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A B S T R A C T   

In the present work, we investigated the transmission dynamics of fractional order SARS-CoV-2 mathematical 
model with the help of Susceptible S(t), Exposed E(t), Infected I(t), Quarantine Q(t), and Recovered R(t). The 
aims of this work is to investigate the stability and optimal control of the concerned mathematical model for both 
local and global stability by third additive compound matrix approach and we also obtained threshold value by 
the next generation approach. The author’s visualized the desired results graphically. We also control each of the 
population of underlying model with control variables by optimal control strategies with Pontryagin’s maximum 
Principle and obtained the desired numerical results by using the homotopy perturbation method. The proposed 
model is locally asymptotically unstable, while stable globally asymptotically on endemic equilibrium. We also 
explored the results graphically in numerical section for better understanding of transmission dynamics.   

Introduction 

The human society recently facing a terrible enemy is known as 
corona virus now a days. One of the challenging issues to the human 
community has to recognize the complex dynamic of Covid-19. The 
concern virus badly affected almost each countries and traceries around 
the globe. Corona virus was for first time notified in the peoples of 
Wuhan Chain [1]. Scientist provides different theories concerning the 
origination of consider virus, but it is still a mystery that from where this 
virus is took place. Initially, some cases of affected peoples were re
ported of this virus from local fish market in city of Chain Wuhan [2]. In 
this connection some of the scientist believed, that this virus was 
transformed in humans form animals. Similarly, the researches recog
nized that the concern virus could transmit from person to person too 
[3]. The latest statistics provided by World Health Organization (WHO) 
on January 2021, the concern virus almost affected each and every 
traceries and countries on the globe. According to fresh statistics of 
WHO [4], at 7:08pm CET, on 15th January 2021, there were 709,865 

new cases reported globally, while 91,816,091 confirmed cases, 
including 1,986,871 deaths. The concern virus badly affected the 
developed countries especially UK, Spain, Italy, USA, Italy, and many 
more [5]. The death rates in aforementioned regions are very higher as 
compared to other countries. The aforesaid analysis justified the severity 
of proposed virus. The well known symptoms of this disease are sever 
coughing, regular fever and infection include respiratory issues. In 
addition, to this neurological sickness and gastroenteritis of contradic
tory strictness are also counted as symptoms of proposed virus [6]. 

The main source of transmission of infection is the droplets from the 
nose or mouth of the influence person during sneezing, coughing or 
speaking. Therefore, a person among the affected peoples has it high risk 
of been affected form the disease. As precautionary, all the traceries and 
countries around globe implement the police lock-down in their 
respective countries, in order to ensure the safety of peoples. In these 
circumstances paramedical staff and doctors has dedicated themselves 
to give health services to the affected humans. The experts of concerned 
area believes that root cause of consider virus, was first resulted due the 
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bats, that is identical to SARS (Severe Acute Respiratory Syndromes), 
that took birth in China in the year 2003, (see [7,8]). Some of the re
searchers match up the Covid-19 with SARS and MERS to categorize the 
family of virus from which it belonging. In [9], author’s presented that 
the current virus recounted to the genus of β-corona virus, like SARS-Cov 
and MERS-Cov. For further, details see [10–12]. 

In this paper our aim is to study the dynamics of Covid-19 based on a 
epidemiological SEIQR model, where they represent respectively the 
susceptible, exposed, infected, quarantine, and recovered(removed) 
human population and with harmonic mean type incidence rate (see, 
[16–18]). Particularly, in this study the incidence rate is 

f
(

S
(

t
)

, I
(

t
))

=
2S(t)I(t)

S(t) + I(t)
.

Methodology and mathematical model formulation 

Several models are introduced to simulate the dynamics of the spread 
and transmission of COVID-19 [19–24]. The model, epidemiological 
SEIQR model is specially design for Covid-19 disease, because this 
model containing the quarantine compartment, which describe the 
proper way to decreases the concerning infection disease, that other 
model don’t have. The proposed model is defined in five compartment 
S(t) susceptible population, E(t) exposed population, I(t) infected pop
ulation, Q(t) quarantine population, R(t) recovered population and all of 
the compartments relay on time (t). In the SEIQR model have a contract 
between susceptible population with exposed population from which 
the disease is transfer from exposed (E) into susceptible hosts (S). In 
model (1), b is the recruitment or the birth rate, β is the transmission 
rate, susceptible population recovers at a rate of η and quarantine at q3, 
while μ is the natural mortality rate. The parameters q1, q2, and q3 are 
incubation period of infected, exposed and susceptible compartment 
respectively, at which the population goes into the quarantine 
compartment (Q). Infected and quarantine population recover at a rate 
of γ and τ, while λ is the rate of infection in exposed population (E) and 
the infected population dies out at a rate of ε. 

DαS(t) = b − β
(

2S(t)I(t)
S(t) + I(t)

)

−

(

η + μ + q3

)

S
(

t
)

,

DαE(t) = β
(

2S(t)I(t)
S(t) + I(t)

)

−

(

λ + μ + q2

)

E
(

t
)

,

DαI(t) = λE(t) − (μ + ε + γ + q1)I(t),

(1)  

DαQ(t) = q3S(t) + q2E(t) + q1I(t) − (μ + τ)Q(t),
DαR(t) = ηS(t) + τQ(t) + γI(t) − μR,

with 

N = S+E+ I +Q+R  

and 

R5
+ =

{(
S
(
t
)
,E
(
t
)
, I
(
t
)
,Q
(
t
)
,R
(
t
))

∈ R5|
(
S
(
t
)
⩾0,E

(
t
)
⩾0, I

(
t
)
⩾0,Q

(
t
)
⩾0,R

(
t
)
⩾0
}
. (2) 

The parameters involved in SEIQR system is described in the 
following Table 1: 

Basic reproduction number 

We obtained the basic reproduction number by considering the 
functional equations 

F = β
(

2S(t)I(t)
S(t) + I(t)

)

−

(

λ + μ + q2

)

E
(

t
)

,

G = λE(t) − (μ + ε + γ + q1)I(t),

H = q3S(t) + q2E(t) + q1I(t) − (μ + τ)Q(t).

(3) 

Thus 

Ϝ =

⎡

⎣
0 2β 0
0 0 0
0 0 0

⎤

⎦ (4)  

and 

V =

⎡

⎣
q2 + λ + μ 0 0

− λ q1 + γ + μ + ε 0
q2 q1 − (μ + τ)

⎤

⎦, (5)  

where the next generation matrix G = FV− 1 is given as 

G =

⎡

⎢
⎢
⎢
⎢
⎣

2λβ
(q2 + λ + μ)(q1 + γ + μ + ε)

2β
q1 + γ + μ + ε 0

0 0 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
. (6) 

The eigenvalues of the next generation matrix are 

λ1 =
2λβ

(q2 + λ + μ)(q1 + γ + μ + ε), λ2 = λ3 = 0, (7)  

where S0 = b
μ+η+q3

, thus the basic reproduction number, R0 is the spectral 
radius G is defined as 

s(A) = max{Re(λi)|i = 1, 2, 3}, (8)  

such that 

R0 =
2λβ

(q2 + λ + μ)(q1 + γ + μ + ε) . (9)  

Equilibrium points and their local stability 

This section includes the possible fixed points of model (1). There 
exists two possible equilibrium points are calculated, i.e. Disease free 
equilibrium (DFE) and endemic equilibrium (EE). Furthermore, basic 
reproduction number is calculated by next generation technique and 
discuss the local stable analysis of these equilibrium points. We denote 
the infection-free equilibrium point by E0 such that E0 =
(

b
μ+η+q3

,0, 0,0, ηb
μ(η+μ+q3)

)

. 

Theorem 1. The infection-free equilibrium point E0 of model (1) is locally 
asymptotically stable, if R0 < 1, otherwise unstable. 

Proof. The Jacobian matrix of model (1) around the infection-free 
equilibrium point E0 becomes 

Table 1 
Description of parameter and its value.  

Notation Description of parameters 

b Fertility Rate. 
β  Transmission Rate from Susceptible into Exposed Compartment. 
η  Transmission Rate of Susceptible to Recovered Compartment. 
μ  Natural mortality Rate. 
q1  Incubation Period of Infected Compartment. 
q2  Incubation Period of Exposed Compartment. 
q3  Incubation Period of Susceptible Compartment. 
λ  Infection Rate of Exposed Compartment. 
ε  Death Rate in Infected Compartment due to Disease. 
γ  Recovery Rate of Infected Compartment. 
τ  Recovery Rate of Quarantine Compartment  
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J|0| =

⎡

⎢
⎢
⎢
⎢
⎣

− (η+μ+q3) 0 − 2β 0 0
0 − (q2 +λ+μ) 2β 0 0
0 λ − (q1 + γ+μ+ ε) 0 0
q3 q2 q1 − (μ+ τ) 0
η 0 γ τ − μ

⎤

⎥
⎥
⎥
⎥
⎦
,

(10)  

we easily have three eigenvalues i.e λ1 = − μ, λ2 = − (μ+τ) while λ3 =

− (η+μ+q3) in matrix (10) and it takes the form 

J|0|
1 =

[
− (q2 + λ + μ) 2β

λ − (q1 + γ + μ + ε)

]

. (11) 

Now after some matrix operation in matrix (11), we have 

J|0|
2 =

[
0 2λβ − (q1 + γ + μ + ε)(q2 + λ + μ)
λ − (q1 + μ + ε)

]

. (12) 

We getting the rest of two eigenvalues from the matrix (13) these are: 
λ4 = 2λβ − (q1 +γ +μ+ε)(q2 +λ+μ) which would negative for λ4 < 0, 
such that R0 < 1, while λ5 = λ which is positive. Hence the model is 
unstable at infection-free equilibrium point E0 for R0 < 1. □ 

The infection-endemic equilibrium point is denoted by E* and we 
have E* = (S*,E*, I*,Q*,R*). 

S* =
b − ξ2E*(t)

ξ3
, (13)  

I* =
λE*(t)

ξ1
, (14)  

Q* =
ξ1q3b − q3ξ2E*(t) + q2ξ1ξ3 + q1λξ3E*(t)

ξ1ξ3
, (15)     

where ξ1 = μ + ε + γ + q1, ξ2 = λ + μ + q2, and ξ3 = η + μ + q3. 

Theorem 2. The infection-endemic equilibrium point E* of model (1) is 
locally asymptotically stable, if R0 > 1, otherwise unstable. 

Proof. The Jacobian matrix of model (1) around the infection-endemic 
equilibrium point is given as   

Clearly, we get the first two eigenvalues of matrix (17), i.e λ1 = − μ, 
and λ2 = − (μ+τ) which are of course negative, then the matrix (17) 
would become 

J|∗|

2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2βS*I*

(I*+S*)
2 −

(

η+μ+q3+
2βI*

I*+S*

)

0
2βS*I*

(I*+S*)
2 −

2βS*

I*+S*

)

2I*β
I*+S* −

2βS*I*

(S*+I*)
2 − (q2+λ+μ) 2βS*

S*+I* −
2βS*I*

(S*+I*)
2

0 λ − (q1+γ+μ+ε)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(18)  

multiplying row second by λ and row third by (q2 +γ +λ+μ) and add row 
second and third, we get   

J|∗|

1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2βS*I*

(I* + S*)
2 −

(

η + μ + q3 +
2βI*

I* + S*

)

0
2βS*I*

(I* + S*)
2 −

2βS*

I* + S*

)

0 0

2I*β
I* + S* −

2βS*I*

(S* + I*)
2 − (q2 + λ + μ) 2βS*

S* + I* −
2βS*I*

(S* + I*)
2 0 0

0 λ − (q1 + γ + μ + ε) 0 0

q3 q2 q1 − (μ + τ) 0

η 0 γ τ − μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17)   

R* =
ξ2

1ξ3
(
ηb − ηξ2

)
E*
(
t
)
+ τ
(
ξ1q3b − q3ξ2E*

(
t
)
+ d2ξ1ξ3 + q1λξ3E*

(
t
))

μξ2
1ξ2

3
+

γλξ3E*(t)
μξ1ξ3

, (16)   

J|∗|

3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2βS*I*

(I* + S*)
2 −

(

η + μ + q3 +
2βI*

I* + S*

)

0
2βS*I*

(I* + S*)
2 −

2βS*

I* + S*

2I*β
I* + S* −

2βS*I*

(S* + I*)
2 − (q2 + λ + μ) 2βS*

S* + I* −
2βS*I*

(S* + I*)
2

λ
(

2I*β
I* + S* −

2βS*I*

(S* + I*)
2

)

0 λ
(

2βS*

S* + I* −
2βS*I*

(S* + I*)
2

)

−

(

q1 + γ + μ + ε
)(

q2 + λ + μ
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19)   
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Thus, the eigenvalue is λ3 = − (q2 + γ + λ + μ). Next, we subtract 
row first from row second we have  

subtract row second from the product of λ and row first, we have   

Now after some matrix operation, one has   

So that the eigenvalues of the matrix (22) are λ3 = λ(η + μ + q3), 

and λ4 = − λ
(

η + μ + q3)

(
2βS*I*

(I*+S*)2
−

2βI*

I*+S*

)

− (q1 + γ + μ + ε
)

(q2 + γ +

λ + μ
)

(η + μ + q3

)

. We concluded that three of its eigenvalues are 

negative while the remaining is non-negative. Thus the model is un
stable at disease-endemic equilibrium point, E* if and only if R0 > 1. □ 

Global stability analysis 

In this section, we investigate the Global stability of the model (1) at 
disease-endemic equilibrium point. 

Theorem 3. If R0 > 1, then the model (1) is globally asymptotically stable 

at endemic equilibrium E*, else unstable. 

Proof. Consider the non-linear equations of the model (1), and we 

define the functional equations for those equations, i.e 

F1 = b − β
(

2S(t)I(t)
S(t) + I(t)

)

−

(

η + μ + q3

)

S
(

t
)

,

F2 = β
(

2S(t)I(t)
S(t) + I(t)

)

−

(

λ + μ + γ + q2

)

E
(

t
)

,

F3 = λE(t) − (μ + ε + γ + q1)I(t),

F4 = q3S(t) + q2E(t) + q1I(t) − (μ + τ)Q(t).

(23) 

The jacobian of system of Eqs. (23) at disease-endemic equilibrium, 
such that   

Next, the general form of the third additive compound matrix is 
given by 

J|∗|

4 =

⎡

⎢
⎢
⎢
⎣

2βS*I*

(I* + S*)
2 −

2βI*

I* + S* −

(

η + μ + q3

)
2βS*I*

(I* + S*)
2 −

2βS*

I* + S*

λ
(

2I*β
I* + S* −

2βS*I*

(S* + I*)
2

)

λ
(

2βS*

S* + I* −
2βS*I*

(S* + I*)
2

)

−

(

q1 + γ + μ + ε
)(

q2 + λ + μ
)

⎤

⎥
⎥
⎥
⎦
, (20)   

J|∗|

5 =

⎡

⎢
⎣

λ(η + μ + q3) (q1 + γ + μ + ε)(q2 + γ + λ + μ)

λ
(

2βI*

I* + S* −
2βS*I*

(I* + S*)
2

)

λ
(

2βI*

I* + S* −
2βS*I*

(I* + S*)
2

)

−

(

q1 + γ + μ + ε
)(

q2 + γ + λ + μ
)

⎤

⎥
⎦. (21)   

J|∗|

6 =

⎡

⎢
⎣

λ(η + μ + q3) (q1 + γ + μ + ε)(q2 + γ + λ + μ)

0 − λ
(

η + μ + q3

)(
2βS*I*

(I* + S*)
2 −

2βI*

I* + S*

)

−

(

q1 + γ + μ + ε
)(

q2 + γ + λ + μ
)(

η + μ + q3

)

⎤

⎥
⎦. (22)   

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2I*S*β
(I* + S*)

2 − η − μ −
2I*β

I* + S* − q3 0
2I*S β

(I* + S*)
2 −

2S*β
I* + S* 0

2I*β
I* + S* −

2I*Sβ
(I* + S*)

2 − (γ + λ + μ − q2)
2S*β

I* + S* −
2I*S*β

(I* + S*)
2 0

0 λ − (q1 + γ + μ + ε) 0

q3 q2 q1 − (μ + τ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (24)   
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J|3| =

⎡

⎢
⎢
⎣

j11 + j22 + j33 j34 − j24 j14
j43 j11 + j22 + j44 j23 − j13
− j42 j32 j11 + j33 + j44 j12
j41 − j31 j21 j22 + j33 + j44

⎤

⎥
⎥
⎦.

(25) 

Therefore, matrix (24) and matrix (25) yields that 

J|3| =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

j11 0 0 0

q1 j22
2S*β

I* + S* −
2I*S*β

(I* + S*)
2

2S*β
I* + S* −

2I*S*β
(I* + S*)

2

− q2 λ j33 0

q3 0
2I*β

I* + S* −
2I*S β

(I* + S*)
2 j44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (26)  

where 

j11 =
2I*S*β

(I* + S*)
2 −

2I*β
I* + S* −

(

q2 + q3 + η + 2γ + λ + 3μ + ε + q1

)

,

j22 =
2I*S*β

(I* + S*)
2 −

2I*β
I* + S* −

(

q3 + η + γ + λ + 3μ + τ + q2

)

,

j33 =
2I*S*β

(I* + S*)
2 −

2I*β
I* + S* −

(

q3 + η + γ + 3μ + τ + ε + q1

)

and 

j44 = − (q1 + q2 + 2γ + λ+ 3μ+ τ+ ε).

Consider P(X) = diag{S(t), E(t), I(t), Q(t)}, such that P− 1
(

X
)
=

diag
{

1
S(t),

1
E(t),

1
I(t),

1
Q(t)

}

, and the time derivative of P(X) is defined as Pf (X)

= diag{Ṡ(t), Ė(t), İ(t), Q̇(t)}, therefore 

Pf P− 1 = diag

{
Ṡ
(

t
)

S(t)
,
Ė
(

t
)

E(t)
,
İ
(

t
)

I(t)
,
Q̇
(

t
)

Q(t)

}

(27)  

and 

PJ|3|P− 1=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

j11 0 0 0

E*q1

S* j22
E*

I*

(
2S*β

I*+S* −
2I*S*β

(I*+S*)
2

)
E*

Q*

(
2S*β

I*+S* −
2I*S*β

(I*+S*)
2

)

− q2
I*

S* λ
I*

E* j33 0

q3
Q*

S* 0
Q*

I*

(
2I*β

I*+S* −
2I*Sβ

(I*+S*)
2

)

j44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(28) 

Hence, one has B= Pf P− 1+ PJ|3|P− 1, that is   

Consequently, we have to find ℏi(t), i = 1,2,3,4, such that 

ℏ1

(

t

)

= b11 +
∑4

j∕=1∧j=2
|b1j|, (30)  

ℏ2

(

t

)

= b22 +
∑4

j=1∧j∕=2
|b2j|, (31)  

ℏ3

(

t

)

= b33 +
∑4

j=1∧j∕=3
|b3j|, (32)  

ℏ4

(

t

)

= b44 +
∑4

j=1∧j∕=4
|b4j|, (33)  

from Eq. (30) to Eq. (33) implies that  

ℏ1(t) = b11 +
∑4

j=2

⃒
⃒
⃒
⃒
⃒
b1j

⃒
⃒
⃒
⃒
⃒
,

ℏ1(t) =
Ṡ
(

t
)

S(t)
−

(

q2 + q3 + η + 2γ + λ + 3μ + ε + q1

)

−
2βI*

I* + S*

(
S*

I* + S* − 1
)

,

ℏ1(t) ⩽
Ṡ
(

t
)

S(t)
−

(

q2 + q3 + η + 2γ + λ + 3μ + ε + q1

)

.

(34)   

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ṡ
(

t
)

S(t)
+ j11 0 0 0

E*q1

S*

Ė
(

t
)

E(t)
+ j22

E*

I*

(
2S*β

I* + S* −
2I*S*β

(I* + S*)
2

)
E*

Q*

(
2S*β

I* + S* −
2I*S*β

(I* + S*)
2

)

− q2
I*

S* λ
I*

E*

İ
(

t
)

I(t)
+ j33 0

q3
Q*

S* 0
Q*

I*

(
2I*β

I* + S* −
2I*Sβ

(I* + S*)
2

)
Q̇
(

t
)

Q(t)
+ j44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (29)   
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Similarly for ℏ2(t), one has 

ℏ2

(

t

)

= b22 +
∑4

j=1∧j∕=2
|b2j|,

ℏ2(t) ⩽
Ė
(

t
)

E(t)
−

(

q3 +η+ γ+λ+3μ+ τ+q2

)

−
2βI*

I* +S*

(
2I*S*β
(I* +S*)

− 1
)

+

⃒
⃒
⃒
⃒
⃒

E*q1

S
+

E*

I*

(
2S*β

I* +S* −
2I*S*β

(I* +S*)
2

)

+
E*

Q*

(
2S*β

I* +S* −
2I*S*β

(I* +S*)
2

)⃒
⃒
⃒
⃒
⃒
,

ℏ2(t)⩽
Ė
(

t
)

E(t)
−

(

q3 +η+ γ+λ+3μ+ τ+q2

)

−
2βI*

I* +S*

(
2I*S*β
(I* +S*)

− 1
)

− E*
(

q1

S
+

1
I*

)(
2I*S*β

(I* +S*)
2 −

2S*β
I* +S*

)

−
E*

Q*

(
2I*S*β

(I* +S*)
2 −

2S*β
I* +S*

)

,

ℏ2(t)⩽
Ė
(

t
)

E(t)
−

(

q3 +η+ γ+λ+3μ+ τ+q2

)

. (35) 

For ℏ3(t), we have 

ℏ3(t) = b33 +
∑4

j=1∧j∕=3

⃒
⃒
⃒
⃒
⃒
b3j

⃒
⃒
⃒
⃒
⃒
,

ℏ3(t)⩽
İ
(

t
)

I(t)
−

(

q3 + η + γ + 3μ + τ + ε + q1

)

−
2βI*

I* + S*

(
2I*Sβ

(I* + S*)
− 1

)

+

⃒
⃒
⃒
⃒
I*λ
E* −

I*q2

S*

⃒
⃒
⃒
⃒,

ℏ3

(

t

)

⩽
İ
(

t
)

I(t)
−

(

q3 + η + γ + 3μ + τ + ε + q1

)

−
2βI*

I* + S*

(
2I*Sβ

(I* + S*)
− 1

)

− I*
(q2

S* −
λ

E*

)
,

ℏ3

(

t

)

⩽
İ
(

t
)

I(t)
−

(

q3 + η + γ + 3μ + τ + ε + q1

)

. (36) 

For ℏ4(t), we get   

Let (b1, b2, b3, b4) be a vector in R4 and the Lozinski measure ℓ(B) of 
B is defined as ℓ(B) = ℏ(t)i, i = 1, 2, 3, 4. The integration of Lozinski 
measure ℓ(B) by taking limit as t→∞. 

q1= lim
t→∞

supsup
1
t

∫ 0

t
h1

(

t
)

dt⩽
1
t
log

S(t)
S(0)

−

(

q2+q3+η+2γ+λ+3μ+ε+q1

)

,

q1=− (q2+q3+η+2γ+λ+3μ+ε+q1). (38) 

Similarly, for q2, we have 

q2 = lim
t→∞

supsup
1
t

∫ 0

t
h2

(

t
)

dt⩽
1
t
log

E(t)
E(0)

−

(

q3 +η+ γ+λ+3μ+ τ+q2

)

,

q2 = − (q3 +η+ γ+λ+3μ+ τ+q2). (39) 

With same fashion, one has q3 

q3 = lim
t→∞

supsup
1
t

∫ 0

t
h3

(

t
)

dt⩽
1
t
log

I(t)
I(0)

−

(

q3 +η+ γ+3μ+ τ+ ε+q1

)

,

q3 = − (q3 +η+ γ+3μ+ τ+ ε+q1), (40)  

and similarly q4 can be obtained as 

q4 = lim
t→∞

supsup
1
t

∫ 0

t
h4

(

t
)

dt⩽
1
t
log

Q(t)
Q(0)

−

(

q2 +2γ+λ+3μ+ τ+ ε+q1

)

,

q4 = − (q2 +2γ+λ+3μ+ τ+ ε+q1). (41) 

These lead us to the following relation 

q = lim
t→∞

Sup.Sup
1
t

∫ t

0
ℓ
(

B
)

dt < 0. (42) 

The system containing only four non-linear equations of model (1) is 
globally asymptotically stable around its interior equilibrium (S*,E*, I*,

Q*). The solution of the limiting system of the remaining three equations 
of model (1) gives that approaches to its equilibrium point. Hence the 
disease endemic equilibrium point E* is globally asymptotically 
stable. □ 

Optimal control strategies 

Consider the model (1) with modifications 

DαS(t) = b − β
(

1 − u1

(

t
))(

2S(t)I(t)
S(t)+ I(t)

)

−

(

η+μ+q3 +u2

(

t
))

S
(

t
)

,

DαE(t) = β
(

1 − u1

(

t
))(

2S(t)I(t)
S(t)+ I(t)

)

−

(

λ+μ+ γ+q2 +u3

(

t
))

E
(

t
)

,

DαI(t) = λE(t) − (μ+ ε+ γ+q1 +u4(t))I(t),
(43) 

ℏ4(t) = b44 +
∑4

j=1∧j∕=4

⃒
⃒
⃒
⃒
⃒
b4j

⃒
⃒
⃒
⃒
⃒
,

ℏ4(t)⩽
Q̇
(

t
)

Q(t)
−

(

q2 + 2γ + λ + 3μ + τ + ε + q1

)

+

⃒
⃒
⃒
⃒
⃒

Q*q3

S* +
Q*

I*

(
2I*β

I* + S* −
2I*S*β

(I* + S*)
2

)⃒
⃒
⃒
⃒
⃒
,

ℏ4(t)⩽
Q̇
(

t
)

Q(t)
−

(

q2 + 2γ + λ + 3μ + τ + ε + q1

)

− Q*
(

1
I* −

q3

S*

)(
2I*S*β

(I* + S*)
2 −

2I*β
I* + S*

)

,

ℏ4(t)⩽
Q̇
(

t
)

Q(t)
−

(

q2 + 2γ + λ + 3μ + τ + ε + q1

)

. (37)   
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DαQ(t) = q3S(t)+q2E(t)+q1I(t) − (μ+ τ+u5(t))Q(t),
DαR(t) = (η+u2)S(t)+u3(t)E(t)+(τ+u5(t))Q(t)+(γ+u4(t))I(t) − μR.

Subject to initial conditions 

S(0)⩾0, E(0)⩾0, I(0)⩾0, Q(0)⩾0, and R(0)⩾0. (44) 

Using the modified model (43) we define the following optimal 
control problem to maximize the objective functional, such that 

J[u1,u2,u3,u4,u5] =

∫ tf

0

[

v1E
(

t
)

+v2I
(

t
)

+v3Q
(

t
)

+
1
2

(

c1u2
1

(

t
)

+c2u2
2

(

t
)

+c3u2
3

(
t
)
+c4u2

4

(
t
))

+c5u2
5

(
t
))]

dt
(45)  

where 

1. The variable, u1(t) is the control variable [14], which show the ed
ucation or media campaign for the awareness of preventions (may be 
the lockdown) defined by the public health department;  

2. The variable u2(t) is the treatment of Susceptible individuals;  
3. The variable u3(t) is the treatment of Exposed individuals;  
4. The variable u4(t) is the treatment of Infected individuals;  
5. The variable u5(t) is the treatment of Quarantine individuals. 

When they are vary from 0 to 1 then the efforts of campaign about 
the Covid-19 increases and also the clinical treatment also increases. 
Whereas, the chances of infection reduce too but when the control 
variables reduce towards “0” then the model (43) approaches to the 
original model (1) where is no campaign effort and no treatment. Where 
vi, i = 1,2, 3,4 are the weight parameters for balancing. In order to 
measurement the control variables ui(t), i = 1,2, 3, 4,5 such that we 
find the control function as 

J
(
u*

1, u*
2, u

*
3, u

*
4, u

*
5

)
= max

{
J
(
u1, u2, u3, u4, u5

)
|ui, i = 1, 2, 3, 4, 5 ∈ U

}
.

(46) 

Subject to the control model (43) and (45), such that the control set is 
given by 

U := {(u1, u2, u3, u4, u5)|ui is Lebesgue measurable on [0, t], 0⩽ui(t)⩽1, i

= 1, 2, 3, 4, 5}.
(47) 

We prove the existence of control variables to find them. 

Existence of optimal control problem 

Let us consider the control problem (43), (44), such that it is clear 
that there exists for the positive bounded solutions for the state system, if 
the initial conditions are non-negative and control are bounded Lebegue 
measurable. We established the following theorem for the existence of 
control problem. 

Theorem 4. There exist and optimal control u* = (u*
1,u*

2,u*
3,u*

4,u*
5) ∈ U,

i.e 

J
(

u*
1, u*

2, u
*
3, u

*
4, u

*
5

)

= min
(u1 ,u2 ,u3 ,u4 ,u5)

J
(

ui

)

, i = 1, 2, 3, 4, 5. (48) 

Subject to the control problem (43), (44). 

Proof. Since, the combination controls and state variables are both 
non-negative and non-empty, and the set of controls U is closed and 
convex which also satisfying the property of boundedness leads to proof 
of compactness required for the optimal control existence. The integrand 
of the objective functional (45) is also convex therefore the final con
dition is      

where, σ1,σ3 > 0,σ2 > 1, while v1,v2,v3, c1, c2, c3, c4, c5 > 0. □ 

Optimality conditions 

We consider the optimal control problem (43)–(47) for the optimal 
solution and define the Lagrangian as well as Hamiltonian for the con
trol model with initial conditions (43), (44) such that the Lagrangian 
and Hamiltonian are defined by 

L = v1E

(

t

)

+ v2I

(

t

)

+ v3Q

(

t

)

+
1
2
∑5

i=1
c1(ui(t))2

, (50)  

while the Hamiltonian for the problem (43), (44)is 

H = v1E

(

t

)

+ v2I

(

t

)

+ v3Q

(

t

)

+
1
2
∑5

i=1
c1(ui(t))2

+
∑5

i=1
φi

(

t

)

(fi)u.

(51) 

Equivalently, one has 

H = v1E

(

t

)

+ v2I

(

t

)

+ v3Q

(

t

)

+
1
2
∑5

i=1
c1(ui(t))2

+
∑5

i=1
φi

(

t

)

(Dαx1)u,

(52)  

which yields that 

H = v1E
(
t
)
+ v2I

(
t
)
+ v3Q

(
t
)
+

1
2
∑5

i=1
ci(ui(t))2

+φ1

(

b − β
(
1 − u1

(
t
))
(

2S(t)I(t)
S(t)+ I(t)

)

−
(
η+μ+q3 +u2

(
t
))

S
(
t
)
)

+φ2

(

β
(
1 − u1

(
t
))
(

2S(t)I(t)
S(t)+ I(t)

)

−
(
λ+μ+ γ+q2 +u3

(
t
))

E
(
t
)
)

+φ3(λE(t) − (μ+ ε+ γ+q1 +u4(t))I(t))

+φ4(q3S(t)+q2E(t)+q1I(t) − (μ+ τ+u5(t))Q(t))

+φ5((η+u2(t))S(t)+u3(t)E(t)+(τ+u5(t))Q(t)+(γ+u4(t))I(t) − μR).
(53) 

We use the well-known Pontryagin’s Maximum Principle for the 
optimal solution of the proposed model (43), (44). When the optimal 

σ1

(⃒
⃒u1|

2
+
⃒
⃒u2|

2
+
⃒
⃒u3|

2
+
⃒
⃒u4|

2
+
⃒
⃒u5|

2
)σ2

2
− σ3

⩽v1E
(

t
)

+ v2I
(

t
)

+ v3Q
(

t
)

+
1
2

(

c1u2
1

(

t
)

+ c2u2
2

(

t
)

+ c3u2
3

(

t
)

+ c4u2
4

(

t
)

+ c5u2
5

(

t
))

,

(49)   
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solution is essentially bounded for the control problem with control 
variables u*, i = 1,2,3,4,5, then there exists a nontrivial vector function 
φi, i = 1, 2, 3, 4, 5, the Hamiltonian system is 

Dαx =
∂H
(
t, x*
(
t
)
, u*

i ,φ
(
t
))

∂φ
, (54)  

the optimality condition 

0 =
∂H
(
t, x*
(
t
)
, u*

i ,φ
(
t
))

∂u
(55)  

and the adjoint equation 

Dαφ = −
∂H
(
t, x*
(
t
)
, u*

i ,φ
(
t
))

∂x* . (56)  

Theorem 5. The optimal control variables ui, i = 1, 2,3, 4, 5 and the 
solutions S*, E*, I*, Q*, R* of the state system, then we have the adjoint 
variables φi(t), i = 1,2,3,4,5, satisfying 

Dαφ1(t) =φ5

(

η+u2

(

t
))

+q3φ4 +φ2

(
2βI*

S* + I* −
2βS*I*

(S* + I*)
2

)

− φ1

(

q3 +η+μ+u2

(

t
)

+
2βS*I*(u1 − 1)

(S* + I*)
2 −

2βI*(u1 − 1)
S* + I*

)

,

Dαφ2(t) = v1 +λϕ3 +ϕ4q2 +ϕ5u3 − φ2(q2 + γ+λ+μ+u3),

Dαφ3(t) = v2 +φ1

(
2βS*(u1 − 1)

S* + I* −
2βS*I*(u1 − 1)

(S* + I*)
2

)

+φ5

(

γ+u4

)

+q1φ4 − φ3

(

q1 + γ+μ+u4 +ε
)

+φ2

(
2βS*

S* + I* −
2βS*I*

(S* + I*)
2

)

,

(57)  

Dαφ4(t) = v3 + φ5(τ + u5) − φ4(μ + τ + u5),

Dαφ5(t) = − μφ5,

with transversally conditions 

φ1(T) = φ2(T) = φ3(T) = φ4(T) = φ5(T) = 0. (58) 

Furthermore, the optimal control variables u*
i , i = 1, 2,3, 4, 5 can be 

shown as following 

u*
1

(

t
)

= max
(

min
((

φ2 − φ1

c1

)(
2S*(t)I*(t)

S*(t) + I*(t)

)

, 0
)

, 1
)

, (59)  

u*
2

(

t
)

= max
(

min
((

φ1 − φ5

)
S*(t)

c2
, 0
)

, 1
)

, (60)  

u*
3

(

t
)

= max
(

min
((

φ2 − φ5

)
E*(t)

c3
, 0
)

, 1
)

, (61)  

u*
4

(

t
)

= max
(

min
((

φ3 − φ5

)
I*(t)
c4

, 0
)

, 1
)

, (62)  

u*
5

(

t
)

= max
(

min
((

φ4 − φ5

)
Q*(t)

c5
, 0
)

, 1
)

. (63)   

Proof. We establish the adjoint equations and the transversally con
ditions by Hamiltonian, H. Taking the derivatives of H with respect to 
the state variables and at endemic-equilibrium point, S*, E*, I*, Q*, R*, 
such that 

Dαφ1(t) = φ5

(

η + u2

(

t
))

+ q3φ4 + φ2

(
2βI*

S* + I* −
2βS*I*

(S* + I*)
2

)

− φ1

(

q3 + η + μ + u2

(

t
)

+
2βS*I*(u1 − 1)

(S* + I*)
2 −

2βI*(u1 − 1)
S* + I*

)

,

Dαφ2(t) = v1 +λϕ3 +ϕ4q2 +ϕ5u3 − φ2(q2 + γ+λ+μ+u3),

Dαφ3(t) = v2 +φ1

(
2βS*(u1 − 1)

S* + I* −
2βS*I*(u1 − 1)

(S* + I*)
2

)

+φ5

(

γ+u4

)

+q1φ4 − φ3

(

q1 + γ+μ+u4 + ε
)

+φ2

(
2βS*

S* + I* −
2βS*I*

(S* + I*)
2

)

,

(64)  

Dαφ4(t) = v3 + φ5(τ + u5) − φ4(μ + τ + u5),

Dαφ5(t) = − μφ5.

with transversality conditions φ1(T) = φ2(T) = φ3(T) = φ4(T) = φ5(T)
= 0 and the characteristic equations of the control space U, that is 

u1 : c1u1

(

t
)

+φ1β
2S*(t)I*(t)

S*(t) + I*(t)
− φ2β

2S*(t)I*(t)
S*(t) + I*(t)

= 0, (65)  

u2 : c2u2(t) +φ5S*(t) − φ1S*(t) = 0, (66)  

u3 : c3u3(t) +φ5E*(t) − φ2E*(t) = 0, (67)  

u4 : c4u4(t) +φ4E*(t) − φ5E*(t) = 0, (68)  

u5 : c5u5 +φ5Q*(t) − φ4Q*(t) = 0. (69) 

Fig. 1. Numerical simulation of susceptible and exposed human individuals by homotopy perturbation method for thirty days; in these plots the order of α is ar
ranged from bottom to top from α = 0.1 to 1.0. 
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So that the control variables u*
i , i = 1, 2,3, 4,5 are obtained as 

u*
1

(

t
)

= max
(

min
((

φ2 − φ1

c1

)(
2S*(t)I*(t)

S*(t) + I*(t)

)

, 0
)

, 1
)

, (70)  
u*

2

(

t
)

= max
(

min
((

φ1 − φ5

)
S*(t)

c2
, 0
)

, 1
)

, (71)  

Fig. 3. Numerical simulation of recovered human individuals and the behaviour of susceptible human individuals with the variations in β, while α = 0.1; in these 
plots the order of α is arranged from bottom to top from α = 0.1 to 1.0. 

Fig. 4. The behavior of exposed and infected human individuals with the variations in β, while α = 0.1; in these plots the order of β is arranged from bottom to top 
from β = 0.01 to 0.1. 

Fig. 2. Numerical simulation of infected and quarantine human individuals by homotopy perturbation method for thirty days; in these plots the order of α is ar
ranged from bottom to top from α = 0.1 to 1.0. 

M. Sinan et al.                                                                                                                                                                                                                                   



Results in Physics 22 (2021) 103873

10

u*
3

(

t
)

= max
(

min
((

φ2 − φ5

)
E*(t)

c3
, 0
)

, 1
)

, (72)  

u*
4

(

t
)

= max
(

min
((

φ3 − φ5

)
I*(t)
c4

, 0
)

, 1
)

, (73)  

u*
5

(

t
)

= max
(

min
((

φ4 − φ5

)
Q*(t)

c5
, 0
)

, 1
)

. (74) 

This completes the proof. □ 

Numerical results 

Homotopy perturbation method (HPM) (see, [13,15,25,26]) used to 
find the semi-analytical solution of differential equations, such as ordi
nary differential equation(s), partial differential equation(s) and frac
tional order differential equation(s). In this study we also find the 
solution to the model (1) for our results. Thus the scheme is developed as 
following, i.e. Consider the homotopy for the model (1), such that 

DαS − DαS0 = p
[

b − β
(

2SI
S + I

)

−

(

η + μ + q3

)

S − LS0

]

,

DαE − DαE0 = p
[

β
(

2SI
S + I

)

−

(

λ + μ + γ + q2

)

E − LE0

]

,

DαI − DαI0 = p[λE − (μ + ε + γ + q1)I − LI0],

(75)  

Fig. 6. The behavior of basic reproduction number, R0 with the variations in q1 and q2.  

Fig. 5. The behavior of quarantine and recovered human individuals with the variations in β, while α = 0.1; in these plots the order of β is arranged from bottom to 
top from β = 0.01 to 0.1. 

Fig. 7. The contour plot of β and q1 to basic reproduction number, R0.  
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DαQ − DαQ0 = p[q3S + q2E + q1I − (μ + τ)Q − LQ0],

DαR − DαR0 = p[ηS + τQ + γI − μR − LR0].

We assume solution for the model (1) as 

S(t) = S0 + pS1 + p2S2 + p3S3 + ⋯,

E(t) = E0 + pE1 + p2E2 + p3E3 + ⋯,

I(t) = I0 + pI1 + p2I2 + p3I3 + ⋯,

(76)  

Q(t) = Q0 + pQ1 + p2Q2 + p3Q3 + ⋯,

R(t) = R0 + pR1 + p2R2 + p3R3 + ⋯.

For the comparison of pn, n = 1, 2, 3, ⋯, system of Eqs. (75), (76) 
implies that 

p1 : DαS1 = b − β
(

2S0I0

S0 + I0

)

−

(

η + μ + q3

)

S0,

p1 : DαE1 = β
(

2S0I0

S0 + I0

)

−

(

λ + μ + γ + q2

)

E0,

p1 : DαI1 = λE0 − (μ + ε + γ + q1)I0,

(77)  

Fig. 8. This plots show the behavior of susceptible with the control variable the education or media campaign for the awareness of preventions, and the treatment in 
both Susceptible and Exposed population. 

Fig. 9. This plots show the behavior of infected and quarantine population with the control variable treatment.  

Table 3 
Description of parameter and its value.  

Notation Description of parameters Values 

b Fertility Rate. 3.42500 
β  Transmission Rate from Susceptible into Exposed 

Compartment. 
0.01898 

η  Transmission Rate of Susceptible to Recovered 
Compartment. 

0.1 

μ  Natural mortality Rate. 0.00576 
q1  Incubation Period of Infected Compartment. 0.02200 
q2  Incubation Period of Exposed Compartment. 0.03100 
q3  Incubation Period of Susceptible Compartment. 0.03900 
λ  Infection Rate of Exposed Compartment. 0.00147 
ε  Death Rate in Infected Compartment due to Disease. 0.020 
γ  Recovery Rate of Infected Compartment. 0.94978 
τ  Recovery Rate of Quarantine Compartment 0.04990  

Table 2 
Descriptions of classes.  

Classes Description of classes 

S(t) Susceptible Population at time, t. 
E(t) Exposed Population at time, t. 
I(t) Infected Population at time, t. 
Q(t) Quarantine Population at time, t. 
R(t) Recovered Population at time, t.  
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p1 : DαQ1 = q3S0 + q2E0 + q1I0 − (μ + τ)Q0,

p1 : DαR1 = ηS0 + τQ0 + γI0 − μR0.

for p2, i.e 

p2 : DαS2 = − β
(

2S1I1

S1 + I1

)

−

(

η + μ + q3

)

S1,

p2 : DαE2 = β
(

2S1I1

S1 + I1

)

−

(

λ + μ + γ + q2

)

E1,

p2 : DαI2 = λE1 − (μ + ε + γ + q1)I1,

(78) 

Fig. 10. These plots show the behavior of recovered population with the control variable treatment and stability curves (Fig. 1, [27]) of susceptible population.  

Fig. 11. Stability curves of exposed and infected population.  

Fig. 12. Stability curves of quarantine and recovered population.  
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p2 : DαQ2 = q3S1 + q2E1 + q1I1 − (μ + τ)Q1,

p2 : DαR2 = ηS1 + τQ1 + γI1 − μR1.

and similarly for p3, such that 

p3 : DαS3 = − β
(

2S2I2

S2 + I2

)

−

(

η + μ + q3

)

S2,

p3 : DαE3 = β
(

2S2I2

S2 + I2

)

−

(

λ + μ + γ + q2

)

E2,

p3 : DαI3 = λE2 − (μ + ε + γ + q1)I2,

(79)  

p3 : DαQ3 = q3S2 + q2E2 + q1I2 − (μ + τ)Q2,

p3 : DαR3 = ηS2 + τQ2 + γI2 − μR2.

First order problem 

S1 =

{

b − β
(

2S0I0

S0 + I0

)

−

(

η + μ + q3

)

S0

}

×
tα

Γ(α + 1)
,

E1 =

{

β
(

2S0I0

S0 + I0

)

−

(

λ + μ + γ + q2

)

E0

}

×
tα

Γ(α + 1)
,

I1 = {λE0 − (μ + ε + γ + q1)I0} ×
tα

Γ(α + 1)
,

(80)  

Q1 = {q3S0 + q2E0 + q1I0 − (μ + τ)Q0} ×
tα

Γ(α + 1)
,

R1 = {ηS0 + τQ0 + γI0 − μR0} ×
tα

Γ(α + 1)
.

Second order problem 

S2 =

{
2β(2βS0I0 + (S0 + I0)L1S0)(2βS0I0 − L2E0(S0 + I0))

(S0 + I0)
2( b − L1S0 − L2E0

)

}

×
t2α

Γ(α + 2)

− L1

{

b −
2βS0I0

S0 + I0
− L1S0

}

×
t2α

Γ(α + 2)
,

(81)  

E2 =

{
2β(2βS0I0 + (S0 + I0)L1S0)(2βS0I0 − L2E0(S0 + I0))

(S0 + I0)
2( b − L1S0 − L2E0

)

}

×
t2α

Γ(α + 2)

− L2

{
2βS0I0

S0 + I0
− L2E0

}

×
t2α

Γ(α + 2)
,

(82)  

I2 = λ
{

2βS0I0

S0 + I0 − L2E0

}

×
t2α

Γ(α + 2)
− L3

(

λE0 − L3I0

)

×
t2α

Γ(α + 2)
, (83)   

Q2 =q3

{

b−
2βS0I0

S0+I0
− L1S0

}

×
t2α

Γ(α+2)
+q2

{
2βS0I0

S0+I0
− L2E0

}

×
t2α

Γ(α+2)

+q1

(

q3S0+q2E0+q1I0 − L4Q0

)

×
t2α

Γ(α+2)
− L4

(

q3S0+q2E0+q1I0 − L4Q0

)

(84)  

×
t2α

Γ(α + 2)
,

R2 =η
{

b−
2βS0I0

S0+I0
− L1S0

}

×
t2α

Γ(α+2)
+τ
(

q3S0+q2E0+q1I0 − L4Q0

)

×
t2α

Γ(α+2)

+γ
(

λE0 − L3I0

)

×
t2α

Γ(α+2)
− μ
(

ηS0+τQ0+γI0 − μR0

)

×
t2α

Γ(α+2)
.

(85)  

taking limit as p→1 in system of Eqs. (76), we have 

S(t) = S0 + S1 + S2 + S3 + ⋯,

E(t) = E0 + E1 + E2 + E3 + ⋯,

I(t) = I0 + I1 + I2 + I3 + ⋯,

Q(t) = Q0 + Q1 + Q2 + Q3 + ⋯,

R(t) = R0 + R1 + R2 + R3 + ⋯.

(86) 

Hence, we have semi-analytic solution for model (1) based on the 
system of Eqs. (86). 

Solution by homotopy perturbation method 

S(t) = S0 +

{

b − β
(

2S0I0

S0 + I0

)

−

(

η+μ+q3

)

S0

}

×
tα

Γ(α+1)

+

{
2β(2βS0I0 +(S0 + I0)L1S0)(2βS0I0 − L2E0(S0 + I0))

(S0 + I0)
2( b − L1S0 − L2E0

)

}

×
t2α

Γ(α+2)

− L1

{

b −
2βS0I0

S0 + I0
− L1S0

}

×
t2α

Γ(α+2)
+⋯,

(87)   

E(t) = E0 +

{

β
(

2S0I0

S0 + I0

)

−

(

λ+μ+ γ+q2

)

E0

}

×
tα

Γ(α+1)

+

{
2β(2βS0I0 +(S0 + I0)L1S0)(2βS0I0 − L2E0(S0 + I0))

(S0 + I0)
2( b − L1S0 − L2E0

)

}

×
t2α

Γ(α+2)

− L2

{
2βS0I0

S0 + I0
− L2E0

}

×
t2α

Γ(α+2)
+⋯,

(88)     

I(t) = I0 + {λE0 − (μ + ε + γ + q1)I0} ×
tα

Γ(α + 1)
+ λ
{

2βS0I0

S0 + I0 − L2E0

}

×
t2α

Γ(α + 2)

− L3

(

λE0 − L3I0

)

×
t2α

Γ(α + 2)
+ ⋯,

(89)   
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Q(t)=Q0+{q3S0+q2E0+q1I0 − (μ+τ)Q0}×
tα

Γ(α+1)
+q3

{

b−
2βS0I0

S0+I0
− L1S0

}

×
t2α

Γ(α+2)
+q2

{
2βS0I0

S0+I0
− L2E0

}

×
t2α

Γ(α+2)
+q1

(

q3S0+q2E0+q1I0 − L4Q0

)

×
t2α

Γ(α+2)
− L4

(

q3S0+q2E0+q1I0 − L4Q0

)

×
t2α

Γ(α+2)
+⋯,

(90)   

R(t)=R0+{ηS0+τQ0+γI0 − μR0}×
tα

Γ(α+1)
+η
{

b−
2βS0I0

S0+I0
− L1S0

}

×
t2α

Γ(α+2)

+τ
(

q3S0+q2E0+q1I0 − L4Q0

)

×
t2α

Γ(α+2)
+γ
(

λE0 − L3I0

)

×
t2α

Γ(α+2)

− μ
(

ηS0+τQ0+γI0 − μR0

)

×
t2α

Γ(α+2)
+⋯,

(91)  

where, L1 = η + μ + q3, L2 = λ + μ + q2, L3 = μ + ε + γ + q1, and 
L4 = μ + τ. 

Discussion 

In current work, we studied the transmission of SARS-CoV-2 with 
fractional order Susceptible, Exposed, Infected, Quarantine and Recov
ered Population model by means of stability, control and numerical 
interpretation by homotopy perturbation method. The basic reproduc
tion number, R0 is calculated by next generation matrix and examined 
the model on both disease-free and endemic equilibrium points which is 
locally asymptotically unstable and globally asymptotically stable. We 
used a third additive compound matrix for the computation of global 
stability and also implemented five control variables in fractional 
optimal control, the variable, u1(t) is the control variable, which show 
the education or media campaign for the awareness of preventions (may 
be the lockdown) defined by the public health department, the variable 
u2(t) is the treatment of Exposed individuals, the variable u3(t) is the 
treatment of Exposed individuals, the variable u4(t) is the treatment of 
Infected individuals, the variable u5(t) is the treatment of Quarantine 
individuals. We have presented graphically the semi analytical results of 
various compartments in Figs. 1–5. The respective dynamical behavior 
of the corresponding compartments against various fractional order has 
been shown. Also in Figs. 6 and 7, we have presented the behavior of 
basic reproductive numbers with and with contour plots against the 
given values of the parameters. Under the control sterility, the plot of R0 
is bonded bellow 1 which shows that stability is occurring in the dy
namics with the passage of time. On the other hand in the Figs. 8 and 9, 
we have presented the plots of different compartments under various 
control parameters. We see that a decay is occurring in susceptible, 
exposed and infectious classes and the class of quarantined is raising due 
to the isolation of individuals among each other. Further the global 
dynamics of various compartments for different fractional order can be 
observed from Figs. 1–5. The different behavior in dynamics interpret 
that fractional calculus approach is an excellent way to investigate 
biological model of infectious disease (see Tables 2, 3 and Figs. 10–12). 
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