a appropriately chosen numerical method. We will focus on applying the Finite Element
Method [25], but let us �rst note that other approaches could be more suitable in some cases. For instance,
for a single spherical particle falling in a viscous �uid with very small Reynolds, the analytical solution is
known, for groups of particles, the fundamental solutions of the Stokes problem could be exploited to obtain
a numerical solution [17, 18, 26].

The Finite Element Method requires introducing triangulation of the domain. The triangulation, also called
mesh, consists of polyhedrons (called elements), the solution in each element is approximated by a polynomial.
In case of FSI problem, the solid boundaries may coincide with the elements boundaries. If not, the method is
referred as non-matching. Both approaches have their advantages and disadvantages and the choice should
be done taking into account the speci�c application.

1.1.1 Non-matching methods

A quite straightforward non-matching method could be obtained by formulating both solid and �uid models
in the Eulerian description [24, 27]. This approach overcomes the problems associated with variable geometry
but raises several issues. Tracking of the solid, especially the �uid-solid interface, becomes non-trivial. The
accurate representation of the interface is hard to obtain. The last issue could be resolved by introducing
adaptive re�nement of the grid. Additionally, the solid stress typically depends on the deformation gradient
that also becomes challenging to compute.

The solid and �uid problems could be separated and then recoupled by introducing Lagrange multipliers.
This idea is the underpinning of the �ctitious boundary methods also known as immersed �nite element
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methods, introduced by Glowinski [28] followed by numerous works, for example [29�32]. The approach
allows a convenient description of the solid in the Lagrangian formulation while the �uid could be described
in the Eulerian frame of reference. The main downside of the immersed method is interface tracking.
Although its position could be straightforwardly determined, the intersection with the �uid elements has to
be computed. This could be a challenging problem by itself, especially in parallel computations [33].

Overcoming implementation issues could be highly rewarding as the method o�ers great versatility. Less
restrictions on the topology of the �uid domain together with a convenient formulation of the solid in its
natural frame of reference paved this approach a way to numerous application in FSI problems with solid
contact occurring. Among them, we can mention haemodynamics of heart valves or helicopter dynamics [32,
34, 35].

As an interesting application-oriented example of the immersed method, we recall the stimulation of
suspended particles [36]. In this case, particles are considered as rigid bodies to reduce complexity of the
problem.

1.1.2 Arbitrary Lagrangian Eulerian formulation

The mesh matching the moving solid boundaries may be obtained by deforming the initial mesh. In this
approach usually the solid motion is traced in Lagrangian frame of reference, while the �uid is described
in an arbitrary coordinate system, hence the name Arbitrary Lagrangian-Eulerian (ALE) [37�41]. If possible,
this approach is preferable, as it o�ers convenient Lagrangian formulation of the solid. On the other hand,
the ALE methods require existence of a smooth enough and non-degenerate transition between any two
con�gurations, that could not always be guaranteed. As a consequence, the ALE formulation could not be
applied to problems where changes in topology are expected. Moreover, a severe deformation could result in
deterioration of mesh. Using a meshless method [42] or mesh regeneration [43] may resolve some of those
problems.

Despite those limitations, the ALE gained popularity. With numerous applications such as simulation of blood
�ow in elastic vessels [44�46] or gas �ow in human respiratory system [47]. With some further adaptations
rotating structures like wind turbines [10, 11, 48, 49] have been considered. Consequently, there is an intensive
development of dedicated computational methods for this formulation [23].

Mesh deformation

It is not hard to guess that a proper choice of mesh deformation algorithm is a crucial element a�ecting the
applicability of the ALE formulation. In some time integration schemes, the mesh deformation is a part of a
(possibly nonlinear) system of equations solved at each time step, in others, like the one presented in this
thesis, it is decoupled from the system. In both cases, simple mesh deformation methods are usually chosen
to reduce the complexity of the discrete problem.

A mesh deformation could be computed by solving an auxiliary problem, that could be seen as pseudo-
elasticity of the mesh. As an example, the biharmonic equation could applied as in [50]. This approach is
capable of handling large deformations relatively well, but comes at the cost of increased computational
expense. The biharmonic problem could be a bit tricky to solve when concerning parallel computations.

A popular physical analogy applied as mesh deformation is elasticity. The resulting equation is less
computationally demanding, but it requires proper choice of elastic parameters to avoid problems with
invalid elements. An interesting review of mesh deformation methods could be found in [51]. The impact of
the mesh deformation algorithm on the results can be found in [52].
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Time discretization

As in most time-dependent problems, when choosing a time discretization scheme one should balance
between stability, and cost of a single time step. The stability o�ered by the implicit schemes usually comes at
the high computational cost of a single time step. Although some implicit time schemes are unconditionally
stable, accuracy also comes into play limiting the time step size. Explicit schemes are usually on the other
side of the spectrum by o�ering relatively cheap time step, but fall behind the implicit ones in terms the
stability. To �nd the sweet spot between those methods, semi-implicit schemes are constructed mixing the
two approaches.

In the case of FSI problem involving incompressible �uid, fully explicit schemes are considered unstable due
to problems with added-mass e�ect [53]. On the other hand, implicit schemes lead to a system of non-linear
equations to be solved at each time step.

The most complex computational scheme yet most stable is the fully implicit scheme [54], where the whole
problem is treated implicitly. As a result, a coupled system of equations arising from �uid motion, displacement
of solid and domain geometry is obtained.

Solving such nonlinear problem is not necessarily needed, a stable integration scheme could be obtained
by using explicit methods to �rst determine the deformed domain and then use an implicit scheme to
compute the �ow and deformation. This idea lies behind the geometry-convective explicit (GCE) scheme[55�57].
Additionally, the computational complexity could be reduced by explicitly treating some non-linear parts of
the Navier-Stokes equations. As a result, when considering linear elasticity, the system of equations becomes
linear. In this work we will use a modi�cation this concept, adapted to handle incompressible hyperelastic
solids. In [58] similar approach is studied and stability of �nite element formulation of FSI problem is
shown.

Solving a possibly nonlinear problem at each time step is yet another issue. A popular segregated approach
could be used, that is to alternately solve �ow problem and deformation equations until a convergence
criterion is met. In this choice the existing solvers could be reused, greatly reducing the implementation work
required. The convergence could be e�ectively sped up by employing a special technique as in [59].

However, the use of Newton's method to the entire system of equations (monolithic method) appears to be
more e�cient [60, 61]. A clear drawback of this approach is no possibility to reuse existing �uid or solid
solvers, thus the development of highly specialized code is needed but the e�ort may pay o� in the long run.
The main bottleneck of this approach is to solve a large system of linear equations.

1.1.3 Linear solvers for the FSI problems

Regardless of the chosen time discretization method, the time integration algorithm for the FSI problem
typically requires solving a system of partial di�erential equations at each time step. Its spatial discretization
brings the problem to solving a system of algebraic equations. This comes down to solving a linear problem,
possibly repeatedly inside the Newton method or other chosen �xed-point procedure.

The direct methods, suitable for smaller problems, become ine�cient with growing problem size due to poor
parallel scaling. Therefore, direct methods are not considered in the case of high-performance computations.
Instead, dedicated iterative solvers based on Krylov space are used.

Due to the di�erent properties of the �uid and solid, the system matrix is ill conditioned. The number of
iterations required for reducing the initial residual by certain factor directly depends on condition number
of the matrix [62]. The remedy for that is applying handpicked preconditioner. Therefore, the design of
problem-speci�c preconditioner is crucial for e�ciency. In the general case of jump-coe�cient problems,
domain decomposition[63] or multigrid [62] seem to be a promising choice.

For the FSI problems, existing preconditioners exploit block structure of matrix [64], based on inexact
block LU factorization [65]. In [66] FSI is formulated as a saddle-point problem and augmented lagrangian
[67] preconditioner is developed. There are also preconditioners based on domain decomposition [68],
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algebraic multigrid methods [69] or geometric multigrid [37]. In [70] a review of existing methods have been
presented.

Relatively recently �rst attempts of theoretical analysis of FSI have appeared, proving the well-posedness of
the linear problem solved in each time step and optimality of block preconditioners based on saddle point
formulation for �uid-structure interaction [66]. Methods presented in [66] have been extended and applied
to simulate rotating structure immersed in �uid in [71]. While the preconditioners in [66] were designed with
inexact block solvers in mind, the experimental results were provided only for direct block solvers. On the
other hand, algebraic multigrid preconditioned GMRES solvers were used in [71] to solve the blocks, but no
results concerning the performance of the preconditioner were provided.

The choice of solver behind each block may be challenging. From our experience, it follows that popular
choices like algebraic multigrid or incomplete LU fail. For this reason, in this work, we propose a multilevel
preconditioner acting on the entire system and then exploit the block structure of the problem at each level.

Matrix-free solvers

An e�cient implementation is undoubtedly a key part of any high-performance solver. A poorly organized
data handling may kill the performance of any solver, while the e�cient management of available resources
could result in signi�cant speedups. For some methods, it may be easier to optimize the data �ow inside the
program, while for others the architecture-dependent optimizations are hard to implement if possible at all.

An advantageous feature of modern processors are Single Instruction, Multiple Data (SIMD) instructions
allowing operations on multiple �oating point values, so-called vectors of data. To be used e�ectively, the data
�ow inside that program have to be well-organized so that other bottle-necks do not appear. In particular,
minimizing stored data becomes crucial, as the retrieving it from the memory may cause delays.

In the �nite element method one typically ends up with a linear system to be solved. The system matrix
entities, associated with integrals over individual element, are typically pre-computed, and the matrix
together with the right-hand side vector is passed to solving procedure. The matrix is usually sparse, allowing
its storage in dedicated structures. The downside of this concept is a hard to regularize data �ow.

To avoid that, one may not assemble the system matrix. Instead, the matrix-vector product are computed
by calculating integrals over element each time. In this way, we minimize data stored but increase the
number of calculations. However, the latter can be e�ectively sped up by vectorization, resulting in an overall
performance boost [72].. Additionally, the time spent on matrix assembly is almost entirely saved, as the
matrix-free operators are initialized signi�cantly faster. For detailed insights we refer to deal.II library
manual [73] (in particular step-37) and work by Kronbichler and Kormann [72].

This approach requires special linear solvers since the individual matrix entities could be no longer directly
accessed. In this case, Krylov subspace iterative methods become a natural choice since they only require
implementing a matrix-vector multiplication. A well-designed preconditioner is crucial for the performance,
while it also has to be matrix-free compatible. One of possible choices is the multigrid method with suitable
smoother. A simple Jacobi smoother requires a diagonal, that is just a single vector, which can be e�ciently
pre-computed, stored, and used in the computations. The smoother could be further enhanced by employing
polynomial Chebyshev operator [74, 75], considered to be the parallel equivalent of Gauss-Seidel smoother.

Matrix-free solvers for FSI There exist few matrix-free FSI solvers. The most relevant case was studied in
[76], where the partitioned solver was implemented. The FSI problem involving compressible �uid with �nite
volume discretization was considered in [77]. By introducing arti�cial viscosity in [78] a projection method
has been utilized to develop a matrix-free solver for the FSI problem involving a rigid solid.
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1.2 Scope of the thesis

A variety of choices of preconditioners for the FSI problems exist in the literature, however, a great majority
of them have not been designed to support matrix-free computations. Among a few [76�78] works where a
matrix-free implementation was considered none uses a monolithic formulation. The coupling at each time
step is enforced by a �xed-point method, that requires multiple solutions of both �uid and solid equations
alternately.

The problem formulation and resulting preconditioner proposed by [66] seem to have simple enough form to
try adopting it to matrix-free computations. We claim, that it could be done, but still it is far from being trivial
since a new preconditioner is required. Another drawback of this formulation is the use of linear elasticity,
that is inadequate if considering a case with large deformations.

With all that said, let us settle the scope of this thesis.

In this work, we consider numerical methods for solving interaction between an incompressible
hyperelasetic solid and Newtonian incompressible �uid in a range of small to moderate Reynolds
numbers. The problem is formulated in the ALE frame of reference. We restrict ourselves to
monolithic time integration scheme combined with �nite element methods. We also discuss the
solution method of the system of linear equations arising from �nite element discretization.

We propose a time integration schemes based on �rst- and second-order BDF [79], extending the GCEscheme
with several modi�cations. We derive the velocity formulation similar to the one from [56], where velocity
and pressure are the main unknowns while the solid displacement is recovered separately.

Concerning the solid model, there are a variety of results for FSI problems involving hyperelastic solids, but the
ones for the incompressible solids are limited [58]. As we will later show, problem involving incompressible
solid has its own issues that have to be addressed. On the other hand, its usage pays o� by resulting in
simpli�ed equations. We expect that our method could be adopted to other solid models without greater
problems. We consider incompressible Mooney-Rivlin solid, for the compressible Mooney-Rivlin we refer to
[61].

Our time integration scheme consists of several substeps, among them the most computationally demanding
one involves the solution of a generalized Stokes problem with discontinuous coe�cients. We propose a new
matrix-free preconditioner, that combined with Krylov subspace methods is robust with respect to problem
size and coe�cient jumps.

The goal of this work is to develop a a parallel monolithic matrix-free solver for FSI problems.
To achieve it, a time integration scheme is proposed, generalizing the GCE scheme together with
a new linear solver.

We implement our solver within the framework of an established �nite element library deal.II [73, 80],
widely exploiting its support for parallel computations. In particular, our design choice to base the solver
building blocks on the matrix-free paradigm, not only allows for low level speed and memory optimizations,
but also promotes parallel and extends constructs available in deal.II . We note that a di�erent monolithic
FSI solver based ondeal.II already exists [81], but it is based on a direct solver.

The deal.II library itself is a well-recognized open-source library widely used in many academic and
commercial projects. For its creation, its principal authors have received the 2007 J. H. Wilkinson Prize for
Numerical Software.

1.2.1 Structure of this thesis

In the next chapter we de�ne the �uid-structure Interaction problem, starting from domain description, and
then reformulate the governing equations from Eulerian frame of reference to arbitrary Lagrangian-Eulerian
one. We also de�ne there the �uid and solid models, additionally introducing minor modi�cation that does
not a�ect the solution of a continuous problem while is bene�cial when considering time-discrete problems.
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In Chapter 3 we introduce time and space discretization, and formulate the linear problem that is the main
bottleneck of the time integration algorithm. We intend to solve the system with the Krylov subspace solver,
thus the preconditioner is crucial for e�ciency. In Chapter 4 we propose a new multilevel preconditioning
method based on the one proposed by Braess-Sarazin [82] and re�ned by Zulehner [83]. We provide a
separate introduction there, including a review of the state of the art concerning variable coe�cient Stokes
problem. In Chapter 5 we test each part of the implementation, heading towards solving the FSI problem in
Chapter 6. Bringing things to an end, in Chapter 7 we conclude the thesis.





Formulation of the �uid-structure interaction
problem 2

Let us consider domain  
 � ' 3 , the initial (reference) con�guration, consisting two non-overlapping
sub-domains: �uid domain  
 5 �  
 and solid domain  
 B �  
 ,  
 =  
 B [  
 5. As time advances, one can
expect changes in con�guration, we denote the actual domain at time C2 »0– )¼by 
 ¹Cº, with the convention
that 
 ¹0º =  
 . The deformed solid occupies the domain 
 B¹Cº, while the �uid domain, 
 5¹Cº, is the remaining
part of 
 ¹Cº.

Due to a deformation, each individual point  Gof the undeformed solid is moved to its current position G¹Cº at
time C(Figure 2.1). We de�ne the solid deformation � B¹Cº :  
 B ! 
 B¹Cº � R3 as � B¹C;  Gº = G, displacement
 DB¹C– Gº = � B¹C;  Gº �  Gand velocity  EB¹C– Gº = %

%C DB¹C– Gº. In the deformed con�guration 
 ¹Cº we de�ne solid
velocity EB¹C– Gº =  E¹C– Gº, �uid velocity E5, and densities � B and � 5 of the solid and the �uid. For brevity, we
will skip the time and space dependence of the variable if possible.

Note that the motion of the domain is unknown and thus it is a part of the solution. Let us set that aside and
�rst discuss the FSI model.

2.1 The �uid-structure interaction model

We derive the model from the conservation of momentum and mass. That is in Eulerian coordinates we have
the system of equations [24, 84] for the �uid

(
� 5

DE5

DC � r � � 5 = 6–
%�5

%C ¸ r � ¹ � E5º = 0
(2.1)

in 
 5¹Cº, and for the solid (
� B

DEB
DC � r � � B = 6–

%�B
%C ¸ r � ¹ � EBº = 0

(2.2)

in 
 B•, where 6 is given external force, � 5 and � B are Cauchy stress tensors. We assume that there is no
external torque �eld and, as the consequence of conservation of angular momentum, both Cauchy stress
tensors are symmetric. The operator r denotes the spatial derivatives with respect to the coordinates Gin the
deformed con�guration and the material derivative D�

DC of a vector �eld � is de�ned as

D�
DC

=
%
%C

� ¸ r � E• (2.3)

The solid stress tensor usually depends on the displacement that is related to velocity:

 EB¹C– Gº =
%
%C

 DB¹C– Gº• (2.4)

Figure 2.1: Initial domain  
 and deformed domain 
 (t). Solid marked with gray, �uid marked with dots, lines represents transformation
of material points by � B¹Cº
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At the boundary � = %
 partitioned into Neumann � # and Dirichlet � � parts, we set the boundary conditions

8>>>>>><

>>>>>>
:

EB = E�
� on � � \ %
 B–

E5 = E�
� on � � \ %
 5–

� 5 � =5 = � �
5 on � # \ 
 5–

� B � =B = � �
B on � # \ 
 B•

(2.5)

where =5 and =B denote unit outer normal of �uid and solid domains respectively. Finally, the initial
conditions for this system

8>>><

>>>
:

EB¹C= 0– Gº = E�
B in  
 B–

 DB¹C= 0–  Gº = 0

E5¹C= 0– Gº = E�
5 in  
 5•

(2.6)

On the interface between the �uid and the solid � 8 = 
 5 \ 
 ( we set coupling conditions, the so-called
kinematic continuity condition

E5 = EB on � 8– (2.7)

and the balance of traction
� 5=5 ¸ � B=B = 0 on � 8• (2.8)

Continuity of velocity. The non-slip condition at the �uid-solid interface � 8 (2.7) is equivalent to the
continuity of velocity. Thus, we de�ne a single velocity �eld for both solid and �uid

E¹Gº =

(
EB¹Gº G2 
 B

E5¹Gº G2 
 5•
(2.9)

Note that there is no guarantee of any higher smoothness. In fact, in general case the gradient of velocity is
discontinuous across the �uid-solid interface due to discontinuity of material parameters.

To close the system we need the relationship between the stress tensors� 5 and � Band velocity or displacement,
that is the constitutive equations. For that we will need proper description of domain deformation.

2.2 Arbitrary Lagrangian-Eulerian formulation

Let � ¹Cº :  
 ! R3 be an arbitrary di�eomorphism mapping point ¢G in reference domain  
 to point
G¹C–¢Gº = � ¹C; ¢Gº on deformed domain 
 ¹Cº. We assume that � ¹Cº is a su�ciently smooth (in both time and
space) homeomorphism and in initial con�guration � ¹0º = Id  
 . The popular choice of � is a continuous

extension � of the solid deformation, i.e. � ¹Cº = � B¹Cº in  
 B. We will also follow this way [24], but let us �rst
derive the domain deformation description for an arbitrary mapping.

We change the primal unknowns in Equation (2.1) and Equation (2.2) to velocity ¢E¹C–¢Gº and density ¢� ¹C–¢Gº
de�ned on domain  
 and de�ne Eand � by using mapping � . That is

E¹C– Gº = E¹C– G¹C–¢Gºº = ¢E¹C–¢Gº (2.10)

since
G¹C–¢Gº = � ¹C; ¢Gº– ¢G¹C– Gº = � � 1¹C; Gº• (2.11)

The bar over the symbol is used to distinguish the result of mapping � � 1 from the (inverse) material motion
of the solid speci�ed by � � 1

B . Then, using the chain rule, we compute the time derivative of E¹C– G¹ ¢G– Cºº for
�xed ¢G2  
 , denoted by d

dCE:

d
dC

E¹C– G¹C–¢Gºº =
%E
%C

¹C– G¹C–¢Gºº ¸ r E¹C– G¹C–¢Gºº
%G
%C

¹C–¢Gº

=
%E
%C

¹C– G¹C–¢Gºº ¸ r E¹C– G¹C–¢Gºº ¢E� ¹C–¢Gº•
(2.12)
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The operator r denotes the gradient with respect to coordinates G, i.e:

r ¢E¹C–¢Gº =
%¢E¹C–¢Gº

%G
=

%¢E¹C–¢Gº
%¢G

%¢G
%G

• (2.13)

In Equation (2.12) ¢E� ¹C–¢Gº is the frame velocity of point ¢G, and E� ¹C– Gº is the corresponding velocity de�ned
on 
 , viz.

¢E� ¹ ¢G– Cº =
%G¹C–¢Gº

%C
=

%� ¹C– Gº
%C

and E� ¹C– Gº := ¢E� ¹C–¢G¹C– Gºº = ¢E� ¹C– �� 1¹C– Gºº• (2.14)

By rearranging (2.12), we obtain the relation:
%E
%C

¹C– G¹C–¢Gºº =
dE
dC

¹C– G¹C–¢Gºº � r E¹C– G¹C–¢Gºº E� ¹C– G¹C–¢Gºº (2.15)

or in short
%E
%C

=
dE
dC

� r E E� • (2.16)

Here and in the following, the explicit dependence on G–¢Gand Cis omitted for brevity. It is thus (implicitly)
understood that quantities with a superimposed bar are de�ned on  
 and depend on ¢G(and time), e.g.,
¢E = ¢E¹ ¢G– Cº, while those without a bar are de�ned on 
 and depend on G(and time), e.g., E = E¹G– Cº. We
rewrite the material derivative in new setting

DE
DC

=
dE
dC

¸ r E ¹E� E� º– (2.17)

substitute it to (2.1) and (2.2) and obtain(
� :

dE
dC ¸ � : r E ¹E� E� º � r � � : = 6–

%�:
%C ¸ r � ¹ � E8º = 0

(2.18)

for � ¹C–¢Gº 2 
 : ¹Cº, where : = 5 – B. We will consider incompressible solid and �uid, thus %
%C� : = 0 and we

do not need to deal with the time derivative of density.

Let us expand the momentum balance from Equation (2.18)to obtain the formulation on the �xed domain  
 .
By substituting Equation (2.13) to Equation (2.18) we obtain:

� :
d
dC

¢E¹C–¢Gº ¸ � :
%¢E¹C–¢Gº

%¢G
%¢G
%G

¹¢E¹C–¢Gº � ¢E� ¹C–¢Gºº �

�
%

%¢G
%¢G
%G

�
� � : = 6¹G¹C–¢Gºº– (2.19)

2.2.1 Choice of arbitrary mapping

Let us introduce a pseudo-displacement related to �

¢D� ¹C–¢Gº = � ¹C; ¢Gº � ¢G= G� ¢G• (2.20)

so that the frame velocity

¢E� =
d
dC

¢D� • (2.21)

Eulerian setting The trivial choice ¢D� = 0 (� ¹Cº = Id 
 ) corresponds to the fully-Eulerian setting [27, 38]
illustrated in Figure 2.2. In particular, this strategy does not have any other restrictions on domain deformation
than 
 ¹Cº = 
 , and, in case of �nite element computations, simpli�es mesh generation, but raises several
problems. Most notable among them, interface tracking method is required, or loss of accuracy is encountered
in case of some numerical methods. For more details see [85�87].

Arbitrary Lagrangian-Eulerian In many FSI problems, the mapping � B¹Cº can be extended to a su�ciently
smooth mapping � ¹Cº de�ned on the whole domain  
 , that is

� ¹Cº :  
 ! 
 ¹Cº–

� ¹Cºj  
 B
= � B¹Cº•

(2.22)

In those cases the choice� = � , or equivalently

¢D� = Ext¹  DBº (2.23)



12 2 Formulation of the FSI problem

Figure 2.2: Eulerian frame for �uid-structure interaction problem. Grid represents stationary frame of reference while the lines indicate
material points motion.

where Ext¹  DBº :  
 �! R3 is a su�ciently smooth extension of  DB onto  
 is possible. This leads to the
Lagrangian description of the solid, hence approach is called Arbitrary Lagrangian-Eulerian (ALE). The
problems with interface tracking are automatically resolved. Additionally, a simpler application of higher-
order accuracy methods is possible. The main limitation of the approach is the existence of a smooth enough
extension of � B for all times. In particular, this implies no topology changes of 
 B. Moreover, in the case of
numerical computations, the mesh distortion may occur especially if severe deformations are considered. In
particular, with the ALE framework, one will not be able to resolve FSI problems involving contact. Despite
this, numerous problems could be solved in this framework, applications may be found in [46, 47, 71].

Having this in mind, we decide to stick with ALE formulation. From this point on, we will use �hat�  �
variables instead of �bar� ¢�ones as those �elds are identical ( ¢E =  E, ¢DB =  DB, ¢D� =  D� and so on). To give an
idea how the extension of  DB could be obtained let us brie�y discuss some possible choices. We will go into
details for a speci�c case in Section 5.4.

ALE mapping

Picking a suitable extrapolation of � B is crucial for the method's applicability. One of the methods is solving
an auxiliary equation. As an example, the so-called pseudo-elastic equation may be used[24]:

(
r � ¹ � � &¹  D� ºº = 0 in 
 5–

 D� =  DB in  
 B•
(2.24)

with, possibly variable, coe�cient � � . This choice is preferable due to its simplicity, but might result in a
clumsily deformed mesh, especially if the solid is severely deformed. The key part of this extrapolation
technique is the distribution of the parameter � � . We consider also the biharmonic equation [24, 50] as an
auxiliary equation

8>>><

>>>
:

� 2  D� = 0 in 
 –

 D� =  DB in  � 8

r  D� � = = 0 on %


(2.25)

that does not require any additional tuning, but is more computationally demanding.

2.3 Weak formulation in space

2.3.1 Momentum balance

We will �rst de�ne the Sobolev space on domain $

� 1
� ¹$ º = f E 2 � 1¹$ º3 : E = 0 on � � \ %$g– (2.26)
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multiply momentum balance equations (Equation (2.18)) by test function ) 2 � 1
� ¹
 º, integrate by parts and

obtain¹


 5

� 5
dE
dC

� ) dG¸
¹


 5

� 5 : r ) dG�
¹

¹%
 5\ � # º[ � 8

� 5=5 � ) dB=
¹


 5

6 � ) dG 8) 2 � 1
� ¹
 º–

¹


 B

� B
dE
dC

� ) dG¸
¹


 B

� B : r ) dG�
¹

¹%
 B\ � # º[ � 8

� B=B � ) 3B=
¹


 B

6 � ) dG 8) 2 � 1
� ¹
 º–

(2.27)

where � : � denotes the scalar product of tensors � and � .

Elimination of interface traction conditions First we will refer to density without distinguishing between
solid and �uid

� ¹Gº =

(
� B¹Gº G2 
 B–

� 5¹Gº G2 
 5–
(2.28)

as well as the traction at boundary

� � ¹Gº =

(
� �

B¹Gº G2 � # \ %
 B–

� �
5¹Gº G2 � # \ %
 5–

(2.29)

and the pressure

?¹Gº =

(
?B¹Gº G2 
 B–

?5¹Gº G2 
 5
(2.30)

that we will needed in the next section. Note that we do not assume any continuity of � or ? at the interface.

We add Equations (2.27) and observe that the balance of the normal traction at the interface (2.8) implies¹

� 8

� 5=5 � ) dB= �
¹

� 8

� B=B � ) dB (2.31)

and thus the integrals over � 8 cancel out. The momentum conservation in weak form becomes:¹




�
dE
dC

� ) dG¸
¹


 5

� 5 : r ) dG¸
¹


 B

� B : r ) dG=
¹




6 � ) 3G¸
¹

� #

� � � ) dB 8) 2 � 1
� ¹
 º• (2.32)

2.3.2 Conservation of mass

For the mass conservation we will use test function @2 ! 2¹
 º. We multiply the equation
%�

%C
¸ r � ¹ � Eº = 0 (2.33)

by @and obtain ¹




�
%�

%C
¸ r � ¹ � Eº

�
@dG= 0 8@2 ! 2¹
 º (2.34)

2.4 Constitutive equations

2.4.1 Fluid model

We will consider classic incompressible Newtonian �uid:

� 5 = 2� 5&¹E5º ¸ ?5�– (2.35)

where ?5 is the �uid pressure, � 5 is the viscosity and � is the identity tensor. The operator &denotes the
symmetrized gradient: &¹Eº = 1

2¹r E¸ r E) º. The density of the �uid is constant, thus all its derivatives are
zero and the mass conservation leads to

r � E5 = 0– (2.36)
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or in the weak form: ¹


 (

@¹r � Eº dG= 0 8@2 ! 2¹
 º (2.37)

Stress-related integrals For the �uid we expand stress-related integral and use the fact that � 5 is symmetric,
thus � 5 : r ) = � 5 : &¹) º and

¹


 5

� 5 : r ) dG=
¹


 5

2� 5&¹Eº : &¹) º dG¸
¹


 5

?5r � ) dG• (2.38)

2.4.2 Solid model

We will consider the Mooney-Rivlin solid model. We also discuss the Neo-Hookean model as a special case
of Mooney-Rivlin model as it is a popular choice. We will need the gradient with respect to coordinates  Gon
the reference domain  
 , that for an arbitrary vector  � �eld is de�ned as

 r  � =
% �
% G

(2.39)

and the deformation gradient
 � =  r � B = � ¸  r  DB– (2.40)

� =
�

 r � B

�
� � � 1

B • (2.41)

The general rule is that the �hat� variables are related to �elds on the domain  
 while the variables without
the hat are mapped via � ¹Cº (that is equal to � B on  
 B) onto deformed domain 
 .

We consider an incompressible material thus let us deal with the constraints �rst.

Conservation of mass and incompressibility constraints In our case � B = constand the mass conservation
leads to

r � EB = 0• (2.42)

or
 � = 1– (2.43)

where  � = det  � .

Mooney-Rivlin solid

The Cauchy stress in case of Mooney-Rivlin solid [88, 89] can be expressed using the left Cauchy�Green
deformation tensor

� = �� ) (2.44)

as follows

� = � 1� � � 2� � 1 ¸ ?�
B�– (2.45)

where � 1 � 0 and � 2 � 0 are material parameters and ?�
B is a Lagrange multiplier, related to solid pressure,

which enforces incompressibility. Let us simplify Equation (2.45). First, we expand (2.40)using formula for
the derivative of inverse function:

� =
�

 r � B

�
� � � 1

B =
�
r¹ � � 1

B º
� � 1

• (2.46)

Then, the inverse deformation gradient is

� � 1 = r
�
� � 1

B
�

– (2.47)

For  G2  
 B, G2 
 B so that  G= � � 1
B ¹C; Gº from the de�nition of the solid displacement

 DB¹C– Gº = � B¹C;  Gº �  G (2.48)
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it follows
� � 1

B ¹Gº = � B¹C; � � 1
B ¹C; Gºº

|              {z              }
G

�  DB¹C–� � 1
B ¹C; Gºº

|             {z             }
D¹C–Gº

(2.49)

and thus
� � 1

B ¹Gº = G� DB¹C– Gº• (2.50)

The inverse of the deformation gradient is

� � 1 = r
�
� � 1

B
�

= 1 � r DB– (2.51)

and by substituting it into Equation (2.45) we obtain:

� = � 1�� ) ¸ � 2
�
2&¹DBº � ¹r DBº) r DB � �

�
¸ ?�

B� (2.52)

With term � 1�� ) we will deal in the weak form. Let us consider the stress-related integral:¹


 B

� B : r ) dG=
¹


 B

�
� 1�� ) ¸ � 2

�
2&¹DBº � ¹r Dº) r D� �

�
¸ ?�

B�
�

: r ) B dG• (2.53)

By changing the coordinates to  G= � � 1
B ¹C; Gº in the integral:¹


 B

�� ) : r ) dG=
¹

 
 B

 �  � ) :  r  )  � � 1  � d  G

we obtain: ¹


 B

�� ) : r ) dG=
¹

 
 B

¹  �  �  � )  � � ) º :  r  ) d  G=
¹

 
 B

 � :  r  ) d  G (2.54)

where  � = 1 (Equation (2.43)) and thus the stress integral becomes:¹


 B

� B : r ) dG=
¹

 
 B

� 1  � :  r  ) d  G¸
¹


 B

�
� 2

�
2&¹DBº � ¹r Dº) r D� �

�
¸ ?�

B�
�

: r ) B dG• (2.55)

In case of undeformed solid, i. e.  DB = 0 the deformation gradient  � = � and the stress integral becomes:¹


 B

� B : r ) dG=
¹

 
 B

� 1� :  r  ) d  G�
¹

 
 B

�
� 2� ¸ ?�

B�
�

:  r  ) d  G• (2.56)

If there is no stress in the solid � B = 0 and ?�
B = � 1 � � 2. This is inconsistent with the �uid model, where the

zero stress implies ?5 = 0, thus we will use the shifted Lagrange multiplier:

?B = ?�
B � � 1 ¸ � 2• (2.57)

In case of � 2 = 0 we obtain the neo-Hookean solid model. Moreover, in 2D problems incompressible
Mooney-Rivlin solid is equivalent to neo-Hookean one with shear modulus � B = � 1 ¸ � 2. In the following we
restrict ourselves to the case� 1 = 0. This choice allows us to simplify our derivation and implementation
as well. The second one is important for us since we are developing a matrix-free solver. Implementing
integration in both 
 B and  
 B is possible, but requires additional work.

With that said, with � 1 = 0 and � 2 = � B the integral involving stress is transformed as follows:¹


 B

� B : r ) dG=
¹


 B

2� B &¹DBº : r ) dG�
¹


 B

� B ¹r DBº) r D : r ) dG¸
¹


 B

?Br � ) dG= (2.58)

=
¹


 B

2� B &¹DBº : &¹) º dG�
¹


 B

� B ¹r DBº) r DB : &¹) º dG¸
¹


 B

?Br � ) dG (2.59)

Volumetric damping

The divergence of velocity corresponds to local production of mass

r � ¹ � BEBº = �
%�B
%C

• (2.60)
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Thus, the constraint (Equation 2.42) guarantees that the time derivative of the volume is zero
%�B
%C

= 0 (2.61)

with initial a density � B¹0– Gº = � B0. If for whatever reasons, the density is disturbed it will remain unchanged
through the rest of the time. This is an issue in the numerical solution of the problem, since the volume may
change as a result of the numerical errors. Let us replace the right-hand side of the Equation (2.61)

%�B
%C

= �
1

� +
¹

� B

� B0
� 1º (2.62)

so that the solution would approach the density � B0 regardless of what is the starting point is. The numerical
parameter � + controls the rate of density correction. The fraction � B• � B0 could be expressed by using the
deformation gradient

� B

� B0
= det¹  � º• (2.63)

Substituting Equations (2.60) and (2.63) into the Equation (2.62) leads to the the new constraint for the solid
with volumetric damping

r � ¹ � BEº = �
1

� +
¹det¹  � º � 1º• (2.64)

For the weak form, we multiply this equation by a test function @2 ! 2¹
 º and integrate over 
¹


 B

@¹r � Eº dG= �
¹




1
� +

¹det¹  � º � 1º@dG 8@2 ! 2¹
 º• (2.65)

By changing the coordinates in the right-hand side integral we obtain¹


 B

@¹r � Eº dG= �
¹

 


1
� +

¹det¹  � º � 1º  @ �d  G 8@2 ! 2¹
 º (2.66)

or equivalently ¹


 (

@¹r � Eº dG= �
¹

 


1
� +

¹det¹  � º � 1º  @d  G 8@2 ! 2¹
 º– (2.67)

since � = 1.

2.5 Complete weak formulation with ALE

Let us summarize the results from this chapter by presenting the weak form of the FSI problem in ALE frame
of reference. Before that, let us unify the incompressibility constraints into the single equation. We exploit the
fact that in case of both �uid and solid the mass conservation has the same form in the domains 
 5 and 
 (

correspondingly. By adding equations (2.67) and (2.37) we obtain¹




@¹r � Eº dG= �
¹

 
 B

1
� +

¹det¹  � º  @d  G 8@2 ! 2¹
 º• (2.68)

We also introduce ¹�–�º$ , the ! 2¹$ º scalar product

¹?– @º$ =
¹

$

? � @dG• (2.69)

and forms

0¹E–) º = ¹� »
dE
dC

¸ r E ¹E� E� º¼–) º
 ¸ ¹ 2� 5&¹Eº : &¹) ºº
 5

¸ ¹ 2� B&¹Dº–&¹) ºº
 ( � ¹ � Br D)
B r DB–&¹) ºº
 ( –

1¹E– @º = ¹r � E– @º
 –

6¹) º = ¹6–) º
 •

(2.70)
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Then, the FSI problem is to �nd for all times C2 »0– )¼: E 2 � 1¹
 º3, ? 2 ! 2¹
 º,  DB 2 � 1
� ¹  
 Bº3,  D� 2 � 1

� ¹  
 º3

such that:
8>>>>>>>>><

>>>>>>>>>
:

0¹E–) º ¸ 1¹) – ?º = 6¹) º 8) 2 � 1
� –

1¹E– @º = �
�

1
� +

¹det¹  � º � 1º– @
�

 
 B

8@2 ! 2¹
 º–

%C DB = EB � � � 1–

 D� = Ext¹  DBº–

� = Id ¸  D� •

(2.71)

The subdomains 
 B and 
 5 appearing in integrals in Equation (2.70)are de�ned as image of undeformed

ones:
 B = � ¹  
 Bº and 
 5 = � ¹  
 5º. The extension of the solid displacement Ext¹  DBº is de�ned by an auxiliary
equation as discussed in Section 2.2.1. Additionally, the following initial conditions have to be met:

8>>><

>>>
:

EB¹C= 0– Gº = E�
B in  
 B–

 DB¹C= 0–  Gº = D�
B

E5¹C= 0– Gº = E�
5 in  
 5•

(2.72)

Our weak formulation is similar to the ones appearing in literature [23, 56, 66, 81]. The �rst di�erence is the
right-hand side of the continuity equation, arising from the reformulated solid constraints. Secondly, we
formulated the problem on the unknown domain 
 to simplify derivation of the time integration scheme.





Time and space discretization 3
In this chapter, we gradually move from the weak form of the FSI problem to its discretization. We �rst de�ne
discrete set of points in time interval referred as time steps. At each time step, we introduce an approximation
of the time derivative, eliminate the solid displacement to obtain a velocity-based formulation with decoupled
displacement. We then proceed to the space discretization, we introduce the �nite element discretization by
restricting the test and trial function spaces to the �nite-dimensional one. Finally, we formulate the system of
linear equations.

3.1 Time discretization

We consider the uniform time discretization, i.e. we replace the time interval »0– )¼with the set of discrete
points f C0– •••– C# g where C= = =� C, with the time step size � C= ) • # .

3.1.1 Time-discrete �elds

At the =-th time step C=, we de�ne  E=,  D=
B and  D=

� as an approximation of  E,  DB and  D� respectively, i.e.

 E¹C=– Gº �  E=¹  Gº–

 DB¹C=– Gº �  D=
B¹  Gº–

 D� ¹C=– Gº �  D=
� ¹  Gº–

(3.1)

The approximate displacement de�nes the approximation of the solid deformation at time C=:

� B¹C=– Gº � � =
B¹  Gº =  G¸  D=

B¹  Gº–  G2  
 B (3.2)

and therefore the solid domain

 B¹C=º � 
 =

B = � =
B¹  
 Bº• (3.3)

The pseudo-displacement de�nes the approximation of the mapping � :

� ¹C=– Gº � � =¹  Gº =  G¸  D=
� ¹  Gº  G2  
 (3.4)

and therefore the domains


 ¹C=º � 
 = = � =¹  
 º– 
 5¹C=º � 
 =
5 = � =¹  
 5º• (3.5)

At the time step =, the relation between point G= 2 
 = and point  G2  
 is de�ned by mapping � =, i.e:

G=¹  Gº = � =¹  Gº– (3.6)

and the inverse relation between point G2 
 = and point  G= 2  


 G=¹Gº = ¹� =º� 1¹Gº•

This leads to de�nition of spatial derivatives of arbitrary vector �eld � de�ned on 
 =. The gradient and
symmetric gradient are de�ned as:

r � =
%

%G
� – &¹� º =

r � ¸ ¹r � º)

2
(3.7)

where G= G=¹  Gº is de�ned by (3.6). That is, the spatial derivatives are associated with transformation � =.
Since � = is de�ned by pseudo-displacement, those derivatives are implicitly de�ned by via  D=

� .

In the subsequent derivations, we are going to replace � = with its approximation � #. Note that this
approximation also a�ects the derivatives.
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3.1.2 Time derivative approximation on a moving domain

We approximate the time derivative of arbitrary �eld  � de�ned on  
 � » 0– )¼by the backward di�erentiation
formula (BDF) [79] of order : , that is the following stencil

% � ¹  G– Cº
%C

�
�
�
�
C=C=

�
1

� � C

:X

8=0

 8 � =� 8¹  Gº (3.8)

where the coe�cients  0 = 1 and
� = 1–  1 = � 1 for : = 1 (3.9)

and

� =
2
3

–  1 = �
4
3

–  2 =
1
3

for : = 2• (3.10)

As a consequence of the second Dahlquist barrier [90], any linear multistep method of order greater than 2 is
not A-stable. On the other hand, the governing equation on the solid domain is a sti� hyperbolic equation,
hence the unconditional stability is crucial for us. We have to admit that we learned it in a hard way, that is by
implementing the 3rd order scheme and �nding out that it is only stable if the time step size is insanely low.
What is even worse, the maximum time step size went down with mesh re�nement. For this reason, we do
not consider any higher-order method.

Displacement Let us approximate the time derivative of the displacement according to (3.8)

% DB¹C– Gº
%C

�
�
�
�
C=C=

� � :  D=
B =

1
� � C

:X

8=0

 8 D=� 8
B ¹  Gº• (3.11)

Velocity The derivative of velocity d
dCE¹C=– G¹C=– Gºº is computed for the �xed  G=  G¹C=– Gº, therefore

dE
dC

¹C– G¹C– Gºº

�
�
�
�
C=C=

=
% E
%C

¹C– G¹C=– Gºº

�
�
�
�
C=C=

� � : E= �
1

� � C

:X

8=0

 8 E=� 8¹  G=¹Gºº• (3.12)

For time step C=, we introduce the velocity  E=� 8 mapped by � = on 
 =

E=–8¹G=¹C=– Gºº =  E=� 8¹  Gº• (3.13)

Note that the following relation between E=–8and E=� 8 holds

E=–8¹Gº = E=� 8¹G=� 8¹  G=¹Gººº (3.14)

or equivalently
E=–8= E=� 8 � � =� 8 � ¹ � =º� 1• (3.15)

This allows us to compute approximation of the velocity derivative in domain 
 = [24, 55, 66]:

� : E= =
1

� � C

:X

8=0

 8 E=� 8¹  G=¹Gºº =
1

� � C

:X

8=0

 8E=–8¹Gº• (3.16)

Frame velocity We obtain the approximate frame velocity by applying stencil (3.8) as follows

 E� ¹C=– Gº =
d
dC

 D� ¹C=– Gº

�
�
�
�
C=C=

�  E=
� ¹  Gº =

1
� � C

:X

8=0

 8 D=� 8
� ¹  Gº– (3.17)

and

E=
� ¹Gº =

1
� � C

:X

8=0

 8 D=� 8
� ¹  G¹Gºº• (3.18)

Similarly to formula (3.13), we introduce the displacement  D=� 8
� mapped by � = on 
 =

D=–8
� ¹Gº =  D=� 8

� ¹  G=¹Gºº– (3.19)

or equivalently,
D=–8

� = D=� 8
� � � =� 8 � ¹ � =º� 1• (3.20)
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3.1.3 Time integration scheme

We replace the derivatives d
dCEand %

%C D in Equation (2.71) by their approximates � :  D= (Equation (3.11)) and
� : E=(Equation (3.12)) correspondingly to obtain the fully implicit time integration scheme.

Fully implicit scheme

In the fully implicit scheme with  E0–  D0
B–  D0

� (Equation (2.72)) de�ned by the initial conditions, the following

problem is to be solved, for every = 7 0 such that =� C2 »0– )¼�nd E= 2 � 1¹
 º3, ?= 2 ! 2¹
 =º,  D=
B 2 � 1

� ¹  
 Bº3,

 D=
� 2 � 1

� ¹  
 º3 such that

8>>>>>><

>>>>>>
:

0¹E–) º ¸ 1¹) – ?º = 6¹) º 8) 2 � 1
� –

1¹E=– @º = �
�

1
� +

¹det¹  � º � 1º– @
�

 
 B

8@2 ! 2¹
 º–

� :  D=
B =  E=

B–

 D=
� = Ext¹  D=

Bº–

(3.21)

where

08¹E=–) º = ¹� � : E= ¸ � r E8 E� –) º
 = ¸ ¹ 2� 5&¹E=º : &¹) ºº
 =
5

¸¹ 2� B&¹D=
Bº–&¹) ºº
 =

B
�

�
� B¹r DBº) r D=

B–&¹) º
�


 =
(
– (3.22)

1¹E=– @º = ¹r � E=– @º
 = –

and the velocities E8 and E�
5 in the advection part are

E� = E= � E=
� –

E8 = E=•
(3.23)

Notice that in 
 B we have E= = E=
� and E� = 0. The problem (3.21) is nonlinear, thus it could be solved

by Newton method [37, 60, 61] or another �xed-point method. It could be also linearized without greater
impact on stability [58]. We will propose a �xed point method, however our experiments show that one or 2
iterations are enough.

We �x the time step number = and modify the scheme by replacing some of the quantities with their explicit
approximations to end up with a linear problem at each time step. We expect that it may have some e�ect on
stability, however, as it follows from our experience, this is not an issue since the main limiting factor of time
step size remains the accuracy (details in Section 6.4).

We �rst linearize the part related to the domain motion and solid stress, then deal with the advection.

Explicit scheme for the geometry

Let us the decouple domain deformation dependence from the integrals in the form 0¹�–�º according to
Geometry-Convective Explicit (GCE) scheme [55, 57, 66]. We rede�ne the approximate solid deformation � =

B as

� =
B¹  Gº =  G¸  D#

B¹  Gº– (3.24)

where  D#
B is an explicit approximation of the solid displacement  D=

B. According to the BDF scheme the solid
displacement is

 D=
B = � � C E=

B �
:X

8=1

 8 D=� 8
B • (3.25)

We replace the velocity  E=
B by its approximation  E#

B to obtain:

 D#
B = � � C E#

B �
:X

8=1

 8 D=� 8
B • (3.26)

For now, we will use  E#
B =  E=� 1

B , we later propose a better approximation by introducing a predictor. Using
the BDF-like formula in (3.26)may seem inappropriate. Replacing it with a more suitable linear multistep
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method such as the Adams-Bashford scheme may seem like a better idea. However, this is exactly the solution
we tried at �rst and, unfortunately, it turns to have poor stability properties even if considering solid part
only. In fact, we did not manage to �nd a time step size small enough for the scheme to be stable. On the other
hand, we did not experience any stability issues when (3.26) was used, while it produces the meaningful
results as presented in Section 5.3 (solid dynamics) and Chapter 6 (FSI problem).

ALE mapping We consider the ALE setting, that is

 D=
� = Ext¹  D=

Bº• (3.27)

We will approximate the new pseudo-displacement at each time step by using the extension of  D#
B:

 D=
� �  D#

� = Ext¹  D#
Bº•

The pseudo-displacement de�nes the associated mapping � # which in turn de�nes the domain 
 # = � #¹  
 º
that is an approximation of 
 =. The approximation of the �uid domain is de�ned as 
 # n
 #

B. We also rede�ne
the �elds speci�ed on 
 = in Section 3.1.2:� : E= and E=

� ¹Gº by replacing mapping � = with � #.

Spatial derivatives The pseudo-displacement  D#
� de�nes the arbitrary mapping � # :  
 �! 
 #, which in

turn de�nes the derivative operators r and &¹�º. Both derivative operators appear only inside integrals over
the corresponding domains, therefore it should be clear to which transformation we refer to. In particular, we
apply the following approximation

¹� � : E= ¸ � r E8 E� –) º
 = � ¹ � � : E= ¸ � r E8 E� –) º
 # (3.28)

where the quantities and derivatives on the left-hand side are de�ned on 
 = while the ones on the right-hand
side are de�ned on 
 #. We will replace all remaining terms involving � = with � # in Section 3.1.3.

Frame velocity The frame velocity is obtained by substituting Equation (3.27) for the displacements from
previous time steps to Equation (3.17), and we obtain:

 E=
� =

1
� � C

 

 D# ¸
:X

8=1

 8Ext¹  D=� 8
B º

!

• (3.29)

We will consider two methods of computing the extension, in both cases the operator Ext¹�º is linear and thus
the frame velocity in our case is

 E=
� = Ext¹  E#

Bº• (3.30)

In the implementation, computing the extrapolation of velocity may be handier, as we will see later.

Solid stress linearization

In the system (3.21)there are three solid-related non-linear forms: volumetric damping and two integrals
arising from the stress. For the �rst one we do not require higher-order accuracy, we only need e�ective
damping of excess volume with the lowest possible impact on stability. We set

det¹  � º � det¹  � =� 1º = det¹� ¸  r  D=� 1
B º (3.31)

that corresponds to applying the forward Euler method to Equation (2.62). In the quadratic part of the solid
stress we use the extrapolation of displacement  D#

B�
¹r D=

Bº) r D=
B–&¹) º

�


 =
�

� �
r D#

B
� )

r D#
B–&¹) º

�


 #
• (3.32)

Finally, we approximate the bilinear form ¹2� B&¹D=
Bº–&¹) ºº
 =

(
with a semi-implicit formula as follows:

�
2� B&¹D=

Bº–&¹) º
�


 =
B

�
�
2� B&¹D=

Bº–&¹) º
�

 #

B
(3.33)

Notice that in Equation (3.32) and Equation (3.33) derivatives on the left-hand side are de�ned by the
transformation � =, while the ones on the right-hand side are de�ned by � #. In Equation (3.33)we additionally

replaced  D=
B � ¹� =º� 1 with  D=

B �
�
� #

� � 1
.

Before proceeding to the advection, let us rearrange the solid part of the problem.
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Velocity formulation Following [56, 66]we use the relation between the displacement and velocity �

Equation (3.11), and, by substituting  D=
B = � � C E=

B �
:P

8=1
 8 D=� 8

B

� B¹&¹D=
Bº–&¹) ºº
 #

B
= � B� � C

�
&¹E=

Bº–&¹) º
�

 #

B|                       {z                       }
implicit part

� � B

 

&

 
:X

8=1

 8D
=–8
B

!

–&¹) º

!


 #
B|                              {z                              }

explicit part

(3.34)

we decoupled the displacement from the system (3.21).

Semi-implicit advection

The advection term consists of two �velocities�: E� and E8 . We set the �rst one as explicit extrapolation [91]

E� = E=–1 � E=
� for : = 1–

E� = 2¹E=–1 � E=
� º � ¹ E=–2 � E=–1

� º for : = 2•
(3.35)

As E8 we consider two choices, the explicit advection

E8 = E=–1 for : = 1–

E8 = 2E=–1 � E=–2 for : = 2
(3.36)

and the semi-implicit advection
E8 = E=• (3.37)

The scheme with the explicit advection for the Navier-Stokes equation is also known as IMEX [92] method.
The main advantage of the explicit scheme is the symmetric form 0E¹�–�º (that will be de�ned later on),
while the semi-implicit one o�ers better stability. For further discussion we refer to work by Dong [93] or
Turek [92].

3.1.4 Predictor-corrector scheme in ALE setting

Let us �rst conclude all the manipulation we have done to the fully implicit scheme. The problem we solve at
the time step = 7 0 is to �nd E= 2 � 1¹
 #º3, ?= 2 ! 2¹
 #º,  D=

B 2 � 1
� ¹  
 Bº3,  D=

� 2 � 1
� ¹  
 º so that

8>>>>>>><

>>>>>>>
:

0E¹E–) º ¸ 1¹) – ?=º = 6E¹) º 8) 2 � 1
� ¹
 º–

1¹E– @º = 6?¹@º 8@2 ! 2¹
 #º–

 D#
� = Ext¹  D#

Bº–

 D=
B = � � C E=

B �
:P

8=1
 8 D=� 8

B –

(3.38)

where:
0E¹E–) º = ¹� � : E= ¸ � r E8 E� –) º
 # ¸ ¹ 2� 5&¹E=

5º : &¹) ºº
 #
5

¸ � B� � C
�
&¹E=

Bº–&¹) º
�

 #

B
–

1¹E– @º = ¹r � E=– @º
 #–
(3.39)

and

6E¹) º = ¹6–) º
 � � B

 

&

 
:X

8=1

 8D
=–:
B

!

–&¹) º

!


 #
B

¸ � B

�
r

�
D#

B
� )

r D#
B–&¹) º

�


 #
B

–

6?¹@º = �

�
1

� +
¹det¹� ¸  r  D=� 1

B º– @

�

 
 B

•

(3.40)

Notice that in Equation (3.38)we de�ned the problem on the domain 
 # instead of  
 as in Equation (3.21).
The quantities on the reference domain are obtained by remapping the ones form domain 
 # to  
 via the
inverse of mapping � #. Let us tidy up the formulation and present the time-stepping algorithm.

Having in mind that operator Ext¹�º is linear with respect to boundary condition implied by the solid
displacement, let us rearrange the last two equations in Equation (3.38) to facilitate the implementation. We



24 3 Time and space discretization

�rst de�ne the uni�ed displacement
 D= = Ext¹  D=

Bº (3.41)

so that the equation � :  D=
B =  E=

B is replaced by

� :  D= = Ext¹  E=
Bº• (3.42)

The extrapolated domain displacement  D#
� according to Equation (3.29) is

 D#
� = � � C E# �

:X

8=1

 8 D=� 8 (3.43)

where  E# = Ext¹  E=
Bº =  E=

Ext. Then, the system in Equation (3.38) could be solved in few steps as demonstrated
in the Algorithm 1. Note that the extension of velocity  E=

Ext from time step = is used twice: in step 4 of time
step = and in step 1 of time step = ¸ 1.

Algorithm 1: Geometry-explicit scheme

Data:  D=� 1
� – E=� 1– E=� 1

Ext – D=� 1

Result:  D=
� – E=– E=

Ext– D=

1 begin
2 E=

Ext := E=� 1
Ext

3  D#
� := � � C E=

Ext �
:P

8=1
 8 D=� : 4 Explicit step

4  E=
� :=  E=

Ext

5 � # = Id ¸  D#
� – 
 # = � #¹  
 º 4 New geometry

6 Find E= 2 � 1¹
 #º and ?= 2 ! 2¹
 º so that: 4 Implicit step

7

(
0E¹E=–) º ¸ 1¹) – ?=º = 6E¹) º 8) 2 � 1

� ¹
 #º–
1¹E=– @º = 6?¹@º 8@2 ! 2¹
 #º•

8 E=
Ext := Ext¹E=º 4 Extension

9  D= := � � C E=
Ext �

:P
8=1

 8 D=� : 4 Recover displacement

Predictor-corrector scheme

As we promised while discussing the GCE scheme, we can replace the simple approximation  E#
B =  E=� 1

B with
a more accurate one. We compute the prediction of the velocity  E# by taking E= from Algorithm 1 and then
repeat the process to obtain the corrected velocity E=. We demonstrate the process in Algorithm 2. Note that
this is close to applying two iterations of a �xed-point method to the fully implicit scheme. However, the
advection term in the �rst and second iteration may be de�ned di�erently. In particular, there is no need to
use semi-implicit advection in the predictor.

Advection The explicit advection o�ers a symmetric form 0E¹�–�º that is preferable for the linear solver
(presented in the next chapter) while the semi-implicit one results in better stability of the scheme. Since we
intend to amend the velocity anyway in the corrector step, we use the explicit advection in the predictor. We
set:

E� = E=–1 � E=
� for : = 1–

E� = 2¹E=–1 � E=
� º � ¹ E=–2 � E=–1

� º for : = 2–
(3.44)

and
E8 = E=–1 for : = 1–

E8 = 2E=–1 � E=–2 for : = 2•
(3.45)
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In the corrector step we use the implicit scheme, that is:

E� =  E� �  E�
Ext (3.46)

and
E8 = E=• (3.47)

This scheme could be seen as an attempt to solve nonlinear problem arising from the fully implicit scheme
by using two �xed-point iterations. For this reason we will refer to it by GCE: ¹2º. The previous scheme �
Equation (3.38), i.e. without the corrector is in this convention GCE : ¹1º.

Algorithm 2: Predictor-corrector GCE : ¹� º scheme

Data:  D=� 1
� – E=� 1– E=� 1

Ext – D=� 1

Result:  D=
� – E=– E=

Ext– D=

1 begin
2  E�

Ext :=  E=� 1
Ext

3 for 9= 1 to � do

4  D#
� := � � C E=

Ext �
:P

8=1
 8 D=� : 4 Explicit step

5  E�
� :=  E�

Ext

6 � # = Id ¸  D#
� – 
 # = � #¹  
 º 4 New geometry

7 Find E� 2 � 1¹
 #º and ?= 2 ! 2¹
 º 4 Implicit step

8

(
0E¹E� –) º ¸ 1¹) – ?=º = 6E¹) º 8) 2 � 1

� ¹
 #º–
1¹E� – @º = 6?¹@º 8@2 ! 2¹
 #º•

9  E�
Ext := Ext¹  E� º 4 Extension

10 E= := E�  E=
Ext :=  E�

Ext

11  D= := � � C E=
Ext �

:P
8=1

 8 D=� : 4 Recover displacement

3.2 Spatial discretization

Let us now introduce the fully discrete approximation of the �uid-structure interaction problem. We consider
triangulation T of domain  
 with characteristic element size of � . In our case, triangulation T consists of
quadrilateral (2D) or hexahedral (3D) elements. We consider a matching grid, i.e assume that the initial
�uid-solid interface does not intersect with any element. With sets of polynomials P?¹� º of order ? on each
element � , we de�ne the �nite element spaces on triangulation T

 V� = f E 2 � 1¹  
 º : Ej� 2 P?1¹� º 8� 2 T� g3–

 Q� = f @2 � 1¹  
 º : @j� 2 P?2¹� º 8� 2 T� g•
(3.48)

where ?1 and ?2 are the orders of �nite elements for the velocity and pressure, respectively. We �rst discretize
the solid displacement  DB 2  V� and the pseudo-displacement  D� 2  V� that de�nes discrete mapping � #. We
then de�ne the triangulation of 
 # as a transformed triangulation T� by mapping � #. Note that triangulation
T� is a matching triangulation of 
 # i.e. the solid-�uid interface does not intersect with any element. The
�nite element spaces on domain 
 # are de�ned as:

V� = f E� ¹ � #º� 1 : E 2  V� g3–

Q� = f @� ¹ � #º� 1 : @2  Q� g•
(3.49)

We assume thatV� and Q� satisfy the Ladyzhenskaya�Babu²ka�Brezzi condition [94]. Will use Taylor-Hood
�nite element pair, that is ?1 = 2 and ?2 = 1.
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3.2.1 Fully discrete scheme

Let us now de�ne the �nite element approximation of the problem solved at each time step � Equation (3.38).
For every time step = 7 0 we need to �nd E= 2 V� , ?= 2 Q� ,  D=

B 2  V� ,  D=
� 2  V� so that

8>>>>>>>><

>>>>>>>>
:

0E¹E–) º ¸ 1¹) – ?=º = 6E¹) º 8) 2 V� –

1¹E– @º = �
�

1
� +

¹det¹� ¸  r  D=� 1
B º– @

�

 
 B

8@2 Q� –

 D#
� = Ext¹  D#

Bº–

 D=
B = � � C E=

B �
:P

8=1
 8 D=� 8

B –

(3.50)

with forms 0E¹�–�º and 1¹�–�º de�ned by Equation (3.39). As we demonstrated in Algorithm 1 the system
(3.50)could be solved in several sub-steps. In the next section we will focus on the implicit step that is to �nd
E= 2 V� , ?= 2 Q� such that

8>><

>>
:

0E¹E=–) º ¸ 1¹) – ?º = 6E¹) º 8) 2 V� –

1¹E=– @º = �
�

1
� +

¹det¹1 ¸  r  D=� 1
B º– @

�

 
 B

8@2 Q� •
(3.51)

This is the most computationally demanding part of both Algorithm 2 and Algorithm 1. We note, that another
system of linear equations appears in those algorithms when computing extension of velocity. We will discuss
this step when assembling the FSI solver in Section 5.4.

Let us separate bilinear forms from linear one, that is move part of � : E= to the left-hand side. The continuity
equation from (3.51) remains unchanged, while the �rst one in case of semi-implict advection becomes

0+ ¹E=–) º ¸ 1¹) – ?º = 6E¹) º � ¹
:X

8=1

 8E=–8–) º
 # 8) 2 V� – (3.52)

where

0+ ¹E=–) º =

�
�

� � C
E=–)

�


 #

¸ ¹ � r E8 E� –) º
 # ¸ ¹ 2� 5&¹E=
5º : &¹) ºº
 #

5
¸ � B� � C

�
&¹E=

Bº–&¹) º
�

 #

B
•

We also de�ne the right-hand side functions:

5E¹) º = 6E¹) º � ¹
:X

8=1

 8E=–8–) º
 #

and

5?¹) º = �

�
1

� +
¹det¹1 ¸  r  D=� 1

B º– @

�

 
 B

•

In the case of explict advection, the term
�

�
� � CE=–)

�
also has to be moved to left-hand side and becomes part

of the 5E. Finally, the problem (3.51) is
(

0+ ¹E=–) º ¸ 1¹) – ?º = 5E¹) º 8) 2 V� –

1¹E=– @º = 5?¹@º 8@2 Q� •
(3.53)

Streamline-upwind stabilization

The above problem is actually an advection-di�usion problem with a divergence constraint on the velocity.
We de�ne the Pecelet number as

Pe =
kE� k!

� 5
(3.54)

where ! is the length scale of the domain. It characterizes the kind of equation we are dealing with, if
Pe 7 1 the problem is advection-dominated, otherwise the problem is di�usion dominated. For the explicit
advection Pe = 0, while using the semi-implicit advection the Pecelet number is proportional to Reynolds
number. Having in mind application of the method to �ows with moderate and high Reynolds number, we
expect the advection dominated problem. A straightforward �nite element discretization typically results in
oscillatory solutions [95].
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This issue could be resolved by introducing additional stabilization to the form 0¹�–�º. Among the many
possibilities we choose the streamline upwind/Petrov-Galerkin (SUPG) method [95]:

0+–B¹E–) º = 0+ ¹E–) º ¸ ¹� � � E¸ E� � r E� 5E–rE� � r ) º (3.55)

where Ais a cell-wise constant stabilization parameter. Unfortunately the stabilization requires computing
the second-order derivatives that, in case of matrix-free implementation, is signi�cantly more complex than
the �rst-order ones. In particular, this feature has not been yet implemented in the deal.II matrix-free
framework, that is the base of our implementation. As a replacement we use the stabilized form 0¹�–�º:

0+–B¹E–) º = 0+ ¹E–) º ¸ ¹ E� � r E–rE� � r ) º• (3.56)

The stabilization parameter inside cell  is [95, 96]:

r =
� �

2kE� k?1

coth¹Pe� º � 1
Pe�

(3.57)

where � � is the diameter of cell � and the Pecelet number Pe� computed with respect to the cell size is

Pe� = kE� k
� �

2� ?1
• (3.58)

In cells where Pe 5 1 we set A= 0 to avoid problems with �oating-point arithmetics.

The linear problem and the system matrix

Finally, in numerical computation we will be operating on real vectors. The spaces V� and Q� could be
equivalently de�ned as linear span of a chosen bases:

V� = spanf ) 1– •••–) < g– (3.59)

Q� = spanf � 1– •••–� =g (3.60)

where < = dim V� ¹$ º and = = dim Q� ¹$ º.

The spacesV� and Q� are isomorphic to real vector spaces

V� = R<

Q� = R= (3.61)

via isomorphisms � : V� ! V� and 	 : Q� ! Q� that are de�ned by their action on unit vectors

� ¹48º = ) 8– 	 ¹48º = @8• (3.62)

Thus, the implicit step corresponds to the linear problem in R< ¸ =. Both operators operators 0+–B¹�–�º and
1¹�–�º are linear, thus we de�ne matrices � and �

u) � v = 0+–B¹� ¹uº–� ¹vºº 8u–v 2 Vh–

q) � u = 1¹� ¹uº–	 ¹qºº 8u 2 Vh–q 2 Q� –
(3.63)

vector fE
u) fvv =

�
5E¹� ¹vºº–� ¹uº

�
8u–v 2 Vh– (3.64)

and vector f?
p) fpq =

�
5?¹� ¹vºº–	 ¹uº

�
8p–v 2 Qh• (3.65)

In this setting, solving the problem appearing in the implicit step corresponds to solving the linear problem

�
� � )

� 0

� �
v
p

�
=

�
fv
fp

�
• (3.66)

Relevance to variable coe�cient generalized Stokes problem

Let us recall Equation (3.53) with explicit advection:
(

0+ ¹E=–) º ¸ 1¹) – ?º = 5E¹) º 8) 2 V� –

1¹@– Eº = 5?¹) º 8@2 Q� •
(3.67)
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where

0+ ¹E=–) º =

�
�

� � C
E=–)

�


 #

¸
�
2� 5 &¹E=º–&¹) º

�

 #

5
¸

�
2� � C� B&¹E=º–&¹) º

�

 #

B
¸

�
� r E8 E� –)

�

 # •

If we introduce uni�ed the apparent "viscosity":

¡� ¹Gº =

(
2� 5 G2 
 #

5

2� � C� B G2 
 #
B

and the apparent density:

¡� ¹Gº =
�

� � C

the system (3.67) becomes
(

¹ ¡� E=–) º
 # ¸
�
¡� & ¹E=º–&¹) º

�

 # ¸

�
� r E= E� –)

�

 # ¸ ¹ ?–r � ) º
 # = 5E¹) º 8) 2 V� –

¹@–r � Eº
 # = 5?¹) º 8@2 Q� •
(3.68)

which is a generalized Stokes problem with piece-wise constant coe�cients. Note that � C� B is typically bigger
than � 5 by several orders of magnitude. In the next chapter, we propose a new multilevel method based on
[83] and [82] that is capable of solving such a problem. We note that in case of semi-implicit advection, the
term ¹� r E8 E� –) º
 # together with stabilization would appear on the left-hand side. To cope with that, we
will add a minor modi�cation of the preconditioner in Section 5.2.



The multilevel preconditioner 4
As mentioned in Section 3.2.1 the GCE scheme requires the solution of a generalized Stokes problem in every
time step of the algorithm. In the case when the advection is treated explicitly, it reads:

(
¹ ¡� E–) º
 ¸

�
¡� & ¹Eº–&¹) º

�

 ¸ ¹ ?–r � ) º
 = 5E¹) º 8) 2 V� –

¹@–r � Eº
 = 5?¹) º 8@2 Q� •
(4.1)

For the simplicity of the presentation, we shall assume that the time step is �xed, and we seek ¹E– ?º de�ned
on prescribed 
 = 
 #, where also the corresponding �nite element spaces V� and Q� are de�ned. We also
assume non-distorted mesh, i.e. � # = � .

This generalized Stokes problem is of interest in its own. Such systems appear not only in �uid-structure
interaction, but also in mantle convection problems [97, 98], simulations of two-phase [99] or viscoelastic
�uids �ows [100]. Since its �nite element discretization leads to a large, sparse symmetric system of linear
equations with a 2 � 2 block matrix, �

� � )

� 0

� �
+
%

�
=

�
� E

� ?

�
(4.2)

with the positive-de�nite block � , the system has to be solved approximately, usually with a Krylov iterative
method. Since the convergence speed of Krylov methods depends on the spectral properties of the matrix,
which in our case can be adversely a�ected by both the huge number of unknowns or high the contrast in ¡� ,
an e�cient preconditioner is vital for the overall performance.

4.1 State of the art

Preconditioning strategies for the Stokes problem with constant viscosity have been in active development
for several decades now. One of the di�culties lies in the divergence-free constraint, which makes the
system inde�nite. While the Stokes problem turns positive de�nite in the divergence-free space, standard
construction of local divergence-free �nite element basis leads to a linear system whose condition number is
much worse [101], so most e�orts tackle the original system (4.2), of saddle-point type.

One of the most popular ways to improve the convergence rate of Krylov space methods on (4.2) is to use
block preconditioning, see e.g. [102�105]. These methods take advantage of the block structure of the matrix
and build the preconditioner from smaller, usually symmetric and positive de�nite ones, which in turn can
be solved with well-established methods, such as the domain decomposition [106] or the multigrid [107].

For the Stokes problem with discontinuous velocity with a single interface, Olshanskii and coworkers [108, 109]
developed and analyzed a MINRES method with block preconditioners whose performance was independent
of the size of the system and robust with respect to the contrast in ¡� coe�cient. The precondioner for the
Schur complement was based on the pressure mass matrix scaled by the inverse of the viscosity. Another
approach to the so called single sinkerproblem (where there is one island of high viscosity surrounded by low
viscosity �uid) was demonstrated by Aksoylu et. al. [110], who used a strong preconditioner for the velocity
part and a preconditioned conjugate gradient solve for the Schur complement.

The multiple inclusion case was investigated in [98, 111], where a hybrid (algebraic/geometric) multigrid
approximation for the velocity block and a weighted BFBT preconditioner for the Schur complement was
used. The BFBT components were approximated by a two step process, consisting �rst of a re-discretization
of a certain in�nite-dimensional di�erential operator, and then, approximation of its inverse by a V�cycle
multigrid. In [111] it was shown that this method performs well on the multi�sinker benchmark problem, in

The ideas presented here have been proposed by the author of this thesis, while Dr Piotr Krzy»anowski has greatly improved large
portions of the text, based on a joint paper (in preparation).
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the case when discontinuities are replaced by a smooth function with steep gradients. It also indicated that
simpli�ed approximation to the Schur complement, such as the weighted pressure mass matrix considered
in [112], is not robust when the contrast is high (see also [113]).

Another approach is to develop a multilevel method directly for (4.2). A multigrid method for the Stokes
equations (with ¡� � 1) was proposed and analyzed by Braess and Sarazin [82]. Their smoother makes use
of the block structure of the problem, too, and includes a projection step on the discrete divergence�free
velocity subspace, requiring that a certain Schur complement problem is solved on each level. Zulehner [83]
generalized this method to cover block smoothers with inexact solves, and provided a set of conditions which
guarantee the convergence rate is independent of the the number of levels; however only constant ¡� was
considered. See also [114�117], and [118] where independence of certain equation parameters was investigated.
More recently, a class of block smoothers for the Stokes and Lamé problems were considered in [119], mixing
both block and multigrid approaches. Finally, in [120], the application of a multilevel preconditioner based on
Vanka-type smoother [121] was shown to perform well for the single-sinker problem with smooth, strongly
varying viscosity, however its performance degraded for steeper gradients.

When the system matrix is too big to be e�ciently stored, or dealt with, it is typically stored in a sparse matrix
format. The other approach is to use a matrix-free method that does not need access to matrix elements:
rather, it replaces the matrix with a linear operator, whose action on a vector (substituting the usual sparse
matrix-vector multiplication) is given as a computer procedure only, o�ering potential for extensive memory
usage optimization. Usually, the data �ow in matrix-free methods is regular enough to make it possible
to vectorize the code via single-instruction/multiple-data (SIMD) processor instructions. Among papers
mentioned above, matrix-free preconditioners for strongly variable Stokes problem were investigated in [112]
and [113]. Moreover, Bauer et al. [122] presented a highly scalable matrix-free preconditioner based on Uzawa
multigrid, introduced earlier in [123].

In this chapter, we propose and evaluate a matrix-free preconditioner, based on a multilevel scheme for (4.2)
under restriction that all blocks in (4.2), except the coarsest level, are provided as matrix-free operators. In
this respect our approach is similar to [112] and [113]. In contrast to [111, 113] we examine our method on
discontinuous, piecewise constant viscosities, as speci�ed in Section 3.2.1. Our goal is to achieve robustness
of the convergence speed with respect to problem size and jumps in the coe�cient, while keeping the list of
tuning parameters relatively short.

We de�ne our preconditioner as a single iteration of the multigrid method with block constrained smoother
as in [83]. This choice again makes an approximate, matrix-free, Schur system solver key to the performance
and robustness of the preconditioner. We follow the ideas of Xu and Zhu developed in [62] for di�usion
problems with discontinuous coe�cient, and apply the preconditioned Conjugate Gradient method (CG)
with a relatively simple multigrid preconditioner. Where applicable, we enhance the smoother blocks via
the Chebyshev iteration [74] which, while maintaining its matrix-free character is crucial for the overall
performance of the preconditioner. We also demonstrate that a simple approximation of Schur complement
based on Chebyshev iteration in most cases results in a similar convergence rate.

While the cost of our pressure smoothing block is higher than the corresponding cost of the Schur complement
preconditioner in [111], our method remains simpler to implement, building only on standard blocks available
in deal.II library; in particular, we neither resort to auxiliary operator discretizations [111], nor require other
than standard geometric multigrid methods.

It follows that the convergence speed of the FGMRES iteration [124, 125] with our preconditioner is only
weakly sensitive to the mesh size, contrast ratio or distribution of the discontinuities of the viscosity. In
particular, for structured grids, we observe that the convergence is independent of both problem size and
coe�cient jump. Moreover, it follows from the experiments that the work and memory per degree of freedom
required to solve the linear system are bounded by a small constant.

In Section 4.1.1 we introduce �nite element discretization of (4.2) on a family of nested grids. Next, in
Section 4.2, we describe the preconditioner in a top-down manner, beginning with the outer multigrid
iteration, its block smoother description, and ending with de�nitions of block solvers utilizing Chebyshev
smoothers and inner iterations. Finally, in Section 4.3 we demonstrate desired properties of the method,
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on both structured and unstructured grids in 2D or 3D, and with various values of ¡� and arrangements of
discontinuities in ¡� .

4.1.1 Problem setting

We assume that each subdomain
 5–
 B is a sum of a �nite number of (possibly disjoint) polyhedrons, and
that (4.1) is scaled properly so that

¡� ¹Gº =

(
� 1 = 1 for G2 
 5–

� 2 � 1 for G2 
 B•
(4.3)

In the case of piecewise constant viscosity the contrast in the viscosity between subdomains 
 B and 
 5 is
therefore � 2• � 1 = � 2 � 1.

For the simplicity of the presentation, we assume %
 is split into two disjoint parts of positive measure,
%
 = � � [ � # . On � � we impose homogeneous Dirichlet boundary condition, D = 0. On the other part of
the boundary, � # = %
 n � � , we assume Neumann condition ¹?� ¸ 1

2 ¡� ¹r D¸ r D) º � = = 6, where = denotes
the unit outward normal vector to %
 .

To de�ne a multilevel method, we consider a family of nested conforming quasi-uniform simplicial (or
rectangular) triangulations of 
 ,

T0 � T1 � • • •� T�

such that T9 is obtained from T9� 1 by uniform re�nement. (For example, in 2D case, we can split each
quadrilateral into four smaller ones.) We will refer to index 9as the re�nement level. In particular, the mesh
parameter of T9, understood as the maximum diameter of elements in T9, equals � 9 = 2� 9� 0. We assume that
the coarsest mesh correctly resolves the subdomains, that is, no element inT0 is crossed by the inner interface
� � = %
 5 \ %
 B.

We approximate (4.1)on the �nest mesh, T� , with the �nite element method, using inf-sup stable [101] �nite
dimensional spacesV� � V and Q� � Q. (One possible choice could be the Taylor�Hood & 2-& 1 pair [25]
associated with T� ). The discrete problem is then to �nd ¹D� – ?� º 2 X � = V� � Q� such that

0+ ¹E� –) � º ¸ 1¹) � – ?� º =
¹



5 ) � 3G¸

¹

� #

6 ) � 3B–

1¹E� – @� º = 0

(4.4)

for all ¹) � – @� º 2 V� � Q� , where 1¹E– @º = ¹@–r � Eº
 . After choosing standard �nite element basis in
X � = V� � Q� we �nally arrive at a system of linear equations with appropriately prescribed right-hand side
vector � � , for unknown coe�cients G�

M � G� = � � – (4.5)

whose matrix M � is very large, sparse, symmetric and inde�nite, and with a 2� 2block structure corresponding
to the splitting of the unknowns to the velocity and the pressure part:

M � =

�
� � � )

�
� � 0

�
•

We will focus on the practically important case when blocks in M � are represented as matrix-free linear
operators. SinceM � is ill-conditioned, with respect to both the number of levels � (in other words, the mesh
size, or the number of unknowns) [117] and to the contrast in the viscosity coe�cient [62]. Therefore, in order
to solve (4.5) we apply a preconditioner P � to the system,

P � M � G� = P � � �

and solve the resulting left�preconditioned system by the FGMRES iteration [124, 125]. We need the �exible
variant of GMRES because inside the preconditioner we will use a few CG iterations that make the whole
operator non-linear.

The goal of this chapter is to develop and evaluate a multilevel preconditioner P � for (4.5), which is e�cient
and robust with respect to both the mesh size (i.e., the number of levels � ) and the contrast in the viscosity.
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Algorithm 3: One step of a generic multigrid V-cycle procedure. Matrix ' 9 corresponds to standard
restriction operator from X 9 to X 9� 1.

1 Function H= MGM ¹M 9– �9–K 9– <– G– 9º
2 if 9= 0 then
3 Solve M 0H= � 0 4 Direct solve on the coarsest grid T0

4 return y

5 G0 = G
6 for B= 1 to < do
7 GB = GB� 1 ¸ K 9¹� 9 � M 9GB� 1º 4 pre-smoothing

8 A9� 1 = ' 9
�
� 9 � M 9G<

�
4 restriction to the coarser grid

9 49� 1 = MGM ¹M 9� 1– A9� 1–K 9� 1– <–0– 9� 1º 4 coarse correction; recursive call

10 49 = ' )
9� 14� 4 prolongation from the coarser grid

11 H0 = G< ¸ 49
12 for B= 1 to < do
13 HB = HB� 1 ¸ K 9¹� 9 � M 9HB� 1º 4 post-smoothing

14 return H<

Algorithm 4: = iterations of generic multigrid V-cycle method on level 9

Data: �
Result: G= MG=¹"–  – <– 9º � �

1 G= 0
2 for 8= 1 to = do
3 G= MGM ¹"– �–  – <– G– 9º

4 return x

4.2 Multilevel preconditioner

Note that the family of grids T9, 9= 0– • • • – �, actually gives rise to a family of discrete problems (4.4)posed in
X 9 = V9 � Q9 (where the �nite element spaces V9 and Q9 are de�ned on mesh T9), with corresponding block
matrices

M 9 =

�
� 9 � )

9

� 9 0

�
– (4.6)

where � 9, � 9 are matrix representations of the bilinear forms 0¹�–�º, 1¹�–�º, respectively. For given 9, we will
refer to such problem as the 9-th level problem.

Our preconditioner P � will rely on the standard V-cycle multigrid method [82, 83], see Algorithm 3, with
suitably chosen smoothers K 9. We de�ne P � as the result of = iterations of the multigrid method on the �nest
level � , starting from a zero initial guess:

P � = MG=¹M � –K � – <– �º– (4.7)

where the action of the linear operator MG=¹"–  – <– 9º on a vector is formally described in Algorithm 4.

It is well known that the choice of appropriate smoothers K 9 is vital for the overall performance of P � . On
the 9-th level, K 9 is a smoother for the system with matrix M 9 with block structure speci�ed in (4.6). In this
chapter we make use of block smoothers proposed and analysed by Zulehner [83]:

K 9 =

"
 � 9 � )

9

� 9 � 9  � � 1
9 � )

9 �  ( 9

#� 1

• (4.8)

Let us mention that to apply K 9 to a vector

�
5
6

�
partitioned according to the block structure of K 9, one has to

solve a block system of linear equations. It can easily be veri�ed that this reduces to two solves with  � 9 and
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Algorithm 5: Application of K 9 de�ned in (4.8) to a vector

Data: 5 – 6

Result:

�
D
?

�
= K 9

�
5
6

�

1 D� =  � � 1
9 5 4 Solve  � 9D� = 5

2 ? =  ( � 1
9 ¹D� � 6º 4 Solve  ( 9? = D� � 6

3 D =  � � 1
9 ¹ 5 � � )

9?º 4 Solve  � 9D = 5 � � )
9?

4 return

�
D
?

�

one with  ( 9, as described in Algorithm 5. It should be stressed that in order to be able to apply K 9, one only

requires to be able to apply  � � 1
9 and  ( � 1

9 to vectors: neither  � � 1
9 nor  ( � 1

9 have to be explicitly constructed, so

in this sense K 9 is a matrix-free operator, provided  � � 1
9 and  ( � 1

9 are. Moreover, the very matrices  � 9 and  ( 9

are never used in the algorithm and never have to be formed.

The smoother K 9 is speci�ed by the choice of two symmetric positive de�nite operators,  � 9 and  ( 9. One may
think about them as (sometimes crude) approximations to the velocity block � 9and its Schur complement,

( 9 = � 9  � � 1
9 � )

9– (4.9)

respectively. In particular, taking  � 9 = diag¹� 9º and  ( 9 = ( 9, we recover the smoother developed by Braess
and Sarazin [82]. This choice, however, is computationally quite demanding, so already in [82] the authors
recommend to solve systems with ( 9 only approximately � in other words, to replace ( � 1

9 with a cheaper

and more e�cient  ( � 1
9 .

The analysis of smoothers (4.8) in [83] assumes that of matrices  � 9– ( 9, only one has to be a �good�

preconditioner. Since Algorithm 5 requires two solves with  � 9–whose dimension is larger than that of  ( 9–it

is convenient to choose  � 9 as simple as possible. In such a case, according to [83], it is su�cient that

 � 9 7 � 9 (4.10)

and
 ( 9 � � 9  � � 1

9 � )
9 �

4
3

 ( 9– (4.11)

where for symmetric matrices -– . of equal size, by - � . we mean there holds G) -G � G) .G for all
nonzero vectors G. In order to satisfy assumption (4.11), one should carefully scale  ( 9 prior to plugging it into
K 9. Let us remark though, that numerical experiments indicate that in certain cases such scaling may be not
necessary; see [83, Remark 5] or Section 4.3.1 below.

In the remaining part of this section we complete the de�nition of the preconditioner, providing a detailed
description of  � � 1 and  ( � 1 or, rather, in accordance with the matrix-free framework, procedures for their
application to a vector.

4.2.1 Smoother building blocks

For clarity, in this subsection we suppress the level index 9, assuming it is �xed. The construction of both  � � 1

and  ( � 1 will be founded on Chebyshev smoothers, which we brie�y describe below.

Chebyshev smoothers

In the matrix-free context, one should restrict only to smoothers which can be set up without direct access
to matrix entries, with the obvious exception of matrix diagonals, which are easy to compute. This is done
essentially by looping over all cells and discarding o�-diagonal entries. This condition excludes Gauss-Seidel
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and other smoothers based on triangular matrix splittings, and promotes the use of Jacobi-type smoothers
which only need access to matrix diagonal. On the other hand, since diagonal smoothers are less e�cient
than their triangular splitting relatives, a common practice to improve the properties of the former is to
supplement them with several iterations of the Chebyshev method [126]. Thus, following [74], we de�ne the
Chebyshev smoother of order : for a genericlinear system "G = � as

Cheb¹"– �– : º = %: ¹� � 1" º� � 1– (4.12)

where %: is a prescribed polynomial of degee : and � is a cheap preconditioner for " (a usual choice is to
set � = diag¹" º). In particular, the 0-th order Chebyshev smoother with diagonal preconditioner simpli�es
to the (damped) Jacobi method. The polynomial %: is chosen to obtain smoothing in some desired range
»0– 1¼, by utilizing the Chebyshev polynomial of the �rst kind ) : :

%: ¹- º =
) :

�
2- �¹ 0¸ 1º�

1� 0

�

) :

�
2�¹ 0¸ 1º

1� 0

� • (4.13)

To act as a smoother,Cheb¹"– �– : º should e�ciently remove high frequency components of the error
which in our case are associated with the largest eigenvalues of the preconditioned matrix � � 1" . Hence,
the smoothing range »0– 1¼is set to »B1

B2
� " – B1� " ¼, where � " = � max¹� � 1" º is the largest eigenvalue of

� � 1" , with user selected parameters B1 and B2 7 B1. In practice it su�ces to compute an approximate value
of � max¹� � 1" º, e.g. by running a couple of CG iterations [72, 74], an approach which allows Chebyshev
operators to self-adjust to the choice of � . In order not to proliferate the parameters, we exclude B1– B2 and
the number =� � of CG iterations used to approximate � " from the formal parameters list in (4.12), treating
them rather as free constants, to be speci�ed when necessary.

Construction of  � � 1

We de�ne  � � 1 as the Chebyshev smoothing operator (4.12) with diagonal preconditioner:
 � � 1 = Cheb¹�– diag¹� º– :� º• (4.14)

By tuning the order of the Chebyshev operator : � , the user can balance its cost and smoothing properties.

Construction of  ( � 1

The design of  ( � 1 is more complex and turns out crucial for the �nal e�ciency of the smoother, since
the geometric multigrid method alone may be ine�cient for a high contrast coe�cient (elliptic) problem
[62]. As already discussed, direct computation of the Schur complement matrix ( de�ned in (4.9) � not to
mention its inverse � is usually prohibitively expensive. Because condition (4.11)assumes  ( is a good enough
preconditioner for ( , in the construction of this smoothing block we will exploit the self-adjusting property
of Chebyshev smoothers and thus avoid direct reference to matrix entries to stay within the matrix-free
framework.

We begin with a diagonally preconditioned Chebyshev smoother for ( = �  � � 1� ) ,
¡( � 1

: (
= Cheb¹(–diag

�
� ¹diag � º� 1� ) �

– :( º– (4.15)

which will serve as a basis for the later de�nition of  ( � 1. This operator aims at providing e�ective smoothing
while maintaining �exibility in the choice of  � , with no need for direct computation of all entries of matrix ( .
The rationale for the above choice is as follows: If a 0-th order Chebyshev smoother was to be used as  � � 1,
the diagonal of � ¹diag � º� 1� ) would be cheap to compute, even if both � and � were in a matrix-free format.
One can, therefore, expect that for a higher order smoother the diagonal of � ¹diag � º� 1� ) will still provide a
good enough approximation to diag¹( º.

Then, from the founding preconditioner MGCheb¹=( – :( – <( º de�ned as

MGCheb¹=( – :( – <( º = MG=( ¹(– ¡( � 1
: (

– <( – 9º– (4.16)

(cf. Algorithm 4), we propose three possible de�nitions of  ( � 1:

1.  ( � 1 = MGCheb¹=( – :( – <( º, or
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2.  ( � 1 = MGCG¹=( – :( – <( º, or
3.  ( � 1 = ChebCG¹=( – :( º,

Here, for a given vector 6 we de�ne MGCG¹=( – :( – <( º � 6, ChebCG¹=( – :( º � 6 as the result of =( iterations
of the preconditioned CG method applied to the system (? = 6 with the following selection of the
preconditioner:

I MGCheb¹1– :( – <( º, for MGCG¹=( – :( – <( º;
I ¡( � 1

: B
, for ChebCG¹=( – :( º,

and zero initial guess. Note that the two last choices of  ( � 1 are not �xed linear operators, thus, as we
mentioned the use of �exible GMRES method is necessary.

We note that for the constant coe�cient case the theory [83] only covers the �rst choice. The second one could
be considered as intuitive extension for the variable coe�cient case, while for the third one we have only
numerical evidence.

4.2.2 Summary of user speci�ed parameters

The preconditioner P � is �nally selected by the choice of nine parameters:

I the number = of outer iterations and the number < of smoothing steps in (4.7),
I the order : � of the Chebyshev smoother de�ning  � � 1 in (4.14),
I the number =( of inner iterations and the number < ( of smoothing steps in (4.16),
I the order : ( of the Chebyshev smoother de�ning ¡( � 1

: (
in (4.15),

I smoothing range parameters B1– B2 and the number =� � of CG iterations used to compute � max for
Chebyshev smoothers, see Section 4.2.1. While in principle one can choose di�erent values for each of
the two Chebyshev smoothers we employ, we decided to have a common set of these parameters for
both.

4.3 Numerical results

In this section, we investigate properties of the preconditioner designed in Section 4.2. All experiments were
implemented in the �nite element library deal.II version 9.2.0 [73] using its matrix-free toolbox [72].

Our model problem is (4.1)on a unit square in 2D or unit cube in 3D, with the homogeneous Dirichlet
condition on the top face and zero Neumann condition elsewhere. We choose this a bit arti�cial setting, to
test the solver in settings that could be easily replicable. More realistic cases will be examined in Chapter 6.

Except Section 4.3.1, where continuous viscosity case,� 2 = � 1 = 1 is brie�y treated, for the comparison with
baseline solvers; other experiments will consider high contrast test cases only, i.e. � 2• � 1 � 1, see(4.3). If

(a) 2D (b) 3D

Figure 4.1:Unstructured coarse grids T0 used for single inclusion problem. Light gray color marks regions where the viscosity ¡� = � 1 = 1.
Region where ¡� = � 2 is marked with a darker shade.
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Table 4.1: Number of degrees of freedom on 2D grids for varying number of levels � .

� 1 5 6 7 8 9 10

Structured 387 83,907 333,699 1,330,947 5,316,099 21,249,027 84,965,379
Unstructured 221 51011 203,395 812,291 3,246,595 12,981251 51,914,755

Table 4.2: Number of degrees of freedom, # , on structured grid used for the checkerboard problem in 2D, for varying number of levels � .

� 1 2 3 4 5 6 7 8

# 2,467 9–539 37–507 148–739 592–387 2–364–419 9–447–427 37–769–219

not speci�ed otherwise, we then set � 2 = 106. We treat two types of high contrast test problems: with single
inclusion located centrally in 
 , cf. Figure 4.1, and with multiple inclusions with checkerboard distribution,
see Figure 4.2.

Since the case ¡� = 0 turns out to be most computationally demanding, cf. Tables 4.7 and 4.10, in the
experiments we preset ¡� = 0, unless explicitly speci�ed otherwise.

We consider both structured Cartesian and unstructured grids obtained from uniform re�nement of the
coarsest grid T0, which is always aligned with discontinuities of the viscosity. Examples of unstructured
coarsest grids in 2D and 3D are shown in Figure 4.1. For the checkerboard problem, we restrict ourselves to
Cartesian grids, as in Figure 4.2.

The discrete system (4.5) comes from standard Taylor�Hood & 2-& 1 element [25] on the �nest grid T� .
Tables 4.1, 4.2 and 4.3 list the sizes of the discrete problems for various types of meshes and discretization
levels � . In particular, the �rst column ( � = 1) corresponds to the size of the coarsest problem, posed onT0.

In Section 4.3.1 we investigate the convergence speed of the FGMRES method preconditioned withP � de�ned
in Section 4.2, while in Section 4.3.2 we discuss its performance. Throughout the experiments we �x = = 1,
< = 2, < ( = 2 (cf. Section 4.2.2 for their description), focusing on the in�uence of : � , : ( and =( � i.e. the
parameters de�ning the smoothing block operators � on the performance of the method. The cost of P �

increases with the growth of each of these parameters, therefore it is important to choose them as small as
possible. We also �x B1 = 1•2, B2 = 15, =� � = 10, which are the default settings in deal.II [72, 73].

If not speci�ed otherwise, in our experiments we set
 ( � 1 = MGCG¹=( – :( – <( º–

because in our preliminary tests it proved more e�cient than MGCheb¹=( – :( – <( º. While ChebCG in many
cases o�ers even better performance, sometimes its convergence is slower thanMGCheb or may require
selection of speci�c parameters. If not prescribed explicitly, we set =( = 1 in ChebCG¹=( – :( º.

4.3.1 Convergence

We measure the convergence speed of the method by reporting the number of iterations required to
reduce the Euclidean norm of the residual by a factor of 10� 8. The right hand side function is 5¹Gº =�

� cos¹Gº cos¹Hº–� sin¹Gº sin¹Hº
�

in 2D and 5¹Gº =
�
� cos¹Gº cos¹Hº–� sin¹Gº sin¹Hº–0

�
in 3D. We always start

from a zero initial guess. We declare the method fails to converge and mark this in the tables with a dash if
the number of iterations exceeds 100.

Table 4.3: Number of degrees of freedom on 3D grids, for varying number of levels � .

� 1 2 3 4 5 6

Structured 2,312 15,468 112,724 859,812 6,714,692 53,070,468
Unstructured 4,606 34,876 273,220 2,166,724 17,265,796 137,870,596
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(a) 4 � 4 checkerboard (b) 8 � 8 checkerboard

Figure 4.2: Coarse grids T0 used for multiple inclusion problems in 2D. Light gray color marks regions where the viscosity ¡� = � 1 = 1.
Regions where ¡� = � 2 are marked with a darker shade.

Table 4.4: Dependence of the number of iterations on the choice of preconditioner parameters : ( – =( – :� in the constant viscosity case
� 2 = � 1 = 1 and with ¡� = 0, in 2D. The bottom line corresponds to the smoother by Braess and Sarazin. Structured grid with � = 9 levels.

: ( =( : �
1 2 3 4

1 1 8 7 6 19
1 2 8 6 5 5
2 1 8 6 5 5
4 1 8 6 5 5

( �( 8 6 5 5

In order to compare our approach to the smoother analyzed by Braess and Sarazin [82], in this section we
additionally include results for the case when  ( 9 = ( 9 = � )

9
 � � 1� 9. Indeed, if : � = 0, so  � = diag¹� º, this

choice corresponds to the base setting from [82], with slightly di�erent relaxation. We refer to this choice
as ( �( . Let us mention that ( �( does not lead to a matrix-free method, because ( 9 have to be constructed
and then solved on each level 9= 0– • • • – �. So, when dealing with ( �( in our testing framework, which is
con�ned to matrix-free tools, we solve systems with ( 9 by (obviously very ine�cient in terms of timings) the
CG method iterated until the error is reduced by a factor of 10� 8, in order to simulate the e�ect of applying a
direct solver.

Constant viscosity case

Setting � 2 = 1 we obtain classical Stokes problem, with constant viscosity over entire domain 
 . Then, for
both structured and unstructured grids in 2D with �xed � = 9, we investigate the in�uence of : � , : ( and =(

on the convergence speed. The results are presented in Tables 4.4 and 4.5. As expected, the preconditioner
behaves much better on the structured mesh, driven by the superior performance of the geometric multigrid
which appears in several places inside P � .

Table 4.4 reveals the preconditioner works very well on structured grids even when its parameters : � – :( – =(
are very small. It is also worth noticing that for other choices of : � – :( – =( we get essentially the same
performance as with �exactly� solved smoother by Braess and Sarazin. It is also interesting that, starting
from a quite low threshold, increasing the order of Chebyshev smoothers does not lead to improvement in
the convergence speed.

This picture looks a bit di�erent for the unstructured grid, see Table 4.5. In general, the number of iterations
is larger than for the structured grid (even though in the latter, the number of degrees of freedom is almost
twice as large, cf. Table 4.1), a phenomenon already observed in [83]. On the unstructured mesh, : � = 1
produces  � � 1

9 which is too weak to make the preconditioned iteration convergent, with the notable exception

of the Braess and Sarazin smoother. It turns out that in order to match the number of iterations of ( �( for
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Table 4.5: Dependence of the number of iterations on the choice of preconditioner parameters : ( – =( – :� in the constant viscosity case
� 2 = � 1 = 1 and with ¡� = 0, in 2D. The bottom row corresponds to the smoother by Braess and Sarazin. Unstructured grid with � = 9
levels.

: ( =( : �
1 2 3 4

1 1 � � 27 16
1 2 � 19 14 12
2 1 � 20 14 12
4 1 43 18 13 12

( �( 33 18 13 12

Table 4.6: Dependence of the number of iterations on the number of levels � both in the constant viscosity ( � 2 = 1) and the high contrast
(� 2 = 106) case on structured and unstructured meshes in 2D, with ¡� = 0, : � = : ( = 2, =( = 1.

� 2 �
5 6 7 8 9 10

Structured
1 6 6 6 6 6 6

106 10 10 11 11 11 11

Unstructured
1 16 17 19 21 23 24

106 19 20 22 23 26 26

�xed : � 7 1, one has to prescribe su�ciently large : ( – =( . Moreover, the larger : � , the smaller : ( – =( are
su�cient to obtain good convergence rate.

In the next series of experiments, we keep the viscosity continuous and constant, and �x some parameters of
the preconditioner: : � = : ( = 2– =( = 1 (justi�ed by results above; see also Figure 4.9). In such conditions,
we test the dependence of the convergence speed on the number of levels� and nonzero density ¡� . As
previously, we consider both structured and unstructured grids in 2D. We present the numbers of iterations
in Tables 4.6 and 4.7. For the structured grid the number of iterations is clearly independent of mesh size,
but for the unstructured one the number of iterations is larger and slowly growing with the number of
levels, similarly as observed in [83]. The corresponding results for the structured grid in 3D are presented in
Table 4.8 and Table 4.10.

Discontinuous viscosity problem with single inclusion

In this, and the next subsection, we investigate the case when � 2 7 � 1, so the viscosity is discontinuous.
Following the results of the previous section we �x � = 0 throughout this and the following subsections, as
this results in the largest number of iterations.

Here, we focus on the single inclusion problem, when 
 2 is simply a box centrally located inside 
 , as
depicted in Figure 4.1.

First, let us investigate the in�uence of : � , : ( and =( on the convergence speed in 2D, this time only for
the more demanding unstructured grid case, with �xed � = 9. We report the iteration count in Table 4.9.
The overall pattern of the behaviour is quite similar to this obtained in the constant coe�cient case. The
number of iterations is slightly larger than that in Table 4.5, because of the presence of the inclusion. Similar
conclusions can be drawn when inspecting Table 4.6. Quite surprisingly, the method behaves even better in
3D, see Table 4.10, with the number of iterations essentially independent of � and somewhat smaller than in
2D. On the other hand, for the high contrast problem in 3D, the performance degrades roughly twice as
compared to the constant viscosity case. In the case of ChebCG and unstructured mesh we had to use higher
order smoother, because in case of: � = : B = 2 the method failed to converge in 100 iterations.

It is also enlightening to track the convergence history for several choices of : � and : ( , see Figure 4.3. For
small values of : � or : ( , the convergence is not only slower, but it also is delayed during the �rst two or three
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Table 4.7:Dependence of the number of iterations on the number of levels � both in the low density ( � = 1) and high density ( � = 108) case
with �xed viscosity � 2 = 106 on structured and unstructured meshes in 2D, with : � = : ( = 2– =( = 1. Upper part: MGCG¹=( – :( – <( º;
lower part: ChebCG ¹=( – :( º.

: � : ( � �
5 6 7 8 9 10

Structured 2 2
1 11 11 11 11 11 11

108 6 6 7 7 7 7

Unstructured 2 2
1 19 19 20 20 20 21

108 12 11 11 11 11 11

Structured 2 2
0 12 12 13 13 14 15

106 11 11 11 11 12 11

Unstructured 4 4
0 14 17 17 19 21 19

106 11 12 12 10 10 10

Table 4.8: Dependence of the number of iterations on the number of levels � both in the low viscosity ( � 2 = 1) and high contrast
(� 2 = 106) case on structured mesh in 3D, with � = 0, : � = : ( = 2, =( = 1.

� 2 �
2 3 4 5 6

Structured
1 5 5 5 5 5

108 5 5 5 5 13

iterations, when the residual essentially stagnates. As we shall see later, this stagnation phase gets prolonged
with the increase of the number of inclusions. This seems to correspond well with the �ndings of [62].

Finally, let us explore the dependence of the number of iterations on the contrast in the viscosity for a wider
range of � 2. In this test, we consider the structured grid in 2D with � = 9, and in 3D, with � = 4. We keep
: � = : ( = 2 as before, but vary =( , see Table 4.11. The iteration count shows interesting behavior. It grows
very modestly for a range of � 2, starting from � 2 = 1. However, for certain, very large, values of � 2, the
method breaks down. The magnitude of � 2 above which the breakdown occurs, clearly depends on =( . It
seems that for those huge � 2 the system we solve when applying  ( � 1

9 is so ill�conditioned, that the CG
iteration used inside struggles.

We tested the solver in 3D using unstructured grid with number of levels � = 2– • • • –5. The number of
iterations grows with problem size, see Table 4.12. For small � , : � = 2 is better in terms of the overall cost
(similar number of iterations while each iteration is cheaper), for � 7 4 : � = 4 dramatically outperforms
: ( = 2. It turns out that, in comparison to MGCG, ChebCG-based smoother requires higher values of : � and
: ( to obtain similar convergence rate.

In�uence of the scaling of  ( � 1 on the convergence rate As mentioned before, in the constant viscosity
coe�cient case Zulehner already noticed [83] that the multigrid method works well even if assumption (4.11)
is not satis�ed. Our experiments presented so far also show that our preconditioner  ( � 1

9 works well �as is�,
without any prescaling.

It is nevertheless interesting to investigate how the scaling of  ( � 1
9 in�uences the convergence rate of our

method, eventually relating Zulehner's observation to the high contrast case (we �x here � 2 = 106). Let us
de�ne the average convergence rate as

' =

�
j jA= j j2
j jA0j j2

� 1
=

(4.17)

where A8 is the residual after 8-th iteration and = is number of iterations required to meet the stopping
criterion. For the unstructured mesh in 2D with � = 9 and with �xed : � = : ( = 2 and =( 2 f 1–2gwe compute
' for the iteration with  ( � 1

9 replaced with �  ( � 1
9 where � 2 »0•8–6•25¼. Of course, the original preconditioner

is recovered for � = 1.



40 4 A multilevel preconditioner

Figure 4.3: Convergence history for various choices of smoother parameters.

Table 4.9: Dependence of the number of iterations on the choice of preconditioner parameters : ( – =( – :� in the 2D high contrast
(� 2 = 106, � = 0) case. The bottom row in the left table corresponds to the smoother by Braess and Sarazin. Unstructured grid with � = 9
levels.

(a) Unstructured, MGCG

: ( =( : �
1 2 3 4

1 1 � � 23 17
1 2 � 21 17 14
2 1 � 21 17 14
4 1 41 21 17 14

( �( 25 19 16 14

(b) Structured, ChebCG

: ( =( : �
1 2 3 4

1 1 � 14 12 10
1 2 29 13 11 10
2 1 25 14 12 12
4 1 � 12 10 9

(c) Unstructured, ChebCG

: ( =( : �
1 2 3 4

1 1 � � � 50
2 2 � � 23 16
2 1 � � 69 19
4 1 � � 25 21

Table 4.10:Dependence of the number of iterations on the number of levels � both in the constant viscosity ( � 2 = 1) and high contrast
(� 2 = 106) case with various densities on structured mesh in 3D, with : � = : ( = 2, =( = 1.

� 2 � �
2 3 4 5 6

Structured

1 0 5 5 5 5 5
106 0 7 8 9 9 9
106 1 5 5 5 5 5
106 108 5 5 5 5 5

Table 4.11:Dependence of the number of iterations on coe�cient contrasts on single inclusion problem. Structured grid with � = 9
levels (in 2D) and � = 4 levels (in 3D), with : � = : ( = 2, � = 0.

=( � 2

100 101 102 104 106 108 1010 1012 1014

2D
1 6 8 11 11 11 83 � � �
2 6 8 11 11 11 11 13 84 �
3 6 8 11 11 11 11 11 11 �

3D
1 5 7 9 9 11 � � � �
2 5 7 9 9 9 9 15 � �
3 5 7 9 9 9 9 9 9 11
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Table 4.12: Dependence of the number of iterations on the choice of preconditioner parameters : ( – :� with �xed =( = 1 for the 3D
single inclusion problem on unstructured grid.

(a) MGCG

: � : ( �
2 3 4 5

2
2 23 29 36 �
4 23 28 32 55

4
2 14 17 19 21
4 14 17 19 20

(b) ChebCG

: � : ( �
2 3 4 5

4
2 15 20 34 �
4 14 16 19 40

6
2 12 15 19 49
4 12 13 14 16

Figure 4.4: Average convergence rate of the preconditioned FGMRES, as a function of � � 1. Single inclusion problem with � 2 = 106 on
unstructured grid, � = 9.

The experiment shows that for � � 1 2 ¹0•5–1•17º the convergence rate does not degrade by more than 10% as
compared to its minimal value (approximately equal to 0•3), indicating that the method remains e�ective for
a range of scalings, cf. Figure 4.4. Moreover, choosing the smoother without scaling ( � = 1) seems to result in
a nearly optimal convergence rate.

Spectrum analysis Finally, we examine the clustering of the eigenvalues of the preconditioned matrix
P � M � , which is known to in�uence the convergence speed of Krylov space methods. Since, in turn, our

preconditioner relies on the quality of  ( � 1
� which in principle acts as a preconditioner to ( � , see Table 4.9, we

also inspect the eigenvalues of  ( � 1
� ( � . Because the operatorMGCG¹=( – :( – <( º is not linear, for the spectral

analysis we switch to  ( � 1
� = MGCheb¹=( – :( – <( º• In order to assess the clustering of the spectrum, we

investigate both ends of the spectrum, i.e. the eigenvalues largest and smallest by magnitude. To make the
experiment computationally feasible, we restrict ourselves to the 2D problem on unstructured grid with
� = 3– • • • –6 with � 1 = 1 and � 2 = 106. We �x the usual set of preconditioner parameters: : � = : ( = 2 and
=( = 1, and compute 100 smallest and 100 largest eigenvalues using ARPACK [127] with tolerance set to10� 6

and Arnoldi space size equal to 1000.

Figure 4.5 shows extreme eigenvalues ofP � M � . It turns out that for � = 3 a few of the computed eigenvalues
have small imaginary part (Figure 4.5b); otherwise, they are real. Signi�cant di�erences between eigenvalues
of the preconditioned system for the constant viscosity case and the discontinuous coe�cient case are visible
in the rightmost part of spectrum (Figure 4.5a), where several eigenvalues are larger for the variable coe�cient
case than for the constant coe�cient. Interestingly, the use of exact Schur complement changes the structure
of this end of the spectrum, but the largest eigenvalue remains nearly unchanged. This seems to explain
the increase in the convergence rate after the �rst 2�3 iterations, cf. Figure 4.3, when the corresponding
components of the residual have been eliminated.

Figure 4.6 shows the distribution of the eigenvalues of  ( � 1
� ( � which cluster around the unity with no outlying

eigenvalues. When the problem size increases, the spread of the eigenvalues grows, which may explain slight
deterioration in the e�ciency of  ( � 1

� as reported in Table 4.6.
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(a) Real part (b) Imaginary part

Figure 4.5: Eigenvalues of %� M � for single inclusion problem on unstructured grid with � = 3– • • • –6 levels. The �rst 100 eigenvalues
(numbered 1-100) and last 100 eigenvalues (numbered 101-200).

Figure 4.6: Eigenvalues of  ( � 1( for single inclusion problem on unstructured grid with � = 3– • • • –6 levels. The �rst 100 eigenvalues
(numbered 1-100) and last 100 eigenvalues (numbered 101-200), see text.

Discontinuous viscosity problem with multiple inclusions in 2D

Next, we investigate if the number of high contrast inclusions in�uences the convergence rate of the methodLet
us �rst consider two 2D test problems with checkerboard distribution of � 2: 4 � 4 and 8 � 8. Both problems
are then discretized on a grid T� derived from the uniform re�nement of the same coarsest level Cartesian
grid T0, see Figure 4.2 (note that this grid is �ner than the grid induced by discontinuities in the viscosity). In
Table 4.13 we compare the number of iterations for both problems with � = 2– • • • –8 and several choices of
parameters : � , : ( and =( . It follows that the number of iterations slowly grows with both problem size and
the number of inclusions. For �ne enough grids, the increase in the number of iterations is greater when there
are more inclusions in the domain. On the other hand, it also follows from Table 4.13 that a partial remedy is
to employ higher order smoothers (that is, to increase : � , : ( ) and do more internal CG iterations =( which,
however, increases the overall cost of the iteration. As presented in Table 4.13 in the case of ChebCG, the
number of iterations grows with the number of levels for both 4 � 4 and 8 � 8 checkerboard problems. Note
that despite using 3 CG iterations in ChebCG, we ended up with a higher number of iterations than for
MGCG.

It follows from Figure 4.7 that the reason for increased iteration counts is the initial plateau in the convergence
history, which was not present in constant viscosity case. The length of the plateaus increases with the
number of inclusions which can clearly be seen in both Figure 4.3 (when it was very short for the single
inclusion case) and in Figure 4.7, when more, and longer plateaus are observed in the 8 � 8 case.

We illustrate the quality of the Schur complement approximation by solving the linear equation (G = Hwith
MGCheb¹=B– :( – <Bº, =B = 1 and < B = 1 used as a preconditioner. As the right hand side vector Hwe use a
vector �lled with 1. We report the number of PCG iterations required for reducing residual by a factor of
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Table 4.13:Dependence of the number of iterations on the number of levels � in 2D checkerboard problem with various : � ,: ( and =( .
Upper part: MGCG¹=( – :( – <( º; lower part: ChebCG ¹=( – :( º.

=( : � : ( �
2 3 4 5 6 7 8

4 � 4
1

2 2 16 19 21 22 26 29 32
4 4 18 18 24 25 23 26 27

2
2 2 13 15 18 21 23 25 26
4 4 11 13 16 18 20 22 23

8 � 8
1

2 2 12 15 18 22 29 41 47
4 4 27 15 16 17 21 27 45

2
2 2 12 15 18 22 29 41 47
4 4 10 13 15 19 25 36 43

4 � 4 3 4 4 9 11 15 20 26 31 34

8 � 8 3 4 4 10 13 17 25 30 40 52

(a) 4 � 4 checkerboard (b) 8 � 8 checkerboard

Figure 4.7: Checkerboard domain problem, � = 6: convergence history of the FGMRES iteration for various choices of smoother
parameters. Continuous lines:  ( � = MGCheb¹=( – :( – <( º; dashed:  ( � 1

� = MGCG¹=( – :( – <( º, cf. Table 4.13.< ( = 1.

10� 8 starting from a random initial guess. In this test, we consider mesh with � = 2 and � = 6 levels with the
selected sets of smoother orders. The required numbers of PCG iterations are shown in Table 4.14. Except
for the case : ( = 0, the di�erence between the numbers of iterations on the coarse and the �ne problems
is insigni�cant. Also, the di�erences between 4 � 4 and 8 � 8 checkerboards are minor. This indicates that
already for : ( = 2 the quality of Schur complement is satisfactory.

Spectrum analysis For further understanding of preconditioner properties, we numerically analyze the
spectrum of preconditioned system matrix P � M � with  ( = MGCheb¹=( – :( – <Bº where =( = 1, < B = 1 and
: ( = 2, and consider : � = 2 and : � = 4. We use the same grid as previously with a �xed number of levels
� = 6• For As in single inclusion problem, we are interested in both ends of the spectrum. The eigenvalues
were computed using ARPACK as in Sec. 4.3.1.

Figure 4.8a indicates that the great majority of eigenvalues are located close to 1, with distorted both ends of
the spectrum. One can observe that the left end of the spectrum mostly depends on number of subdomains.
The di�erences between parameters settings are minor except several smallest eigenvalues. In case where
: � = 2, : ( = 0 the smallest eigenvalue is positive close to zero. In case where: � = 4, : ( = 2 the negative
eigenvalues appear. The number of outlying eigenvalues in the right end of spectrum grows with the decrease
of polynomial smoothers degree. For : � = 2, : ( = 0 the real part of last 33 eigenvalues exceeds the plot
range.

The imaginary part of eigenvalues (Figure 4.8b) is signi�cantly greater in case of 8 � 8 checkerboard,
especially in case of : � = 2. In this cases the convergence of FGMRES was signi�cantly improved by using
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Table 4.14:Dependence of the number of iterations of PCG for (G = Hwith preconditioner MGCheb¹: ( –1º on the number of levels � in
checkerboard problem for various : � , : ( , =( = 1.

(a) 4 � 4

: ( : � �
2 6 8

0
0 15 26 30
2 24 32 35

2
2 15 16 16
4 17 18 18

(b) 8 � 8

: ( : � �
2 6 8

0
0 16 28 33
2 26 35 39

2
2 18 19 20
4 20 21 22

(a) Real part (b) Imaginary part

Figure 4.8: Eigenvalue distribution of preconditioned matrix M for checkerboard domain problem: 100 smallest and 100 largest by
magnitude eigenvalues. � = 6. The �rst 100 eigenvalues (numbered 1-100) and last 100 eigenvalues (numbered 101-200).

MGCG¹=( – :( –1º as Schur complement approximation (cf. Figure 4.7b). Also, the number of PCG iterations
needed for convergence of Schur complement problem is largest � Table 4.14.

Multiple inclusions in 3D: a sinker problem

Let us consider the =-sinker problem, cf. [112], with sharp edges � in contrast to [111, 113] who consider
smooth viscosity with large gradient transition layer between the inclusions. In the unit cube with uniform
Cartesian coarse grid and element size � = 2� 3 we randomly pick = disconnected coarse cells and consider
them as inclusions with viscosity � 2 = 106. We then uniformly re�ne the coarse mesh to � levels; in this way
all discontinuities are resolved on all relevant grids. In this case, we consider two sets of boundary conditions:
the �rst is the default one, while the second set we set uniform zero Dirichlet boundary condition. The second
case requires additional constraint on the pressure, so we �x the �rst pressure unknown to 0.

With various numbers of levels � = 2 • • •5 and solver parameters : � = : ( = 2, =B = 1 we illustrate the solver
convergence for the number of inclusions = equal to 8 or 16, reporting the number of iterations in Table 4.15.
This test reveals the interesting property of the solver, the number of iterations seems to be independent of
the number of inclusions and are identical as in the single inclusion case. Similarly to 2D case, the ChebCG is
robust with respect to problem size and converges in a bit larger number of iterations than MGCG.

4.3.2 Implementation, performance and scalability

The multilevel preconditioner de�ned in Section 4.2 was designed to allow straightforward implementation
within any matrix-free framework. In our case, we used the matrix-free toolbox [72] of deal.II library [73] to
implement the method and all tests. This same library also provided its built-in implementation of Chebyshev
smoothers used by the preconditioner, together with a generic multigrid framework. The implementation
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Table 4.15: Dependence of the number of iterations on coe�cient contrasts in 3D =-sinker problem with mixed Dirichlet-Neumann
boundary conditions (Mixed) and pure Dirichlet boundary conditions (Uniform Dirichlet). Structured grid with � levels, with �xed
parameters : � = : ( = 2 and =B = 1. Upper part: MGCG¹=( – :( – <( º; lower part: ChebCG ¹=( – :( º.

=
Boundary �
conditions 2 3 4 5

8
Mixed 8 8 8 8

Uniform Dirichlet 8 8 8 8

16
Mixed 8 8 8 8

Uniform Dirichlet 8 8 8 8

8 Mixed 11 11 11 10
16 Mixed 11 11 10 10

with 32-bit indexing of degrees of freedom limited the size of our test, the largest considered problem
consisted of over 421 million unknowns.

The required diagonals of matrices � 9 and � 9¹diag � 9º� 1� )
9 were precomputed once by using formulae

4)
8 � 948 =

X

22T
4)

8 � 248

4)
8 � 9¹diag � 9º� 1� )

948 =
X

22T
4)

8 � 2
9¹diag � 9º� 1¹� 2

9º
) 48–

where � 2
9 (and similarly � 2

9) denotes contribution of cell 2 2 T9 on 9-th level grid (so-called cell, or local,
operators) to the global matrix � 9. Note the components of those sums are nonzero for the cell 2 only if 8-th
degree of freedom is associated with cell 2. Thus, both diagonals may be computed by summing up each cell
individual contribution.

To solve the problems on the coarsest level, we assembled the matrices corresponding toT0 grid and used the
MUMPS [128] direct sparse solver. This was the only part of the implementation that required assembling
matrices, of relatively small size.

Let us de�ne the overall e�ciency � of the method as

� = ) • #–

where ) is the wall clock time (in seconds) required by the solver to satisfy the stopping condition and # is
the number of unknowns.

We carried e�ciency tests of the method on a cluster using two nodes each one equipped with 2 Xeon
8160 processors at 2.10 GHz resulting in total 96 cores. We used 24 MPI ranks, so multi-threading, SIMD
vectorization of loops and cache memory optimizations were among the main factors which in�uenced the
timings, because thedeal.II library takes advantage of both shared and distributed memory parallelization,
when available. The single inclusion problem on a structured grid in 2D or 3D, described in detail Section 4.3.1,
was used as a benchmark, with the remaining free preconditioner parameters set to : � = 2, : ( = 2 and =( = 1.
Figure 4.9 indicates that solver's e�ciency � levels o� for su�ciently large problem size # . The reason that
for smaller problems the performance su�ers is probably related imbalance of deal.II mesh partitioning, a
similar issue was present in [113]. The simple Schur approximation without inner MG (  ( � 1 = ChebCG¹1–2º)
outperforms the one with inner MG (  ( � 1 = MGCG¹1–2–1º). The speedup at the �nest 3D mesh is over
twice.

The samedeal.II matrix-free framework was used by Clevenger and Heister [113] to implement block
preconditioner for the Stokes problem ( � = 0). The obtained timings could be directly compared, as the
hardware con�guration seems to be the same. Our solver with inner MG cycle seems to require roughly
30%�40% more time than GMG matrix-free solver from [113] to solve the system with the same number of
unknowns. On the other hand, the robustness of the preconditioner used in [113] with respect to contrast is
limited. The block preconditioner suitable for higher contrast case would be BFBT [111], that is signi�cantly
less e�cient.
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Figure 4.9: E�ciency of the solver, as a function of problem size. Single inclusion, structured grid, : � = 2– :( = 2– =B = 1

Table 4.16:Peak memory usage in single inclusion problems

2D 3D
Structured Unstructured Structured Unstructured

N 84,965,379 51,914,755 53,070,468 17,265,796
Number of iterations 11 21 13 21

Memory used [KB] 59,664,668 58,433,252 33,693,900 30,217,736

Memory used

#
[B] 719.1 1153 650.1 1792

Let us �nally say a few words about memory consumption requirements of the solver, as matrix-free
computations allow extensive memory usage optimization. In our case, a workstation with 64 GB of RAM
was capable to handle tests discussed above with the problems consisting of 84,965,379 or 53,070,468 degrees
of freedom (in 2D or 3D, respectively), see Table 4.16 for peak memory requirements. For problem of �xed
size, it shows direct dependence of the amount of memory required by the solver per degree of freedom on
the number of iterations. This has to be attributed to FGMRES, whose auxiliary vectors storage requirements
grow with the number of iterations.

4.4 Conclusions

The method presented in this chapter mixes multilevel and block solver approaches, resulting in a precondi-
tioner which is matrix-free and capable of e�ciently solving the Stokes problem with highly discontinuous
viscosity. The design principle of the method does not depend on any special type of �nite element
discretization and is relatively simple to implement.

Numerical experiments show that for suitably chosen free parameteres of the method, the convergence rate
degrades only weakly with the increase of the viscosity contrast, up to a threshold of order 1012 (depending on
method parameters). Moreover, its convergence speed seems independent of the problem size on a structured
grid, while on unstructured grids the number of iterations grows slowly with the number of unknowns.

The preconditioner presented here has been designed as a genuinely matrix�free method, thus enabling
extensive memory and speed optimizations, including potential for the parallelization. For example, our
implementation in deal.II is able to handle large parallel computations or solve routinely problems with
more than 80 million unknowns on a PC with 64 GB of RAM. One of the key design choices which made the
method robust with respect to viscosity contrast and mesh type and size, while preserving its matrix�free
character, was the extensive use of the auxiliary Chebyshev smoothers (together with an inner multigrid
iteration) inside a very e�cient block smoother of [83].

For a single inclusion high contrast problem (so called �sinker problem�) the convergence speed of the
method is comparable to other methods, cf. [110, 120], and is much better than reported in [108]. Note however
that further study would be required to make fair and detailed comparison of their convergence rate (due to
variations in stopping criteria and other �ne details) not to mention e�ciency as de�ned in Section 4.3.2.



4.4 Conclusions 47

For multiple inclusions in 3D, our approach provides robust covergence rate with respect to number of
inclusions, coe�cient contrast, and problem size. Notably, while our method deals directly with sharp
interfaces, many other methods [111, 113, 120] were tested assuming a blurred interface; in [120] it turned out
that the performance of that method was sensitive to the thickness of the interface region.

Since the cost of our method strongly depends on the cost of application of ¡( � 1 to a vector (which is relatively
high, as compared to other methods mentioned above), it is crucial to use as small values of solver tuning
parameters < ( = : ( = =( (see Section 4.2.2) as possible. Our experiments suggest that in most cases the
break-even point between the precondtioner quality and iteration cost, resulting in lowest (or close to lowest)
computation time corresponds to the following set of preconditioner parameters: < = < ( = : ( = =( = 2 and
= = 1. In 2D it was enough to take : � = 2, while in 3D setting : � = 4 if the mesh is not structured seemed a
better choice. It is also worth mentioning that choosing MGCG to solve approximate Schur complement led
to an improvement in the e�ciency as compared to MGCheb. For a structured mesh, the cheaper variant of
the operator ¡( � 1, that is, ChebCG, can be used resulting in further speedup. In the case of the unstructured
grid, the variant with ChebCG may also lead to a reduction of the total solution cost, but on the other hand it
requires �ne tuning of its parameters. This issue requires a further investigation.

A downside of the method which needs further research is that its performance in 2D depends moderately
on the number of high contrast inclusions, which are responsible for a plateau phase in the convergence
history. Numerical evidence indicates that the length of this phase is a�ected by the number of inclusions.





Towards solving the �uid-structure interaction
problem 5

In this chapter we �nally proceed to solving the FSI problem. We build the solver step-by-step and validate
and illustrate every step by solving a benchmark problem. We begin with the demonstration of incompressible
�ow solver and structural solver separately. Then we discuss and compare two approaches to the mesh
deformation, both of them were brie�y mentioned in Section 2.2.1. Finally we test the application of both the
biharmonic equation and the pseudo-elastic equation as a mesh deformation technique.

5.1 Preliminaries

In most of the tests, we will adhere to the benchmarks proposed by Turek and Hron in [8]. In all those tests a
2D channel with a rigid cylindrical obstacle is considered � as illustrated in Figure 5.1. The exact dimensions
of the channel are described by several parameters, we place their values in Table 5.1. The domain
 is
partitioned into 
 B � an elastic beam attached to the rigid cylinder and 
 5 � the remaining part of 
 . The
left side of the channel is set as the in�ow, the right side is set as the out�ow, while the rest of boundaries
are considered as walls. The point A, located at the midpoint of the right end of the beam, will be used in
the test to compare results. We use the same coarse grid (depicted in Figure 5.2) for all those tests. The �ne
mesh is obtained by re�ning the coarse one, so that we obtain a multilevel structure with � levels. This setting
allows us to apply the multigrid preconditioner described in the previous chapter. We use the variant with
 ( � 1 = MGCG¹=( – :( – <( º.

Table 5.2 lists the sizes of the discrete problems for various types of meshes and discretization levels � . In
particular, the �rst column ( � = 1) corresponds to the size of the coarsest problem, posed onT0.

We note that in all simulations, we use the same implementation of GCE time integration scheme as described
in Algorithm 1. The purpose for that was to test the correctness of the Navier-Stokes solver used in the FSI
solver. The quantities in this and the next chapter speci�ed without units are by default in SI units.

The implementation is based on deal.II 9.2 library[73]. As a coarse solver we use MUMPS [128] via Trilinos
library[129]. The we use OpenMPI implementation of MPI standard, the program was compiled with g++ 7.3.

5.2 Solving the Navier-Stokes equation

Our �rst step towards building the FSI solver is solving transient Navier-Stokes problem. As in Chapter 2, we
consider a domain 
 with boundary partitioned into Dirichlet � � and Neumann � # parts. The problem

Figure 5.1: Geometrical setting for Turek benchmark problem [8].
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Figure 5.2: Coarse grid used in benchmark problems. The grid was provided by Prof. Luca Heltai.

Table 5.1: Geometry of Turek benchmark problem � list of parameters.

! � ; � � G � H A
2.5 0.41 0.35 0.02 0.2 0.2 0.05

itself is formulated in the domain 
 :(
� %E

%C ¸ r E ¹Eº � div ¹ 1
2 � ¹r E¸ r E) ºº ¸ r ? = 5 in 
 –

div E = 0 in 
 –
(5.1)

where E is the unknown �uid velocity, � is density, � is viscosity and 5 is the external force. Additionally, E
has to satisfy the boundary conditions:

(
E = E�

� on � � –

� � = = � on � #
(5.2)

with given E�
� and � . We solve the problem using the time integration scheme discussed in Chapter 2. Let us

shortly resemble it in the simpli�ed form, the with steps connected to deformation handling omitted.

5.2.1 Time integration scheme

In this benchmark we use the semi-implicit scheme without corrector. Assuming that the velocities E=� 1 and
E=� 2 at the times C=� 1 and C=� 2 are known, we compute the velocity E= at time C= by solving the equation

(
� 3

2� C¹E= � 4
3E=� 1 ¸ 1

3E=� 2º ¸ r E� E� � div ¹ 1
2 � ¹r E¸ r E) ºº ¸ r ? = 0– in 


div E8 = 0• in 

(5.3)

where E� = E= and velocity E� is extrapolated from previous time steps

E� = 2E=� 1 � E=� 2•

In this case, we apply the GCE2¹1º scheme. Steps that were omitted are in this case trivial operations, but
they were preformed in the simulation anyway.

5.2.2 Benchmark problem

As a benchmark problem we compute the �ow around a cylinder in a channel. The �ow is driven by boundary
conditions and external force is not present, i.e. 5 = 0. This is known as the Schäfer�Turek benchmark [130]
and was also suggested by Turek�Hron [8] (CFD2 and CFD3 tests) as a part of the test suite for FSI problems.
The channel is presented in Figure 5.1 with detailed geometrical data placed in Table 6.1. For this benchmark,
we ignore subdomains and consider whole the 
 as a �uid domain.

At the cylinder boundary, the lower and the upper wall of the channel we set the so-called no-slip boundary
condition, i.e. zero Dirichlet boundary condition. The right end of the channel is considered as out�ow, that

Table 5.2: Geometry of Turek�Hron benchmark problem � list of parameters.

� 1 4 5 8 9
# 3736 223,424 889,216 56,658,944 226,564,096
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Table 5.3: Solver settings

Parameter Value
Order of the Chebyshev smoother de�ning  � � 1 : � 4
Number < of outer smoothing steps < 2
Number of outer MG iterations = 1
Order of the Chebyshev smoother de�ning ¡( � 1

: (
: B 2

Number < ( of inner smoothing steps < B 1
Number of inner MG iterations =B 1

is modelled by imposing a zero Neumann condition there. Finally, the left side of the channel is considered
as an in�ow, modelled by setting the Dirichlet boundary condition:

E�
in�ow =

3
2

+8=
4

� 2
H¹� � Hº– (5.4)

where +8= is the mean in�ow velocity and � is the height of the channel. This results in a parabolic velocity
pro�le at the inlet. We use the Reynolds number computed using the mean velocity + and diameter of the
cylindrical obstacle:

Re =
� + 2A

�
–

where Ais the radius of the obstacle. In our tests, we set the �uid density � = 103, the viscosity � = 1 and
consider various Reynolds numbers. As initial condition we set velocity to zero. We note, that the in�ow
boundary condition (5.4) enforces instantaneous acceleration of the �uid. This allows us to check the solver
ability to cope with advection in the �rst few time steps. The main problem with rapid acceleration of the
�uid is the arti�cial pressure jumps observed at the �rst few time steps. Originally in [8] the �ow was slowly
accelerated, and thus, the initial �ow in our case is di�erent then presented in [8].

We derive the triangulation of the domain 
 from the coarse grid, shown in Figure 5.2, by uniformly re�ning
it � � 1 times, so that � mesh levels are created. The problem at each time step is discretized using the
�nite element method, as discussed in Section 3.2. The system of linear equations is solved using FGMRES
with multigrid preconditioner described in Chapter 4. A minor modi�cation of the smoother is required to
handle a non-symmetric problem, the inner Schur complement operator MGCG is replaced by multigrid
preconditioned BiCGStab[131]. The detailed list of smoother parameters is presented in Table 5.3, for detailed
description of each one we refer to Section 4.2.2. The solver tolerance is set to& = 10� 6, i.e. we claim
convergence if the ! 2 norm of the residual drops below &.

5.2.3 Results

For the experiments we use the �xed mesh with � = 5 levels, i.e. the coarse grid was uniformly re�ned 4 times.
We run simulations with time step size � C= 0•01and Reynolds numbers equal to 200 (CFD3), 400 and 1000.
The obtained velocity �elds are illustrated in Figures 5.3, 5.4 and 5.5. The detailed quantitative comparison
with the reference solution [8] requires computing lift and drag forces that have not been implemented
and therefore we are unable to provide it. Our excuse is that we are mainly interested in the linear solver
performance. Besides, the quantitative comparison will be done while demonstrating the complete FSI
solver.

In contrast to the problem considered in Chapter 4, here the advection term is non-zero. The problem in
no longer symmetric thus we are interested if the solver can deal with it e�ciently. We illustrate the solver
performance measured in the number of iterations required for convergence in Figure 5.6. The solver is clearly
not robust with respect to the Reynold number, but the the numbers of iteration are still acceptable for us.
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(a) C= 0•5 (b) C= 1•0

(c) C= 1•5 (d) C= 2•0

Figure 5.3: Velocity magnitude in Schäfer�Turek benchmark, Re = 200

(a) C= 0•5 (b) C= 0•65

(c) C= 0•75 (d) C= 0•85

Figure 5.4: Velocity magnitude in Schäfer�Turek benchmark, Re = 400

(a) C= 0•25 (b) C= 0•375

(c) C= 0•5 (d) C= 0•625

Figure 5.5: Velocity magnitude in Schäfer�Turek benchmark, Re = 1000
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Figure 5.6: Number of iterations versus time in CFD benchmarks. Grid with � = 5 levels, time step size � C=0.01

Figure 5.7: Grid with � = 3 levels used in CSM3 tests

5.3 Solving structural dynamics problem

By simulating dynamics of the solid we mean to solve the time dependent problem
8>>><

>>>
:

� %E
%C ¸ div ¹ 1

2 � ¹r D¸ r D) ºº � div
�
¹r Dº) r D

�
¸ r ? = 5 in 
 –

div E = 0 in 
 –
%¢D
%C = ¢E in ¢


(5.5)

for the velocity Eand the displacement  DB. The solid displacement ¢Dalso de�nes the transformation between
undeformed domain ¢
 and deformed (current) domain 
 , each point ¢G in ¢
 is transformed to point
G= ¢G¸ ¢D¹ ¢Gº in 
 • We approximately solve the problem by �rst introducing the time discretization, and then
using the �nite element method for the space discretization as in Section 3. Notice that in this case 
 B = 
 ,
the extrapolation of solid displacement is a trivial operation, therefore the obtained results does not depend
on used mesh deformation algorithm.

5.3.1 Benchmark problem

We verify the proposed method by providing a quantitative comparison with the reference solution of the
freely oscillating beam � the CSM3 benchmark from [8]. The beam geometry is exactly the same as in the FSI
benchmark problem, depicted in Figure 5.1. We �x the beam on the left side, while at the other boundaries
we impose a zero Neumann boundary condition. At the initial time, the beam is undeformed and the motion
is forced by the external force 5 = »0– � 6¼) . We consider the incompressible Mooney-Rivlin solid (Section
2.4.2) with parameters � B = 103 and � B = 0•5 � 106. The solid model is di�erent from the referential one [8],
that is the compressible St. Venant-Kirchhof solid with � B = 103 , � B = 0•5 � 106 and Poisson ration � = 0•4.
The coarse grid used in this benchmark (Figure 5.7) is a solid part of the one used for the FSI problem (Figure
5.2). The �ner grids are obtained via uniform re�nement of the coarse one.

We solve the linear system with FGMRES preconditioned with the multilevel method, the tolerance is
&= 10� 6. In this test, we skip linear solver details as the problem solved at each step is a generalized Stokes
equation on a structured grid with no coe�cient jumps. Those details could be found in Chapter 4, where
almost the same problem was considered.

5.3.2 Results

Using the mesh with � = 3 levels, we run a series of simulations with the second-order integration scheme
GCE2¹1º with the time step sizes � C= 0•1–0•03–0•01and volumetric damping coe�cient � + = 0•1. We plot
the displacement of the point A over time � Figure 5.8. The time integration is stable for all considered time
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(a) DG (b) DH

Figure 5.8: Displacement of the point A versus time in CSM3 test with various time step sizes. Grid with � = 3 levels, GCE2¹1º scheme
with � + = 1

Figure 5.9: Displacement of the point A versus time in CSM3 test with various time schemes. Grid with � = 3 levels, � C= 0•03

step sizes. The time scheme itself introduces an arti�cial damping that decreases with the time step size. For
� C= 0•01 the decrease of the beam amplitude after 10 second is unnoticeable.

For the time step size � C= 0•03we compare the results obtained with various schemes: GCE1¹1º, GCE2¹1º
and GCE2¹2º with � + = 0•1, and GCE2¹2º with � + = 1 . The displacement of point A over time is illustrated
in Figure 5.9. The results for all second-order methods are nearly identical. In particular, we observe that the
introduction of the volumetric damping ( � + < 1º does not signi�cantly a�ect the results. The bene�ts of the
volumetric damping will be visible in the FSI benchmark problem where the solid beam is wiggling in the
�ow.

Next, we set the time step size to � C= 0•001and run the simulation using the grids with � = 3–4–5 levels.
For the quantitative comparison with the reference solution, we note the motion parameters of the �rst
oscillation of the point A: the mean value, amplitude and frequency. We take the maximum and minimum
displacements DG¹Aº and compute the mean displacement and amplitude as follows

mean =
1
2

¹max ¸ min º –

amplitude =
1
2

¹max � min º •

The frequency is computed as the inverse of the time of the �rst oscillation. We report the results in Table 5.4
together with referential ones. Both frequency and amplitude indicate that our beam is sti�er than the one in
[8]. That discrepancy could be expected since we used a di�erent solid model. Overall, the obtained results
are close enough to the referential ones for the purpose of this work.

Table 5.4: Results for CSM3 benchmark problem with time step size � C= 10� 3

� # D G¹Aº DH¹Aº Frequency
3 1171 � 10•216± 10•216 � 54•649± 54•649 1.1961
4 4355 � 10•257± 10•257 � 54•774± 54•774 1.1933
5 16771 � 10•266± 10•266 � 54•801± 54•801 1.1933
Reference[8] -14.305± 14.305 -63.607± 65.160 1.0995
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5.4 Handling domain deformation

The last part of the solver that has to be tested before proceeding to the FSI problem is the domain deformation
handling method. The problem is to extend the solid displacement (or velocity) on the �uid domain so that
the quality of deformed mesh will not deteriorate signi�cantly. The choice of the extrapolation algorithm is
crucial for the performance. If done incorrectly, the elements may become overly deformed, resulting in a
reduced linear solver performance, or, in the worst case, negative volume of elements leading to meaningless
results.

We consider two methods of computing extrapolation  D� of solid deformation: using the linear elasticity
equation

8>>><

>>>
:

div ¹� � &¹  D� ºº = 0 in 
 5–

 D� =  DB in  
 B

 D� = 0 on %
 –

(5.6)

with possibly non-constant coe�cient � � , and the biharmonic equation

8>>>>><

>>>>>
:

� 2  D�–8 = 0 in 
 5–

 D�–8 =  DB–8 on � 8–

 D�–8 = 0 on %
 –
% D�–8

%= = 0 on � 8–

(5.7)

where = is outer normal of the domain 
 5. The problem is solved for each individual component  D8 so that
extrapolation of  D( is obtained. We use the �nite element method to solve both equations. The linear elasticity
equation appears as a part of 0¹�–�º on undeformed domain and its weak form was discussed in Section 3.2.
The weak form of the biharmonic equation, a forth order problem, is not straightforward.

5.4.1 Solving the biharmonic problem

Let us brie�y recall the C0 Interior Penalty Method ( C0IP) proposed in [132]. The implementation is a
modi�ed step-47from deal.II library that presents a basic biharmonic solver. We improved it with adding
handling of parallel computations. We refer to the library manual for further details.

We apply the method similar to the discontinuous Galerkin method, and thus we will need so-called jump:
nn%: E�

%=:

oo
=

%: E� j ¸

%=:

�
�
�
�
4

�
%: E� j �

%=:

�
�
�
�
4
–

and average
hh%: E�

%=:

i i
=

1
2

�
%: E� j ¸

%=:

�
�
�
�
4

¸
%: E� j �

%=:

�
�
�
�
4

�

operators for arbitrary scalar function E� de�ned on domain 
 5. The point 4 is at the interface between
cells  ¸ and  � ( � –  ¸ 2 T ), the normal = denotes a unit normal vector pointing from  ¸ to  � . The C0IP
formulation of the biharmonic extrapolation problem is to �nd ¢D� such that  D� =  DB on � 8– D� = 0 on %
 –
and

A¹E8– D�–8º = 0 holds for all test functions E 2 V– (5.8)

for every component. The C0IP discrete biharmonic operator is de�ned as

A¹E� – D� º :=
X

 2T

¹

 
� 2E� : � 2D� 3G

�
X

42F

¹

4

nn%E�

%=
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i i
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¹
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Figure 5.10: Distribution of coe�cient � � . Solid marked in gray.

where � 2E� � 2D� are Hessian of E� and D� , respectively, and F is a set of all faces of cell inside. The penalty
parameter � is related to the degree of �nite element, in our case � = 6.

Iterative solver and preconditioner

The linear system behind the biharmonic problem is solved by the preconditioned CG method. Choosing the
multilevel method as a preconditioner appears to be a natural choice, since we already have the multilevel
structures. Let us note that the choice of the smoother is not straightforward, although the problem is
symmetric and positive de�ned. For example, the Jacobi smoother is not suitable for this problem, mainly
because the matrix is not diagonally dominating.

Developing an e�ciencient biharmonic solver is out of scope of this thesis and we do not intend to apply
an advanced method if not needed. Fortunately, the domain decomposition method turned out to work
well enough as a smoother. The concept we came up with is similar to the one presented in [133]. The
simple implementation was possible thanks to Trilinos library [129], especially the Ifpack2 package. In the
implementation the deal.II wrapper of this preconditioner was used (PreconditionBlockwiseDirect) with
the default settings.

5.4.2 Benchmark problem

We compare deformation extrapolation algorithms on the Turek-Hron benchmark problem [8]. As the solid
displacement we use

 D� =

�
0

¹G� 0•25º2

�

that is intended to mimic the deformation of the beam while interacting with the �ow. The deformation at
the beam tip is  D� ¹Aº = 0•1232that is far greater than the maximum value we expect in FSI benchmarks.
In the mesh deformation tests we use the mesh with � = 4 levels. This results in a fairly �ne mesh, while
individual elements are still visible and any problem could be easily spotted. We consider three methods
of extrapolating the displacement: using the elastic equation method with both constant coe�cient and a
pre-cooked coe�cient distribution, and using the biharmonic equation. The distribution of the coe�cient for
the elastic equation is given by the formula

� � = 1 ¸ 50exp
�
� 800¹¹G� 0•6º2 ¸ ¹ H� 0•205º2º

�

so that the mesh is sti�est at the tip the beam and gradually becomes elastic with a distance from point � .

5.4.3 Results

The deformed mesh is depicted in Figure 5.11 and Figure 5.12. Without varying coe�cient the elastic equation
provides an extrapolation with deteriorated elements at the tip of the beam. This issue is resolved by
introducing a variable coe�cient. The biharmonic equation method leads to the least deformed elements,
while it is does not require problem-dependent tuning. On the other hand, the linear system is more
computationally demanding. Moreover, the second order terms in A rise further problems, making matrix-
free implementation signi�cantly more challenging. In fact, at the time of writing this, the deal.II matrix
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