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ABSTRACT: The influence of distance restraints from chemical
cross-link mass spectroscopy (XL-MS) on the quality of protein
structures modeled with the coarse-grained UNRES force field was
assessed by using a protocol based on multiplexed replica exchange
molecular dynamics, in which both simulated and experimental
cross-link restraints were employed, for 23 small proteins. Six
cross-links with upper distance boundaries from 4 Å to 12 Å (azido
benzoic acid succinimide (ABAS), triazidotriazine (TATA),
succinimidyldiazirine (SDA), disuccinimidyl adipate (DSA),
disuccinimidyl glutarate (DSG), and disuccinimidyl suberate
(BS3)) and two types of restraining potentials ((i) simple flat-bottom Lorentz-like potentials dependent on side chain distance
(all cross-links) and (ii) distance- and orientation-dependent potentials determined based on molecular dynamics simulations of
model systems (DSA, DSG, BS3, and SDA)) were considered. The Lorentz-like potentials with properly set parameters were found
to produce a greater number of higher-quality models compared to unrestrained simulations than the MD-based potentials, because
the latter can force too long distances between side chains. Therefore, the flat-bottom Lorentz-like potentials are recommended to
represent cross-link restraints. It was also found that significant improvement of model quality upon the introduction of cross-link
restraints is obtained when the sum of differences of indices of cross-linked residues exceeds 150.

■ INTRODUCTION
Chemical cross-linking coupled with mass spectrometry (XL-
MS) is a relatively inexpensive and fast experimental technique,
which furnishes the information on the distances between
cross-linkable amino acid residues in proteins that can be used
as distance restraints in data-assisted modeling of protein
structures.1−7 In the XL-MS experiments, a chemical cross-
linking reagent, which binds to two groups (usually amino acid
side chains) is introduced into the protein solution. When the
chemical reaction is complete, the cross-linked protein is
digested, this process resulting in cross-linked pairs of
oligopeptide fragments excised from the protein. The mixture
is analyzed by mass spectrometry to determine which residues
have been cross-linked. The information on the distances
between these cross-linked residues�in particular, the upper
distance boundaries�can be derived from the chemical
structure of the cross-linker(s). The cross-linking reagents
can be nonspecific1,2 or specific with respect to residue
type.3,4,8

Because the cross-linking experiments are relatively fast and
inexpensive, many molecular-modeling software packages use
the cross-link information in data-assisted modeling of
proteins, protein conformational ensembles,9 or protein
complexes,10,11 or for protein−peptide and protein−protein
docking.8,11−14 These packages are based on the existing

software developed for modeling the structures of proteins or
protein complexes such as XPLOR-NIH,15 ROSETTA,16

MEDUSA,12 I-TASSER,17 and UNRES,18,19 or for protein
docking, such as HADDOCK.20 Other software for cross-link-
assisted protein docking have also been developed.21 The
methods available for cross-link-assisted modeling are
summarized in a number of review articles.22−24

The cross-link restraints are imposed on the distances
between the α-carbon (Cα) atoms of the residues
involved3,4,25,26 or on the distances between side chain
ends.8,9,27 Restraints from short cross-links imposed on side-
chain ends are more precise.9 Moreover, the side-chain
distances corresponding to short cross-links are well-corre-
lated28,29 with the solvent-accessible surface distance (SASD;
the shortest path between two amino acid residues without
penetrating the solvent-accessible surface of a protein),28,30

thus conforming with the condition that only exposed residues
can be cross-linked.
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Several types of restraining potentials were designed for
cross-link-assisted modeling. The most common and simplest
to implement are the flat-bottom potentials with upper
distance boundary. Restraint potentials of this type were
implemented in early applications, in which nonspecific cross-
links were used1,2,26 and are still used with specific cross-
links.4,8,9,26 The other ones are statistical pseudopotentials26

derived based on cross-link-distance distributions of specific
residue pairs obtained from the cross-linking experiments of
proteins with known structures.3 Recently, we developed
pseudopotentials dependent on side-chain−side-chain distance
and orientation for cross-link-assisted modeling based on all-
atom molecular-dynamics (MD) simulations of the respective
cross-link moieties.27

Introducing Cα-distance restraints from loose nonspecific
cross-links did not result in significant model improvement,
compared to unrestrained simulations.1,2,26 Apart from
comparatively low confidence of nonspecific cross-links, such
cross-links enable us to set only a large distance boundary in
restraining potentials (24−30 Å), which could contribute to
nonsatisfactory model-quality improvement. The use of
specific cross-link information with tighter restraints on the
Cα-distances resulted in remarkable improvement of model
quality.4,26,27 The quality of structures modeled with the use of
cross-link information is expected to increase when short cross-
links are used. One kind are those based on bicarboxylic acids
with short hydrocarbon chains (e.g., the glutaric or adipic acid)
that bridge a lysine side chain or an N-terminal amino group
with another one.9 Another kind are those based on
heterobifunctional cross-linking reagents, which bind to a
lysine side chain or an N-terminal amino group with the
reactive-ester site and to a side chain of another kind with the
photoactive site.7,31 With such cross-link restraints and with
the use of the ROSETTA16 or MEDUSA12 force fields and
conformational-space search engines, very good results were
obtained.8

In our recent work,27 we introduced the restraining
pseudopotentials corresponding to cross-linking lysine side
chains with the glutaric (DSG or BS2G) or suberic acid (BS3),
as well as those corresponding to cross-linking glutamic- and
aspartic-acid side chains with adipic- (ADH) or pimelic-acid
hydrazide (PDH). The potentials were determined by all-atom
MD simulations of the respective model systems, and analytical
expressions dependent on both distance and orientation of the
side-chain ends were fitted to the obtained potentials of mean
force. We implemented them in the coarse-grained UNRES
model of polypeptide chains developed in our laboratory18,19,32

and, later,14 in the UNRES web server.33 Because of substantial
reduction of the number of interaction sites (only two sites per
residue), UNRES is able to search the conformational space
efficiently, providing an ∼1000-fold extension of the time-scale
of simulations, compared to all-atom models.34 We tested the
longest (BS3) cross-link restraints, using both simulated and
experimental data, and compared the results with those
obtained with the statistical Cα-distance potentials determined
based on the cross-link data of Leitner and colleagues.3 We
found that the more-sophisticated MD-based restraining
potentials performed slightly better than the statistical
potentials but, overall, the improvement of model quality
was moderate with both types of potentials.
In this work, we extended the cross-link-assisted modeling

capacity of UNRES by adding short-distance cross-link
restraints. We introduced another lysine-binding homobifunc-

tional cross-linking reagent, disuccinimidyl adipate (DSA), and
three heterobifunctional cross-linking reagents�namely, azido
benzoic acid succinimide (ABAS), triazidotriazine (TATA),
and succinimidyldiazirine (SDA). We also tested the DSG and
BS3 cross-link potentials determined in our earlier work.27

These cross-linking reagents and their use in cross-linking
experiments are described in refs 8 and 31. Their chemical
structures are shown in Figure 1. The upper distance

boundaries range from 4 Å (TATA) to 12 Å (BS3). For
DSA and SDA, we determined the MD-based potentials and
compared their performance, as well as that of DSG, which was
determined previously27 with the performance of simple flat-
bottom Lorentz-like potentials. We found that the latter results
in better model quality.

■ METHODS
UNRES Model of Polypeptide Chains. UNRES18,19 is a

heavily coarse-grained model of polypeptide chains, in which
the geometry of the polypeptide backbone is defined by the
positions of the α-carbon (Cα) atoms, which are not
interaction sites (Figure 2). The interaction sites are united
peptide groups, each of which is placed in the middle between
the two consecutive Cα atoms, and united side chains attached
to the respective Cα atoms. The coordinates used in the latest
implementation of the model34 are the Cartesian coordinates
of the Cα atoms and those of the side chain centers. The
energy function is described elsewhere.18,19 In this work, we
used the NEWCT-9P variant of the UNRES force field
calibrated with a set of nine proteins with different structural
classes.32

The conformational-search engine is molecular dynamics
(MD), usually run in the Langevin mode, which has been
implemented in UNRES.35,36 To make the conformational
search more efficient, the multiplexed replica exchange
molecular dynamics (MREMD) algorithm37 has been
implemented.38 The MD/MREMD implementation of

Figure 1. Chemical structures of the cross-linking reagents referenced
in this work: azido benzoic acid succinimide (ABAS), succinimi-
dyldiazirine (SDA), triazidotriazine (TATA), disuccinimidyl glutarate
(DSG), disuccinimidyl adipate (DSA), and disuccinimidyl suberate
(BS3). The atoms or groups that are replaced by side-chain/backbone
components upon cross-linking are shown in boldface red font. Note
that only one of three possible pairs of groups is marked for TATA.
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UNRES has been parallelized39 and heavily optimized,
including porting to graphical processor units (GPUs).34,40

Cross-Link Restraints with UNRES. Restraints are
included in the UNRES energy function in the form of penalty
terms. In this study, apart from the cross-link potentials, we
imposed the restraints on the Cα···Cα···Cα···Cα backbone
virtual-bond dihedral angles (γ) in part of the calculations. The

extended energy function, including the penalty terms, is given
by eq 1.

= + +U U V VUNRES Xlink dih (1)

where UUNRES is the UNRES energy function, VXlink the cross-
link-penalty term, and Vdih the dihedral-angle penalty term.
The dihedral-angle restraint potential is defined by eq 2.41,42
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where γl = 30°, γu = 70° to restrain a virtual-bond dihedral
angle to a helical conformation and γl = 120°, γu = 240° to
restrain γ to an extended conformation. The weight of the
dihedral-angle-restraint term was wdih = 50 kcal/(mol rad4).
These restraints were used in the simulations carried out for
the proteins for which experimental cross-link data were used
(human serum albumin domains and horse myoglobin).
Because of their coarse-grained nature, the cross-link

restraints are straightforward to implement in the UNRES
model. In this study, as in our earlier one,27 we used fitted
potentials of mean force imposed on the distance and
orientation of extended united side chains developed based
on all-atom molecular dynamics simulations (see the section
entitled “Determination of MD-Based Cross-Link Restraining
Potentials”), the statistical potentials introduced in refs 26 and
27, which are based on the distributions of the Cα-distances
determined by Leitner and co-workers,3 and the flat-bottom
Lorentz-like bounded restraining potentials introduced in our
earlier work43 to handle contact-distance restraints, which we
imposed on the distances between the united side chain
centers. These variants of the cross-link penalty function will
be referred to as the MD-based, statistical, and Lorentz-like
potentials and denoted by VXlinkMD , VXlinkstatis , and VXlinkLor , respectively.
The respective functional forms are defined and discussed in
the remainder of this section.
The MD-based cross-link penalty function is defined by eq

3, with components defined by eqs 4−6.
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where dXdi
and dX dj

are the Cα···Xi and Cα···Xj virtual-bond
lengths, respectively; dXdiXdj

is the length of the virtual bond

linking the terminal cross-link points (which are off the
UNRES SC centers but are on the lines pointing from Cα to
SC); θXdi

and θX dj
are the Cα

i···Xi···Xj and Cα
j···Xj···Xi virtual-

bond angles, respectively; γXdiX dj
is the Cα

i···Xi···Xj···Cα
j virtual-

bond dihedral angle, while Nd, Nθ, and Nγ are the numbers of
terms in the expressions for the virtual-bond-length, virtual-
bond-angle, and virtual-bond-dihedral-angle potentials, respec-
tively. The geometric parameters mentioned above are
visualized in Figure 2.

The statistical cross-link restraining potentials3,26,27 are
expressed by eq 7.
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Figure 2. Scheme of the representation of cross-link restraints
between residues with indices i and j, respectively, in the UNRES
model. The Cα atoms are shown as white spheres, the united side
chains (SC) are shown as colored spheroids, and the united peptide
groups (p) are shown as blue spheres. The cross-linkable side chains
are linked with the appropriate cross-linking reagent. The link is
anchored in (approximately) the positions of the side chain atoms
that are attached to the cross-link segment. The anchor points
(indicated with “X” and “Y”, respectively, and light-gray spheres) are
located on the Cα···SC axes of the UNRES residues. The geometric
parameters on which the respective pseudopotentials depend (eqs
3−6) are also shown in the Figure. [Adapted with permission from ref
27. Copyright 2021, John Wiley and Sons.]
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where d is the distance between the Cα atoms of the cross-
linked residues, a, b, c, and σ are cross-link-specific parameters.
R is the universal gas constant, and T is the absolute
temperature; we assumed T = 298 K, hence, RT = 0.591, and A
is the weight of the potential, which is assigned the confidence
of the cross-link. In this study, we set A = 15.
The Lorentz-like cross-link potentials are expressed by eq 8.
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where d is the distance between the side-chain centers from the
UNRES structure, dl and du are the lower and upper contact-
distance boundaries, respectively, σ is the extent of the
restraint-potential slope (wall thickness), and A is the restraint-
potential well depth. The penalty function has the upper
boundary A, a feature that results in zero gradient if a restraint
is grossly violated. This feature is important if restraints are
incorrect in part.
In this work, we set dl = 2.5 Å, while du depended on cross-

link type. Four sets of σ and A parameters were tried: σ = 5 Å,
A = 8 kcal/mol; σ = 15 Å, A = 8 kcal/mol; σ = 5 Å, A = 20
kcal/mol; and σ = 15 Å, A = 20 kcal/mol.

Determination of MD-Based Cross-Link Restraining
Potentials. For all cross-linkers considered in this study
(Figure 1), we used the Lorentz-like flat-bottom restraining
potential defined by eq 8. The upper flat-bottom boundaries
(du in eq 8) were equal to 4 Å for TATA, 5 Å for SDA, 6 Å for
ABAS and DSG (BS2G), 7 Å for DSA, and 12 Å for BS3,
respectively, according to the maximum dimension of the
respective cross-linking-reagent molecule.8 The MD-based
potentials determined in our previous work27 were used for

the Lys-DSG-Lys and Lys-BS3-Lys cross-links, while those for
Lys-DSA-Lys were determined in this work. Of the photo-
reactive cross-linkers, detailed binding-reaction modes are
known only for SDA with serine, cysteine, methionine,
threonine, and glutamic acid, respectively; consequently, the
MD-based restraining potentials could be determined and used
only for those pairs. The respective model compounds are
shown in Figure 3.
The MD-based potentials for the DSG and BS3 cross-links

were determined in our previous work.27 Using a similar
procedure based on all-atom MD simulations, we determined
the parameters for the other cross-link systems shown in Figure
3. The procedure consisted of (i) preparing the respective
model systems, including the assignment and determination (if
necessary) of force-field parameters, (ii) all-atom MD
simulations with explicit water molecules preceded by
relaxation and equilibration steps, (iii) calculation of histo-
grams of the respective geometric parameters and, sub-
sequently, of the respective potentials of mean force, and
(iv) fitting eqs 4−6 to the determined potentials of mean force.
The MD simulations were carried out by using the

AMBER21 package44 with the ff19SB force field45 and
TIP3P water.46 The duration of the production phase of the
simulations was 2 ns. The structures of the second half of the
trajectory (a total of 5000 snapshots) were saved for the
calculations of the histograms. Partial atomic charges had to be
determined for the compounds modeling SDA-based cross-
links, which was performed as follows. First, the structures of
model cross-linked systems were constructed (including the Cα

atoms, which are part of united side chains in UNRES) by
using the Gaussview program of the Gaussian16 package.47

Subsequently, the structures were energy-minimized by using
density functional theory (DFT) with the B3LYP/6-31G*
functional, as implemented in the Gaussian-16 program suite.
Each optimized structure was subjected to a single-point HF/
6-31G* calculation to compute the molecular electrostatic
potential around the molecule and the charges were

Figure 3. Structures of the compounds modeling the SDA-cross-linked pairs for the derivation of MD-based cross-link potentials introduced in this
work and in ref 27. The abbreviations of cross-linking reagents and those of the residues they bridge are shown in each panel.
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determined by fitting to the electrostatic potential with the
RESP procedure48 of the ANTECHAMBER module of the
AMBER21 package.44 The charges are shown in Figure S1 in
the Supporting Information.
The histograms in dX diX dj

, θX di
, θXdj
, and γX diX dj

were determined by
using the ptraj program of the AMBER21 package and the
respective potentials of mean force were calculated, as given by
eq 9.

=W X RT h X( ) ln ( )i i (9)

where Xi is the value of the respective variable at the midpoint
of the ith bin, W(Xi) is the potential of mean force
corresponding to the ith bin, h(Xi) is the value of the
histogram, R is the universal gas constant, and T is the absolute
temperature; we set T = 300 K, as in the MD simulations.
The parameters of the analytical formulas (eqs 4−6) were

obtained by least-squares fitting of these formulas to the PMFs,
by using the Marquardt nonlinear least-squares algorithm.49

These parameters are collected in Tables S1−S3 in the
Supporting Information and the plots of the fitted restraining
potentials superposed on the respective MD-determined PMFs
(eq 9) are shown in Figures S1−S7 in the Supporting
Information.

Benchmark Proteins and Simulation Procedure. We
used both synthetic and experimental cross-link data to
determine the effect of cross-links on the modeled structures.
The synthetic data pertained to 12 small single-chain proteins
with different structural classes. Their PDB IDs, basic
secondary-structure types, chain lengths, as well as the cross-
link distances calculated from the experimental structures, are
summarized in Table S4 in the Supporting Information. Eight
of these proteins (1CLB, 2EM7, 2HNS, 2I09, 1E68, 1KOY,
2FMR, and 1TIG) belong to the set of 69 benchmark proteins
that we used to test the current scale-consistent version of
UNRES.32 UNRES produces reasonably good models of these
proteins, except for packing details. The remaining four
proteins (1BF0, 1CVO, 1GF4, and 1RXR) were selected
based on the presence of a considerable number of cross-
linkable residues. The cross-linkable pairs were determined
based on the sufficiently small distances between the side
chains involved and the location of the potentially cross-
linkable side chains on the surface. An additional set of seven
benchmark proteins of our previous work,27 1A6S, 1BG8,
1K40, 1HRE, 1IYU, 1UBQ, and 1VIG, was also used to
evaluate the performance of the Lorentz-like cross-link
potentials for the longer (BS3) cross-links. With this bench-
mark set, we previously compared the performance of the
statistical potentials with that of the MD-based potentials.27

The respective cross-links are listed in Table S5 in the
Supporting Information. No restraints were imposed on the
backbone virtual-bond dihedral angles (γ) in the simulations
for the systems mentioned above.
Two proteins, for which the cross-link data pertaining to the

ABAS, DSA DSG, SDA, and TATA short cross-linking
reagents considered in this work are available�namely,
human serum albumin (PDB: 1AO6)4 and horse myoglobin
(PDB: 2V1H)8�were selected. Because of the large size of
human serum albumin preventing template-free modeling, we
considered repeats 1, 2, 3, and 6 of this protein, for which there
were sufficient cross-link restraints, as separate systems. All
these four repeats have chain length of ∼100 residues, different
cross-link topology and UNRES without cross-link restraints

models them with a different quality, thus providing a good
basis for the assessment of the impact of cross-link restraints
on model quality. Note that 1AO6 also contains disulfide
bridges, which were considered as restraints. The Lorentz-like
potential (eq 8) was imposed on the distances between the
side chains of disulfide-bonded cysteine residues with dl = 2.5
Å, du = 4.5 Å, σ = 5 Å, and A = 10 kcal/mol. In summary, five
systems with experimental cross-link data were considered.
The small size of the systems enabled us to carry out an
extensive conformational search, thus reducing the possibility
of insufficient sampling.
The experimental cross-link positions are collected in Table

S6 in the Supporting Information. It can be seen from the table
that, for 2V1H, 9 out of 20 cross-links occur between the
residues with Cα distances more than 5 Å greater than the
maximum length of the respective cross-link; for 3 out of those
9, the distance is more than 10 Å greater. This means that the
cross-linking reagents could capture such residue pairs only
due to large fluctuations or major distortion of the native
conformation. From the point of view of modeling, such
restraints are false restraints. To a lesser extent, violations are
also present in the first and the second repeat of 1AO6.
Because there is no way to tell false cross-link restraints from
true cross-link restraints if the structure is unknown, we did not
curate these cross-link data to test the robustness of the
method. In our earlier work,43 we showed that even up to 50%
of false distance restraints do not influence the model quality
remarkably, provided that the number of restraints is
sufficiently large.
Because the proteins mentioned above are of moderate sizes

and the objective was mainly to find out how the limited cross-
link restraints can help to pack the elements of the structures
correctly, we imposed flat-bottom restraints41,42 (see eq 2) on
the backbone virtual-bond dihedral angles of the helical and
extended-strand segments. These segments were assigned
according to the HELIX and SHEET records from the
respective PDB files.
To model the structures of the benchmark proteins subject

to cross-link restraints, we used our four-stage UNRES-based
protocol,41 which was applied by the UNRES-based prediction
groups in the Community Wide Experiments on the Critical
Assessment of Techniques for Protein Structure Prediction
(CASP).50

In stage 1, MREMD simulations were run, using the recently
developed optimized version of the UNRES package.34 The
replicas were run at the following 12 temperatures: 260, 262,
266, 271, 276, 282, 288, 296, 304, 315, 333, and 370 K,
respectively, which were selected by using the Hansmann
algorithm51 to maximize the walks in temperature space. Four
replicas were run at a given temperature, giving a total of 48
replicas. Each replica consisted of 20 000 000 time steps, with a
step length of 4.89 fs. This value is 0.1 of the “natural MD time
unit”, which was introduced in our earlier work35 to
correspond to expressing energies in kcal/mol and distances
in ångströms. The temperatures were exchanged between
replicas every 10 000 time steps. The temperature was
controlled by the Langevin thermostat, with scaling down
the water friction by a factor or 0.01, as in our earlier work.36 A
modified variable-time-step (VTS)35 velocity−Verlet integra-
tor52 was used to integrate the equations of motion. The
UNRES coordinates were saved every 10 000 time steps, i.e.,
every replica-exchange time. The last 1000 structures from
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each trajectory (48 000 structures total) were taken for further
analysis.
In stage 2, the structures resulting from MREMD

simulations were subjected to post-processing with the
UNRES implementation53 of the binless weighted histogram
analysis method (WHAM)54 to enable us to compute the
statistical weights of each conformation at any temperature
within the replica-temperature range.
In stage 3, the conformational ensembles at T = 260, 280,

300, and 330 K (determined by using the information from
WHAM to comprise 99% of conformations at a given
temperature53) were subjected to a cluster analysis with
Ward’s minimum variance method.55 The number of clusters
(and, thereby, the number of models) was set at 5, this number
being selected after the rules of CASP,50 in which five models
per target can be submitted for assessment. The families (and,
consequently, the selected structures) were ranked by the
cumulative probabilities of all conformations belonging to

them, as described in our earlier work.53 The structure with the
lowest cross-link violation was selected as the representative of
a given family.
In stage 4, the coarse-grained models were converted to all-

atom models, by using the PULCHRA56 and SCWRL57

algorithms and refined with AMBER,58 as described in our
earlier work.42

■ RESULTS AND DISCUSSION
Synthetic Cross-Link Data. The bar plots of the Global

Distance Test Total Score (GDT_TS),59 which is a measure of
the percentage of the model that is similar to the experimental
structure, for the first-choice (corresponding to the greatest
probability of the respective conformational family) and the
best (with the largest GDT_TS) models for the 12 proteins
with synthetic SDA and DSA cross-link data (Table S4) are
shown in Figure 4. The plots correspond to unrestrained
simulations and simulations with the MD-determined (eqs

Figure 4. Bar plots of the global distance test total score (GDT_TS) of the (A) first and (B) highest-GDT_TS models of the short-cross-link
benchmark proteins obtained in unrestrained UNRES simulations and cross-link-restrained simulations. LR(σ,A) denotes Lorentz-like potentials,
with σ and A being the wall thickness and well depth, respectively (eq 8), and MD denotes MD-based potentials (eqs 3−6).
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3−6) and with the Lorentz-like potential (eq 8). The latter
were carried out with four variants of parameters, as specified
in section “Cross-Link Restraints with UNRES”. The
numerical values, along with the values of Cα RMSD and
TMScore,60 are collected in Table S7 in the Supporting
Information. In Figure 5, the level diagrams of the differences
between the GDT_TS values for restrained and unrestrained
simulations are shown. It can be seen from Figure 4 and Table
S7 that, except for 1EM7 (an α + β protein), for which
UNRES produces both the first and the best model with
GDT_TS over 50, the UNRES models of the other proteins
are of modest quality, with GDT_TS being from slightly over
20 to slightly over 40.
It can be seen from Figures 4 and 5 that, in all instances, the

Lorentz-based potentials perform better than the MD-based
potentials. Considering the changes of GDT_TS greater than
±5 units as significant (improvement or deterioration), MD-
based potentials result in a remarkable improvement of the first
models in two instances and deterioration also in two
instances, while the Lorentz-based potentials result in
remarkable model improvement in five or six instances,

depending on parameters and deterioration in 0−2 instances.
For the best model, the numbers of significant improvements
and deteriorations increase to three for the MD-based
potentials and do not change for the Lorentz-based potentials.
In our earlier work,26 we found that using the Lorentz-like

restraints (eq 8) gave worse results, compared to using the
statistical potentials (eq 7). In that work, both potentials
restrained the distances between the Cα atoms. However, the
statistical potentials were used with specific and the Lorentz-
like potentials with both specific and nonspecific cross-links,
many of which were incorrect. This difference could contribute
to the poorer performance of the Lorentz-like restraining
potentials. In this work, the Lorentz-like restraints were
imposed on side-chain distances and the restraints were
much more tighter than those in our previous work, resulting
in much better performance. Imposing restraints on the
distances between side-chain ends and not on those between
the Cα atoms, plus the comparatively short upper distance
boundary, makes it more probable that the side chains remain
close to the surface of the globule.29

Figure 5. Level diagrams of the difference of the GDT_TS of the (A) first and (B) highest-GDT_TS models of the short-cross-link benchmark
proteins obtained in cross-link-restrained simulations from those obtained in unrestrained simulations. LR(σ,A) denotes Lorentz-like potentials,
with σ and A being the wall thickness and well depth, respectively (eq 8), and MD denotes MD-based potentials (eqs 3−6).
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The reason for the better performance of the simple
Lorentz-like potentials is likely to be their flat-bottom feature.
The MD-based potentials account for the dependence of the
potential of mean force of the cross-linked fragment on the
cross-link geometry. However, the cross-linking reagents can
very well result in the disruption of protein structure after the
cross-link is formed, especially if the residues involved are
closer to each other in the native structure than the length of
the cross-link. In this regard, simple flat-well restraints, which
mainly set the upper boundary of the distance at which the
respective cross-link reagent can catch both side chains, are
preferable to those with a minimum or multiple minima in the
distance. Thus, the flat-bottom restraints reflect the largely
qualitative nature of cross-link information. These consid-
erations are best illustrated with the 1EM7 protein, for which
five cross-links occur between the neighboring strands: Y3−
K50, K4−K50, K4−T51, K10−E56, and K13−E56. With the

MD-based potentials, the GDT_TS decreased from 54.02 to
41.52 for the first model and from 58.04 to 46.88 for the best
model, respectively. For the Lorentz-like potential, it increased,
reaching the values from 58.93 (σ = 5 Å, A = 20 kcal/mol) to
68.75 (σ = 5 Å, A = 8 kcal/mol) for the first model, and from
67.41 (σ = 15 Å, A = 8 or 20 kcal/mol) to 68.75 (σ = 5 Å, A =
8 kcal/mol) for the best model, respectively.
In our previous work,27 we evaluated the influence of the

Lys-BS3-Lys cross-link restraints on model quality, comparing
the MD-based restraining potentials with the statistical
potentials. This cross-link is longer than the SDA and DSA
cross-link. Therefore, we tried the Lorentz-like potentials on
the 7 systems of our previous study (Table S5). Using this
benchmark set also enables us to compare the results of
modeling with the Lorentz-like potentials with those of the
statistical potentials, because the statistical potentials are not
available for the SDA-type cross-links. The GDT_TS bar plots

Figure 6. Bar plots of the global distance test total score (GDT_TS) of the (A) first and (B) highest-GDT_TS models of the BS3-cross-link
benchmark proteins of ref 27 obtained in unrestrained UNRES simulations and cross-link-restrained simulations. LR(σ,A) denotes Lorentz-like
potentials, with σ and A being the wall thickness and well depth, respectively (eq 8). “MD” denotes MD-based potentials (eqs 3−6), and
“Statistical” denotes the statistical potentials (eq 7).
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for the first and for the best models, compared with those
obtained in unrestrained calculations and the calculations with
the MD-based and statistical cross-link restraints are shown in
Figure 6 and the respective values are collected in Table S8 in
the Supporting Information. The level diagrams depicting the
differences in GDT_TS between unrestrained and restrained
simulations are shown in Figure 7.
As can be seen from Figures 6 and 7 and Table S8, the

Lorentz-like cross-link potentials do not result in remarkably
increased numbers of significantly (over 5 GDT_TS units)
improved models, compared to the MD-based or statistical
potentials (2−4, depending on settings, vs 3 and 2, respectively
for the first and 2 and 3, respectively, for the best models).
This is a remarkable difference from the results obtained with
short cross-links, in which the number of significantly
improved first models obtained with the Lorentz-like potential
is 2 or 3 times greater than that of the models obtained with
the MD-based potential and the number of improved best
models is up to 2 times greater (Figure 5). A plausible
explanation of this difference is a greater length of the BS3

cross-links. Moreover, a closer inspection of Figures 5 and 7
indicates that the increase in GDT_TS is usually smaller for
the models obtained with the longer (BS3) cross-link restraints,
usually not exceeding 10, while a GDT_TS increase between
10 and 20 is more common with the DSA and SDA cross-link
restraints. An exception is the result obtained for 1K40 with σ
= 15 Å, A = 20 kcal/mol, for which GDT_TS increased by
more than 30. On the other hand, the BS3 restraints produced
no models significantly worse than those obtained from
unassisted simulations, which suggests that restraints corre-
sponding to longer cross-links are safer to use in modeling.
This observation is consistent with the fact that the cross-link
restraints could correspond to distances in distorted protein
structures (by natural fluctuations or because of making
another cross-link earlier). Longer and, consequently, more
flexible cross-links (e.g., BS3) produce flatter restraint-potential
wells (cf Figure 3 in ref 27), thus compensating for the
distortions.
Because the cross-link restraints are usually small in number,

the improvement of model quality is rather modest, mostly up

Figure 7. Level diagrams of the difference of the GDT_TS of the (A) first and (B) highest-GDT_TS models of the BS3-short-cross-link benchmark
proteins of ref 27 obtained in cross-link-restrained simulations from those obtained in unrestrained simulations. LR(σ,A) denotes Lorentz-like
potentials, with σ and A being the wall thickness and well depth, respectively (eq 8), “MD” denotes MD-based potentials (eqs 3−6), and
“Statistical” denotes the statistical potentials (eq 7).
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to ∼20 GDT_TS units for short cross-links and up to 10
GDT_TS units for longer cross-links. This observation was
also made in our earlier work.26,27 Nevertheless, with the
Lorentz-like restraints, the improvement is significant for 1TIG
(an α + β protein) of the short-cross-link benchmark set, the
first model of which reached a GDT_TS value of 52.27 with σ
= 15 Å, A = 20 kcal/mol compared to GDT_TS = 26.70 for
unrestrained simulations (Table S7) and for 1K40 (an α
protein) of the long-cross-link benchmark set of ref 27, for
which model 1 reached GDT_TS of 52.98 with σ = 15 Å, A =
20 kcal/mol, compared to 19.25 with unrestrained simulations
(Table S8). The experimental and simulated (without and with
cross-link restraints) structures of these two proteins are shown
in Figures 8A and 8B, respectively. On the other hand, the
results for 1KOY (an α protein) of the short-cross-link and
1HRE (an α + β protein) of the long-cross-link benchmark set
are consistently poor. Inspection of the cross-link list of those
four targets (Tables S4 and S5) shows that both the number
and the topological length of cross-links for 1TIG (13 cross-
links, the longest cross-link closing a loop of 56 residues) and
1K40 (9 cross-links, the longest cross-link closing a loop of 99

residues) are significant, while there are only a few remarkably
topologically shorter cross-links for 1KOY (3, the longest
cross-link closing a loop of 33 residues) and 1HRE (6, the
longest cross-link closing a loop of 19 residues).
The above observation suggests that the increase of

GDT_TS of the structures obtained from cross-link-assisted
modeling could be related to the number of cross-links and
their topological lengths. In Figures 9A and 9B, the differences
in the GDT_TS values between the first and best models,
respectively, of the structures obtained with cross-link
restraints and those from unrestrained simulations
(ΔGDT_TS) are plotted against the sum of the topological
lengths of all cross-links (ΣL) defined by eq 10:

= | |L J I
I J, cross linked

IJ
(10)

It can be seen that ΔGDT_TS is correlated with ΣL. The
correlation is weak; however, for ΣL > 150, ΔGDT_TS is
always positive, in most cases, exceeding 5 units. For small ΣL,
a substantial increase in GDT_TS can also be obtained if the
few cross-links happen to correspond to contacts that define

Figure 8. Experimental structures (center of a panel) of (A) 1TIG and (B) 1K40, compared with the respective first models of these proteins
obtained in unrestrained UNRES simulations (left side of panel) and UNRES simulations restrained with the Lorentz-like cross-link potentials
(right side of panel). The parameters of the Lorentz-like potentials were σ = 15 Å, A = 20 kcal/mol, respectively. For 1TIG (90 residues), the
GDT_TS and Cα RMSD are 26.70 and 12.12 Å in unrestrained and 52.57 and 6.94 Å in restrained simulations, respectively. For 1K40 (126
residues), Cα RMSD are 19.25 and 12.12 Å in unrestrained and 52.98 and 3.92 Å in restrained simulations, respectively. The drawings were made
with PyMOL.61
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the fold topology. This occurs for 1UBQ, (three cross-links,
two long-range only), 2L09 (three long-range cross-links), and
1E68 (four cross-links, four long-range) for which GDT_TS
increased by 10 units or more (Figure 9). On the other hand,
low ΣL more often results in small or no improvement or even
deterioration of model quality.
In Figure S8 in the Supporting Information, the correlation

diagrams of ΔGDT_TS with the number of cross-links (NXL),
the maximum cross-link length (Lmax), and ΣL are shown for
all variants of the Lorentz-like restraint function and for the
MD-derived restraints, for both the first and the best models of
the 19 benchmark proteins with synthetic cross-link data. It
can be seen that if any of these measures exceeds a certain
threshold, ΔGDT_TS is remarkably positive. Of those, ΣL >
150 consistently points to the greatest number of targets with
positive ΔGDT_TS and can, therefore, be considered a
descriptor that predicts the capacity of a given set of cross-link
restraints to improve model quality. It combines the number of
cross-links with their topological distances. Defining long-range
residue−residue contacts is very important, because the errors
inherent in a force field accumulate with increasing segment
length and, consequently, long-range contacts are less likely to

be reproduced correctly in modeled structures. On the other
hand, a greater number of restraints corrects force-field errors
in a larger number of segments.
The ΣL descriptor does not fully define the capacity of a

cross-link set to improve modeled-structure quality. As can be
seen from Figure 9, the ΔGDT_TS of the six proteins with ΣL
> 150 does not exactly follow the increase of ΣL. The
maximum ΔGDT_TS occurs for 1K40, which has a moderate
ΣL, while that for 1A6S, which has the largest ΣL and the
greatest number of cross-links (20; see Table S5), is below 5.
The exceptional model improvement for 1K40 probably results
from its simple four-helix-bundle topology (Figure 8B). The
model-improvement capacity of a cross-link set probably
depends on whether the cross-link restrains are imposed on the
distances between the residues in regions that the force field
does not handle well. However, if the experimental structure is
unknown, there is no way to determine these regions.
Therefore, a crude assessment the model-improvement
capacity of a cross-link set based on ΣL threshold seems to
be a sensible solution. Also note that the threshold of 150 has
been established based on the benchmark set of small proteins
used in our study and could change if the set is extended,
especially by larger proteins. Moreover, because of the small
size of the protein-benchmark set used in this study, we
refrained from using multiple descriptors to determine cross-
link-set capacity to improve the quality of modeled structures.

Experimental Cross-Link Data. The MD-based cross-
link-restraint potentials were available only for the four
selected repeats of human serum albumin (AO1-1, AO1-2,
AO1-3, and AO1-6). Therefore, for these systems, we carried
out the simulations with both the MD-based and Lorentz-like
restraints. The MD-based potentials are not available for most
of the cross-links used in the experiments on horse myoglobin
(2V1H) reported in ref 8. Therefore, we used only the
Lorentz-like potentials for this target. The cross-links are
summarized in Table S5. The bar plots of the GDT_TS for the
first and highest GDT_TS models are shown in Figure 10, and
the numerical data are collected in Table S8 in the Supporting
Information.
We analyze the results for repeats 1, 2, 4, and 6 of serum

albumin first. For all these systems, ΣL < 150 (not counting
the natural S−S links; see Table S5). Of all repeats, AO6-2 has
the biggest ΣL = 138. It can be seen that, for this repeat, a
major GDT_TS increase was obtained in all simulations with
the Lorentz-like potential except for the first model resulting
from the simulations with σ = 15 Å and A = 20 kcal/mol. It can
also be noted that a remarkable GDT_TS increase resulting
from modeling with the Lorentz-like cross-link-restraining
potentials is observed consistently for the AO6-6 repeat even
though ΣL = 22 only (Table S5). For this repeat, the GDT_TS
values obtained in unassisted modeling (with or without
natural disulfide links) are significantly lower than those for the
other repeats (see Table S9 and Figure 10). The K557−K571
cross-link that bridges the two α-helical segments results in a
significant improvement of model quality (Figure 11). A
similar situation occurred in our participation in the CASP10
experiments within the WeFold initiative,62 in which a couple
of well-predicted distance restraints for the T0740 target
resulted in the best prediction of the structure of this target.
It can be seen from Figure 10 and Table S5 that, consistent

with the results presented in the section entitled “Synthetic
Cross-Link Data”, using the MD-derived restraint potentials

Figure 9. Relationship between the sum of cross-link topological
lengths (ΣL) with the difference between the GDT_TS of models
obtained with Lorentz-type cross-link restraints (eq 8) with σ = 15 Å
and A = 20 kcal/mol and those obtained in unrestrained simulations
(ΔGDT_TS) for the (A) first and (B) highest-GDT_TS models of
the 19 benchmark proteins with synthetic cross-link restraints.
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results in only incremental GDT_TS increases at best and in
small decreases in GDT_TS in most of the calculations.
Note that, in ref 4, higher-quality structures of 1AO6

domains were obtained. However, the structures were modeled
with ROSETTA16 and the information from contact prediction
was used, while we applied disulfide-bridge and cross-link
restraints exclusively.
The last system, horse myoglobin (PDB: 2V1H) also is an

all-α-helical protein. The ΣL value is 1367. As can be seen
from Table S5, the cross-links correspond to a significant
number of long-range contacts thus helping to pack the
segments correctly. Without the cross-link restraints, model 1
(which also is the best model) has a low GDT_TS (30.39) and
an high Cα-RMSD value (9.2 Å). With the Lorentz-like cross-
link restraints, major model improvement is obtained in most
calculations, with the best results corresponding to σ = 15 Å
and A = 8 kcal/mol. The GDT_TS for the first and best

models increased to 55.07 and Cα RMSD dropped to 3.9 Å.
This result is better than that obtained by modeling with
MEDUSA,12 which is an all-atom approach, reported in ref 8,
in which RMSD was ∼5 Å. The resulting structure, along with
the experimental 2V1H structure and the structure obtained
without cross-link restraints is shown in Figure 12. Inspection
of the respective bar plot in Figure 10 demonstrates that the
model quality obtained in cross-link-assisted simulations using
the Lorentz-like potential with σ = 5 Å is remarkably worse
than that obtained with σ = 15 Å. Additionally, if the small σ is
combined with deeper potential well (A = 20 kcal/mol), the
model quality is not much greater than that obtained without
restraints. This feature seems to be caused by the presence of a
substantial fraction of false cross-link restraints (Table S6).
When σ is greater, the false restraints are not strictly enforced
and, consequently, better models are obtained. A more shallow
restraint-potential well also contributes to reducing the effect

Figure 10. Bar plots of the global distance test total score (GDT_TS) of the (A) first and (B) highest-GDT_TS models of repeats 1, 2, 3, and 6 of
human serum albumin (PDB: 1AO6) and horse myoglobin (PDB: 2V1H) obtained in unrestrained UNRES simulations and cross-link-restrained
simulations. LR(σ,A) denotes Lorentz-like potentials, with σ and A being the wall thickness and well depth, respectively (eq 8), and “MD” denotes
MD-based potentials (eqs 3−6).
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of false restraints. In our earlier work,43 we argued that false
distance restraints are largely contradictory and, therefore, it is
enough to use the bounded Lorentz-like function to effectively
eliminate them provided that the number of restraints is
sufficiently large. However, when the number of restraints is
small (as for cross-link restraints), false restraints can be
satisfied along with true restraints resulting in poorer-quality
models.

■ CONCLUSIONS
In this work, we evaluated the effect of cross-link restraints,
imposed on the side chains of cross-linked residues or cross-
linked termini, on the quality of models of protein structures
obtained by extensive conformational search with the coarse-
grained UNRES model, by using the protocol based on
MREMD simulations developed in our earlier work.41 We

considered the short cross-links formed by three heterobifunc-
tional cross-linking reagents, namely, azido benzoic acid
succinimide (ABAS), triazidotriazine (TATA), and succinimi-
dyldiazirine (SDA), and two homobifunctional reagents
(namely, disuccinimidyl adipate (DSA) and disuccinimidyl
glutarate (DSG)). Two types of cross-links potentials were
considered. Those of the first type are based on analytical
expressions fitted to the potentials of mean force of the
respective cross-linked fragments determined by all-atom MD
simulations of model systems and depend on side chain
distance and orientation (eqs 3−6), while those of the second
type have the form of a simple Lorentz-like flat-bottom
potential (eq 8), which has an upper boundary. Of the
heterobifunctional cross-linking reagents, the binding modes
are known only for SDA and, consequently, we determined the
MD-based potentials only for the SDA and DSA cross-links;

Figure 11. Experimental structure (center of the panel) of the sixth repeat of human serum albumin (1AO6-6, 84 residues) compared with the first
model of this protein obtained in unrestrained UNRES simulations (left side of the panel) and UNRES simulations restrained with the Lorentz-like
cross-link potentials (right side of the panel). The parameters of the Lorentz-like potentials were σ = 5 Å, A = 20 kcal/mol, respectively. The
GDT_TS and Cα RMSD are 38.10 and 10.35 Å in unrestrained and 46.63 and 10.66 Å in restrained simulations, respectively. The only nonlocal
cross-link and the respective side-chain-end distances are shown in all panels. The drawings were made with PyMOL.61

Figure 12. Experimental structures (center of the panel) of horse myoglobin (2V1H, 153 residues) compared with the first model of this protein
obtained in unrestrained UNRES simulations (left side of the panel) and UNRES simulations restrained with the Lorentz-like cross-link potentials
(right side of the panel). The parameters of the Lorentz-like potentials were σ = 15 Å, A = 8 kcal/mol, respectively. The GDT_TS and Cα RMSD
are 30.39 and 9.23 Å in unrestrained and 55.07 and 3.90 Å in restrained simulations, respectively. The drawings were made with PyMOL.61
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those for DSG were determined in our earlier work.27

Additionally, we also compared the performance of the simple
Lorentz-like cross-link restraining potentials corresponding to a
longer suberic-acid (BS3, a homobifunctional reagent) cross-
link with that of MD-based and statistical potentials reported
in our previous work.27

For the systems with synthetic cross-link data (a total of 12
small proteins plus 7 additional small proteins studied in our
previous work27) and those with experimental cross-link data
(a total of four systems), the simple Lorentz-like potentials
turned out to produce models more similar to the experimental
structures (with higher GDT_TS and lower Cα-RMSD values)
than the more-sophisticated MD-based potentials. The reason
for this seems to be that the latter have minima at the side-
chain−side-chain distances longer than the side-chain−side-
chain contact distances in the native structures. For the longer
BS3-type cross-links, the results obtained with the two kinds of
potentials were more similar, most likely because of the greater
flexibility of the longer cross-links, which is manifested as a
more flat MD-based cross-link-distance potential (Figure 3 in
ref 27). Conversely, a simple flat-bottom potential with an
upper distance boundary corresponding to the respective
cross-link length will not force two cross-linked residues to
assume a distance too long to produce a good model. This
observation also conforms with the character of the cross-link
experiments, in which the pairs of residues whose side chains
are located on the surface and are closer to each other than the
cross-linking-reagent dimension are picked. Note that the
structure can be largely distorted or even disrupted after a
cross-link is formed. Thus, the MD-based potentials produce
models of hypothetical structures, which would be obtained
after the cross-linkable residues are cross-linked rather than
those of unperturbed native structures.
The modeling experiments with both synthetic and

experimental cross-link data carried out in this and in our
previous work27 demonstrated that the improvement of model
quality depends on the number of cross-links and their
topological lengths (the number of residues in the loop closed
by a cross-link). If many long-range cross-links are present,
GDT_TS can increase even by more than 30 units, as observed
for the 1K40 protein (see Figure 6, as well as Table S8). A
quantitative measure of the number of long-range cross-links is
the sum of topological cross-link lengths, ΣL (eq 10); Figure 9
shows that, when this quantity exceeds 150, GDT_TS
increases significantly. Therefore, when planning cross-linking
experiments for a given system, the cross-linking reagents
should be selected to provide the greatest ΣL. The
heterobifunctional cross-linking reagents seem to be more
appropriate than the homobifunctional ones, because they can
link more combinations of residue pairs. On the other hand, a
smaller ΣL does not necessarily imply poor model quality,
because the scarce cross-link restraints can be essential in
correcting force-field inaccuracy, as demonstrated with the
examples of 1UBQ, 2L09, and 1E68, for which GDT_TS
increased by 10 units or more, despite low ΣL values (see
Figure 9).
The example of horse myoglobin (Figure 10, as well as

Table S6) demonstrates that sufficient cross-link information
can result in major model-quality improvement, even with a
substantial number of “false” cross-links between spatially
distant residues. In such a case, it seems that looser Lorentz-
like restraints with a greater wall thickness (σ) and a shallower
potential well (A) in eq 8 should be applied to reduce the

effect of false restraints. On the other hand, the presence of
contradictory restraints can very well indicate significant
conformational mobility, suggesting that time- or replica-
averaged cross-link restraints should be used in modeling. This
remark particularly applies to intrinsically disordered proteins
(IDPs) and proteins with intrinsically disordered regions
(IDRs). Research on implementing averaged cross-link
restraints to determine the conformational ensembles of
IDPs/IDRs, as well as the conformational mobility of proteins,
is now being carried out in our laboratory.
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