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In the paper a modal analysis was used to describe a reverberation phenomenon in an
irregularly shaped room. A theoretical model was limited tolow sound frequencies, when
eigenmodes are lightly damped, thus they may be approximated by normal acoustic modes
of a hard-walled room. A utility of this method was demonstrated in a numerical example
where the room in a form of two acoustically coupled rectangular subrooms was considered.
A reverberation time was evaluated individually for each subroom from time decay of acoustic
pressure amplitude for different distributions of absorbing materials of room walls and various
positions of sound source under the condition that a total room absorption remained constant.
Calculation results have shown a great influence of modes localization on a reverberant energy
decay for a large difference between the absorption coefficients of walls in subrooms, because
in this case for frequencies of some localized modes a substantial increase in the reverberation
time was observed.

Key words: room acoustics, modal analysis, reverberation time, modeslocalization.

1. Introduction

The reverberation is a phenomenon which plays a major role in every aspect of
room acoustics and yields a main criterion for the assessment of acousticquality of en-
closures. There are various theories for predicting the reverberationtime: the geometric
theory, the wave theory, the ray-tracing techniques and the statistical or the power flow
methods. The geometrical room acoustics at best applies to enclosureswith dimensions
large compared to the wavelength. In this theory diffraction phenomena are neglected,
since a propagation in straight lines is its main postulate. Likewise, interference of sound
waves is not considered. A theory more reliable and adequate from the physical point
of view but more difficult is that based upon the wave acoustics. The wave theory has a
practical application for room dimensions which are comparable with the sound wave-
length.

A usage of analytical methods in the wave acoustics is limited to the simplest room
shapes such rectangular, triangular and cylindrical ones. In practiceit is not uncommon
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to find that a room actually consists of several partial rooms which are coupled to each
other. Examples of coupled rooms are theatres with boxes which communicate with a
main room through small apertures only, or churches with several naves and chapels,
thus the acoustic properties of coupled rooms have been investigated intensively in re-
cent years [1, 9]. An application of the wave theory to complex room geometries, such
as fractal cavities, rooms with irregular shapes or coupled rooms, waspossible through
numerical methods.

In the present paper, a combination of classical modal analysis with numerical im-
plementation was used to predict a reverberation time in the room consisting of two
connected rectangular subrooms (Fig. 1). In a theoretical model it was assumed that a
system is lightly damped so coupling terms in a solution of wave equation were ne-
glected and the pressure variable was expanded in “hard box modes”.In a numerical
example the reverberation time was determined for different distributionsof absorbing
materials on room walls under condition that a total room absorption remained con-
stant. It was found that a substantial increase in a reverberation time, occurring for a
large difference between the absorption coefficient of walls in subrooms, is the result of
eigenmodes localization.

Fig. 1. Analyzed room consisting of two connected rectangular subrooms denoted by A and B.

2. Computational analysis

In a low frequency limit an irregularly shaped room may be treated as aresonator with
characteristic acoustic modes determined by the eigenfunctionsΦmn(r), r = (x, y, z),
and the eigenfrequenciesωmn, wherem = 0, 1, 2... andn = 0, 1, 2... The eigenfunc-
tions Φmn depend on a room shape and are mutually coupled through the impedance
condition on absorptive walls, but in the range of low frequencies, where typical mate-
rials are characterized by a low absorption:ℜe(Z/ρc) ≫ 1 (Z is a wall impedance,ρ is
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an air density,c is a sound speed), it is possible to assume that a distribution of modes
amplitude is well approximated by the uncoupled eigenfunctions computed for perfectly
rigid room walls [2]. In this case a decaying process of sound pressure is described by
the equation [5]
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whereξ00 = 0 andξmn = 1 for the other values ofm andn, V is a room volume,ω is
a sound frequency,Q00 andQmn are factors determining a sound source intensity
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whereS is a surface of room walls, andαmn is the phase shift given by
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In a computational analysis the wall impedance is assumed to be a real number, i.e. the
mass and stiffness of the absorbing material are neglected.

For a given frequency, a position and a distribution of sound source, Eqs. (1)–(4)
make possible to predict the reverberation time in a room from calculated energy decay
curves corresponding to a time history of the sound pressure level. In acomputational
simulation it was assumed that dimensions of a room are the following (in meters): l1 =
5, l2 = 1, l3 = 4, d1 = 8, d2 = 3.2, d3 = 2.2, d4 = 6, h = 3 (Fig. 1). The calculations
were performed for two positions of a sound source (in meters):x0 = 2, y0 = 5, z0 = 1
(subroom A) andx0 = 8, y0 = 5, z0 = 1 (subroom B). The eigenfunctionsΦmn and
the eigenfrequenciesωmn were computed with an application of the forced oscillator
method with a finite difference algorithm [4].

In order to examine an influence of walls absorption on the reverberationtime, in
numerical analysis it was assumed that the absorption coefficientα1 of material on walls
in the subroom A and the absorption coefficientα2 of material on walls in the subroom
B were selected in this way, so that the total room absorptionA remained constant, thus

αA =
A

S
=

α1S1 + α2S2 + α3S3

S
= const, (5)
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whereS1 is a surface of walls in the subroom A,S2 is a surface of walls in the subroom
B, α3 andS3 are an absorption coefficient and a surface of walls in a part of room con-
necting subrooms A and B, respectively. For an assumed value of the average absorption
coefficientαA, the surface impedances on room walls were found from the well-known
relationship between the absorption coefficientα and the impedance ratioξ [3]

α =
8

ξ

[
1 +

1

1 + ξ
− 2

ξ
ln(1 + ξ)

]
, ξ = Z/ρc. (6)

In the numerical example it was assumed thatαA = α3 = 0.15, so the absorption
coefficientsα1 andα2 in subrooms A and B were changing quantities. The reverbera-
tion time was computed in a frequency range bounded from above by the “Schroeder
frequency” [8]

fs = c
√

6/A, (7)

which denotes approximately the boundary between discrete room modesbelowfs and
reverberant room behavior above it. In multimode resonance systemsthe “Schroeder
frequency” marks the transition from individual, well-separated resonances to many
overlapping modes.

Fig. 2. Reverberation time at distancez = 1.8 m from room floor for two distributions of absorption
material on room walls: a)α1 = α2 = 0.15, b) α1 = 0.24, α2 = 0.016. Point harmonic sound source of

frequency 52 Hz located in subroom A.

The plots in Fig. 2 depict calculation results obtained for the frequencyf = 52 Hz
for two different distributions of absorption material and a sound source located in the
subroom A. From these data it results, that forα1 = α2 (the uniform distribution of
absorption material on room walls) the reverberation timeT varies very slightly in
an observation plane (Fig. 2a). However, when the absorption coefficient α2 is much
smaller thanα1 one observe surprisingly large values ofT in the subroom B (Fig. 2b).
In order to investigate this effect in more detail, for a given sound frequencyf from the
distribution ofT in an observation plane the average valuesTA of reverberation time in
subrooms A and B were computed for assumed localizations of the soundsource. Cal-
culation results obtained in this way are shown in Fig. 3. The presented graphs illustrate
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the effect of modal localization on the reverberant energy decay because, as was shown
by a detailed analysis of calculation data, peaks of the timeTA occur for frequencies of
eigenmodes which are localized in the subroom B. The modal localization is the direct
result of an irregular geometry of lateral walls in the analyzed system of two coupled
subrooms, since in a rectangular room all eigenmodes are delocalized [6].

a)

b)

Fig. 3. Frequency dependence of average values of reverberation time in subroom A (solid lines) and
subroom B (dashed lines) for absorption coefficients:α1 = 0.24, α2 = 0.016, and sound source located

in: a) subroom A, b) subroom B. Calculation results obtainedat distancez = 1.8 m from room floor.

As may be seen in Fig. 3, a frequency dependence of the reverberation time is
strongly influenced by a source position. When it is located in the subroom A, that
walls are covered by a material with a high absorption, sharp peaks of thereverberation
time occur in the subroom B (Fig. 3a), where an energy of localized modes is con-
centrated, and the sound damping is much smaller than in the subroom A. Ifa sound
source is in the subroom B, strong peaks ofTA are observed in the subroom A since the
energy of modes localized in the subroom B is weakly damped in the subroom A. In
this case, in a frequency dependence ofTA in the subroom B there are not sharp peaks
because a mode localized in this subroom has a high amplitude in a steady-state [7],
thus it dominates the reverberant energy decay in a wide frequency range (Fig. 3b). The
same behavior of a frequency dependence of the reverberation time can be noted when
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the absorption coefficientα1 is much smaller thanα2 (Fig. 4). However, in this case an
amount of sharp peaks ofTA appears to be somewhat larger than before showing that in
the subroom A there is a stronger localization of modes.

a)

b)

Fig. 4. Frequency dependence of average values of reverberation time in subroom A (solid lines) and
subroom B (dashed lines) for absorption coefficients:α1 = 0.02, α2 = 0.34, and sound source located in:

a) subroom A, b) subroom B. Calculation results obtained at distancez = 1.8 m from room floor.

3. Conclusions

In a low frequency limit a process of reverberant energy decay in a room consist-
ing of two acoustically coupled subrooms was investigated theoretically with theaid of
modal analysis. In a numerical example the reverberation time was predicted individu-
ally for each subroom under the condition that a total room absorption remained con-
stant. Results of numerical simulation have shown that a location of absorption material
on room walls and a position of sound source have a great influence on the distribution
and the average value of reverberation time in the subrooms. As was found it is the re-
sult of the modal localization which appears in enclosures of irregular geometry such as
the analyzed system of coupled subrooms. This effect entails an unwanted, substantial
increase in the reverberation time in the case of a large difference between absorption
coefficients of walls in the subrooms.
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