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 A B S T R A C T

Material creep, defined as time-dependent strain accumulation under constant loading, can result in severe 
deformation and eventual component failure, posing a significant engineering challenge. Therefore, the 
possibility of early prediction of creep behavior is highly desirable. The objective of this study is to propose 
a robust method for predicting creep failure. To this end, we investigate the creep behavior of paper samples 
(quasi-brittle fiber composites) used as a model material, subjected to constant uniaxial tensile loads. Local 
strain fields are obtained through Digital Image Correlation and analyzed using dimensionality reduction 
techniques, a form of unsupervised machine learning, to identify universal indicators of deformation. This 
approach enables the detection of the onset of tertiary creep phase (deformation acceleration towards final 
failure), prediction of failure time, and accurate prediction of the failure location on the material surface 
just before the tertiary creep phase begins. Among the techniques used—Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), Factor Analysis (FA), Non-negative Matrix Factorization (NMF), and 
Dictionary Learning (DL)—PCA and FA perform better in both detecting the onset of tertiary creep and 
predicting failure locations. The comparative analysis reveals the presence of universal characteristics in the 
evolution of local strain fields, offering a novel framework for studying material mechanics and providing key 
insights into failure prediction. In particular, the prediction of failure location as well as the comparison of 
the efficacy of various dimensionality reduction techniques are clearly novel aspects introduced in this work.
1. Introduction

Material creep [1] is an important phenomenon affecting the ability 
to predict long-term behavior of components made of various engineer-
ing materials, such as metals [2] or fiber-reinforced composites [3]. It 
is especially important when some components are expected to fulfill 
their function during many years of usage. E.g. nuclear power plants 
are expected to continuously operate for 60 years [4] or even more. 
Creep becomes even more crucial under accident scenarios, such as 
station blackout [5] or loss of coolant [6], where rapid and large 
creep deformation may occur due to elevated temperatures far beyond 
normal operating conditions.

Material creep continues to be an area of active research. Recent 
studies [7,8] have explored creep in Ni-based single crystal superal-
loys using models based on continuous damage mechanics and crystal 
plasticity. While the underlying modeling assumptions were similar, 
the focus of the papers was different. In Wen et al. [7], the effect of 
cooling holes on creep lives was assessed, and in Gu et al. [8], the model 
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allowed for simulating creep behavior of single crystals with distinct 
crystallographic orientations and at various temperatures. Ni-based 
superalloy was also studied in Cheng et al. [9], where the creep-
fatigue interactions were considered. This was motivated by rotating 
components being exposed to both steady loads (creep during dwell) 
and transient loads (fatigue during start-up/shut-down). This coupling 
of creep and fatigue has also been recently investigated by Mäkinen 
et al. [10].

Creep in fiber-reinforced polymer composites was analyzed in Li 
et al. [3]. Namely, the creep responses of both carbon fiber reinforced 
polymer (CFRP) and glass fiber reinforced polymer (GFRP) composites 
at room and increased temperature were studied in detail. The authors 
experimentallly determined the fractions of elastic, viscoelastic and 
viscoplastic deformation in the total creep strain response. CFRP com-
posite appeared to have better creep resistance at room temperature. 
On the other hand, its creep properties decreased with increasing 
temperature to a much greater extent than in the case of the GFRP 
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composite. The fiber–matrix debonding was reported as a main creep 
failure mechanism. Qin et al. [11] performed molecular simulations in 
order to provide a deeper insight into the better creep resistance of 
CFRP as compared to GFRP composites at room temperature. Steered 
molecular dynamics simulations were carried out in order to under-
stand the mechanism of fiber–matrix debonding (at room temperature). 
The observed higher creep resistance of CFRP could be explained by the 
shear thresholds hypothesis—the shear threshold appeared to be higher 
in the case of carbon fiber–matrix interphase than in the case of glass 
fiber–matrix interphase.

In metals that are not subjected to elevated temperature, creep pro-
ceeds extremely slowly and creep experiments can last for a very long 
time [12]. This has driven efforts to extrapolate short-term creep results 
at elevated stress or temperature to normal long-term conditions [13]. 
For instance in Ayubali et al. [14], a phenomenological model based on 
Arrhenius kinetics and the Monkman-Grant relationship was developed. 
The model allowed to predict long-term creep behavior based on short-
term creep behavior. The model is suited for high temperature creep 
(up to 900 ◦C) and was tested for several different alloys. Arrhenius 
approaches have also been used to study the effects of material het-
erogeneity [15], as well as the deformation history [16] on the creep 
lifetimes.

Studying material creep from the fundamental science perspective 
is also possible using test materials. Paper [17] is an excellent test 
material because its macroscopic creep behavior — characterized by 
strain localization, damage accumulation, and abrupt failure — is 
qualitatively similar to that of many engineering materials, particularly 
quasi-brittle composites such as fiber-reinforced polymers and concrete. 
At the same time the creep rate in paper is much higher, enabling 
accelerated experiments and the use of full-field techniques such as 
DIC, cf. Koivisto et al. [18], where the lifetime of paper specimens was 
predicted using correlations between sample lifetime 𝑡𝑐 and minimum 
creep rate time 𝑡𝑚; Mäkinen et al. [19], where tertiary creep in paper 
was analyzed using DIC; Mäkinen et al. [20], where the detection of 
the creep onset in paper was performed using principal component 
analysis (PCA); and Pournajar et al. [21], where both DIC and acoustic 
emission (AE) were applied to study creep in paper. The failure mode 
of paper [17] also shows qualitative resemblance to that of fiber-
reinforced polymers [22] when examined via fracture surfaces, where 
fiber pull-out, bridging, and rough crack paths are commonly observed 
in both systems.

In the creep deformation of paper, three characteristic phases
emerge: primary, secondary, and tertiary creep [18]. Initially, during 
primary creep, the global strain rate �̇� decreases over time 𝑡 according 
to the Andrade law [23], typically following a power-law relation of 
�̇� ∝ 𝑡−2∕3, with the specific exponent value varying depending on the 
material. The secondary creep regime corresponds to logarithmic creep 
behavior [24], characterized by a strain rate decrease of �̇� ∝ 𝑡−1. 
This phase continues until the strain rate reaches its minimum. After 
the minimum, tertiary creep begins, characterized by an increase in 
strain rate in a power-law fashion. Previous studies and statistical 
analysis of numerous paper creep experiments have shown that in 
the sample geometry used here the time of minimum global strain 
rate occurs around 83% of the sample’s lifetime and provides valuable 
insight into predicting the time of failure cf. Rosti et al. [25], where 
the spatial fluctuations in paper samples were studied, as well as the 
studies described above [18–20]. This predictive relationship is also 
known as the Monkman-Grant relationship in materials science [26]. 
Similar power-law (or logarithmic) creep behavior has been observed 
in e.g. many fiber-reinforced composite materials [27–31]. Despite the 
well-established understanding of global strain rate signal statistics, 
we present the results of our investigation on the creep deformation 
of paper through the analysis of local strain fields using dimension-
ality reduction techniques from an unsupervised machine learning 
perspective.
2 
The progress of using artificial intelligence (AI) and machine learn-
ing (ML) in almost every domain of contemporary civilization is
tremendous. The field of materials science and engineering is no 
exception to this rule, and several recent review papers illustrate this. 
Prakash and Sandfeld [32] discussed the opportunities and problems re-
lated to combining data science, informatics and materials science (thus 
forming a so called materials informatics domain). Rodrigues et al. [33] 
discussed applications of big data and machine learning in materials 
science. Pilania [34] provided an overview of successful applications of 
machine learning in materials science (including property predictions, 
materials design, aiding atomistic simulations and characterization, 
providing insights based on natural language processing etc.). The 
review by Frydrych et al. [35] focused on applications of materials 
informatics in the areas of mechanical deformation experiments and 
simulations. Finally, Papadimitriou et al. [36] discussed applications 
of artificial intelligence in the design, discovery and manufacturing of 
materials.

The progress of AI in materials science is ongoing. Recently, Benza-
amia et al. [37] trained a deep learning (DL) architecture on externally 
bonded CFRP reinforced concrete column data. In order to ensure 
that the DL model provides physically sound and explainable results, 
additional monotonicity and smoothness criteria were enforced. They 
demonstrated that the trained DL model outperformed traditional mod-
els. One promising avenue is the development of so-called surrogate 
models that replicate computationally expensive simulations. For exam-
ple, Deshpande et al. [38] developed a surrogate model for non-linear 
finite element simulations allowing for the prediction of the deforma-
tion field of a body subjected to external loading. Wang et al. [39] 
developed a surrogate model for prediction of damage and lifetime in 
components resulting from creep and fatigue. The developed methodol-
ogy was demonstrated on two examples, namely the elbow pipe made 
of austenitic stainless steel 316 L and the hydrogenation reactor made 
of chromium-molybdenum 2.25Cr1Mo steel. Creep-fatigue interactions 
were also the subject of a study by Liu et al. [40]. The model developed 
by them was used to perform FE simulations of turbine blades made of 
SiC/SiC composite.

Of course, AI and ML work best when there is a vast amount of 
data. Digital image correlation [41] is an example of a technique that 
produces large amount of data, since at each pixel there is information 
about each surface strain component. This is why one particularly 
useful approach of using ML in materials science is combining it 
with DIC. For instance Leygue et al. [42] used inhomogeneous strain 
data obtained from DIC to data driven computational mechanics [43]. 
Cidade et al. [44] managed to determine dynamic fracture toughness 
in carbon fiber reinforced epoxy composites using DIC data and ML. 
Rezaie et al. [45] developed a DL method for crack segmentation using 
DIC images. The method was demonstrated on experimentally obtained 
grayscale images of stone masonry walls subjected to various loading 
conditions. Image segmentation using DIC was also performed in Perera 
et al. [46], where the surface of a reinforced concrete beam (strength-
ened with externally bonded FRP composite plate) was divided into two 
regions (damage/no damage) using the methodology relying on PCA 
and 𝑘-means clustering.

There have also been attempts to replace traditional DIC algorithms 
with DL. One such attempt was reported in Min et al. [47], where the 
displacement field was obtained using a convolutional neural network 
(CNN). Boukhtache et al. [48] applied a CNN in order to retrieve 
subpixel displacement fields, thus being an alternative to classical 
subset-based DIC. Yang et al. [49] developed the deep DIC framework, 
in which two separate CNNs were trained to infer displacement and 
strain fields from deformed sample images. The model was trained on 
synthetic data and tested on data from real experiments. Applications of 
DL models for DIC were reviewed by Archana and Jeevaraj [50]. Using 
unsupervised learning for a similar task was also recently reported by 
Cheng et al. [51].
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Fig. 1. (a) An image of the experimental setup, with a high-speed camera positioned in front of the testing machine. Illumination is achieved using two LED light panels. (b) 
Strain map at the last second of the sample’s lifetime, overlaid onto the reference image within the designated ROI (Region of Interest). (c) The raw data extracted from the tensile 
testing machine depicts a stress-controlled experiment. It commences with an initial stress ramp lasting 5.23 s, succeeded by a constant load of 𝐹 = 380N until the sample’s failure 
at 𝑡 = 45.7 s (depicted in blue on the left axis). The measured total displacement 𝑑 exhibits a characteristic creep curve, demonstrating an increase in strain (decrease in strain 
rate) while keeping the load constant (depicted in orange on the right axis).
In our study, we demonstrate the effectiveness of dimensionality 
reduction techniques as unsupervised machine learning methods for 
analyzing DIC data to study material creep behavior. Using PCA as 
a primary dimensionality reduction technique, we identify the opti-
mal range of strain maps for detecting tertiary creep onset (the time 
of minimum global strain rate, 𝑡min) and apply this range to other 
techniques, including Non-negative Matrix Factorization (NMF), Factor 
Analysis (FA), Independent Component Analysis (ICA), and Dictionary 
Learning (DL). A comparison across these techniques reveals a universal 
characteristic in the evolution of local strain fields, serving as a reliable 
precursor for predicting failure time. We also demonstrate the ability to 
capture characteristic images (referred to as ‘‘component maps’’) of the 
strain map evolution using these dimensionality reduction techniques. 
By applying PCA, FA, and ICA to a specific range of strain maps close to 
the tertiary creep phase, we achieve accurate predictions of the failure 
location. Finally, we present a method for evaluating and selecting the 
optimal dimensionality reduction techniques by reconstructing strain 
maps from dimensionally reduced spaces and comparing them with the 
original strain maps.

The article is structured as follows. After this introductory section, 
the Methods section describes both the experimental setup and the 
computational approach. Next, the Results section presents the findings 
from applying various dimensionality reduction techniques to the data. 
The Discussion section analyzes the key results and discusses the current 
limitations and perspectives of the study. The article concludes with the
Conclusions, which summarize the main findings and outline potential 
future applications of the developed approach.

2. Methods

The present section is divided into two subsections. The first de-
scribes the experimental procedure applied. The second summarizes 
data preprocessing and all the dimensionality reduction techniques that 
have been used.

2.1. Experiment

In this section, we outline the details of our experimental approach. 
As illustrated in Fig.  1a, the setup involved using the Instron ElectroPuls 
E1000 tensile testing machine, which applied a constant load 𝐹  to the 
marked sample at the center while recording the piston displacement 
𝑑. The global strain (𝜀) was determined using the formula 𝜀 = 𝑑

ℎ , with 
ℎ representing the specimen’s initial height. Additionally, the Phantom 
3 
S990 high-speed camera captured images of the samples at a resolution 
of 26.7 μm/pixel and a frequency of 30 Hz. The paper samples, sized 
69 mm × 142 mm and with a grammage of 75 g/m2, were printed with 
a random speckle pattern.

During the experiments, the tensile testing machine applied a con-
stant load of 380 N. This load was selected as it represents 90% of the 
average load that caused failure in five preliminary test samples and 
was used consistently across all experiments. The application of this 
constant load was controlled via a linear load ramp over a duration of 
5 s.

The results discussed are based on four experiments, with sample 
lifetimes varying from 23 s to 145 s. These experiments were chosen to 
ensure that each sample’s lifetime was longer than the time required to 
ramp up to the constant stress level.

The DIC analysis is conducted using the AL-DIC software [52]. We 
first select the specific area from the surface image of the sample, which 
is called Region of Interest (ROI). The selection of the ROI is done by 
including most of the sample gauge area, but excluding a small portion 
around the edges to avoid edge effects in the DIC calculations (see Fig. 
1b). After the determination of ROI area, the software calculates local 
displacements 𝐮 = (𝑢, 𝑣) relative to the first image, employing circular 
subsets with a radius of 3.7 mm. Subsets are placed every 26.7 μm. 
The local strain component in the loading direction, denoted as 𝜖𝑦𝑦, 
is then computed from these displacements as 𝜖𝑦𝑦 = 𝜕𝑣

𝜕𝑦  using simple 
finite difference numerical differentiation. The resulting strain field is 
represented by an array of 801 pixels in width and 1841 pixels in 
height.

We employ an outlier-removal process to the DIC strain fields by 
considering each timeseries 𝜖𝑦𝑦(𝑥, 𝑦), for a single 𝑥 and 𝑦, and remov-
ing clear outliers (points that deviate more than three scaled median 
absolute deviations from the median). These outliers are set to the mean 
values of the previous and next values. We additionally require that the 
strains increase monotonously. This is done by constructing a mono-
tonously increasing upper and lower envelope of the strain timeseries 
and taking their average to correspond to the strain [53].

We also consider the scale of the DIC analysis relative to the char-
acteristic structural scale observed in paper, with a specific focus on 
flocs. Flocs, clusters of fibers formed during papermaking, are integral 
to the visible cloudiness observed in the paper structure. According to 
literature [17], this structural scale typically measures around 2 mm.
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2.2. Dimensionality Reduction (DR) analysis

The following subsections contain details about data preprocess-
ing and all the dimensionality reduction techniques applied, namely: 
principal component analysis, non-negative matrix factorization, factor 
analysis, independent component analysis and dictionary learning.

2.2.1. Data preprocessing
We begin by considering the computed strain fields 𝜖(𝑘,𝑖)𝑦𝑦 , where the 

index 𝑖 traverses all 𝑉  spatial points, and 𝑘 represents the time step. 
These strain fields undergo a normalization process, producing a matrix 
𝑋 with normalized input vectors as rows: 

𝑋(𝑘,𝑖) =
|𝜖(𝑘,𝑖)𝑦𝑦 − ⟨𝜖(𝑘,𝑖)𝑦𝑦 ⟩|

√

⟨(𝜖(𝑘,𝑖)𝑦𝑦 )2⟩ − ⟨𝜖(𝑘,𝑖)𝑦𝑦 ⟩

2
, (1)

where ⟨⋅⟩ denotes spatial averaging. This normalization procedure first 
subtracts the spatial mean from each strain field and then applies the 
absolute value to focus on the magnitude of strain deviations, ensuring 
that both positive and negative fluctuations from the mean are treated 
equally, while maintaining unit variance. By emphasizing the intensity 
of strain changes, this approach ensures that the data is well-prepared 
to identify critical trends in the deformation process, serving as robust 
input for the Dimensionality Reduction techniques.

2.2.2. Principal component analysis (PCA)
After the data preprocessing steps, we proceed with principal com-

ponent analysis (PCA) [54] to extract the principal components from 
the strain fields that capture most of the variability in the data [55–57]. 
The process involves the singular value decomposition of the matrix 𝑋, 
represented as 

𝑋 = 𝑈𝛴𝑊 T. (2)

Here, 𝑈 contains the left singular vectors, 𝑊  contains the right singular 
vectors, and 𝛴 is a diagonal matrix containing the singular values of 𝑋. 
Each singular value 𝜎𝑗 corresponds to a principal vector 𝑠𝑗 .

To capture variations in the data, we compute the eigenvalues 𝜆 of 
the covariance matrix 𝐶 for the input vectors using the formula: 

𝐶 = 𝑋T𝑋
𝑛 − 1

= 𝑈
(

𝛴2

𝑛 − 1

)

𝑈T. (3)

Here, 𝑛 represents the number of samples corresponding to the number 
of strain maps as rows of matrix 𝑋. The singular values 𝜎𝑗 are linked 
to the eigenvalues 𝜆𝑗 through the relation 𝜎𝑗 =

√

𝜆𝑗 (𝑛 − 1).
We compute the projection of the principal components onto the 

strain maps: 

PCA𝑘
𝑗 =

𝑠𝑗 ⋅𝑋𝑘
√

𝜎𝑗
, (4)

where 𝑋𝑘 is the strain map at the 𝑘th time step, and 𝑠𝑗 denotes the 𝑗th 
principal vector.

The principal vectors 𝑠𝑗 are reshaped to match the size of the orig-
inal strain maps, creating ‘‘component maps’’ that illustrate the spatial 
distribution of each principal component across all spatial points.

Finally, for data reconstruction, we use the following equation: 

�̂�𝑘 =
𝑛
∑

𝑗=1
PCA𝑘

𝑗 ⋅ 𝑠𝑗 ⋅
√

𝜎𝑗 , (5)

where �̂�𝑘 is the reconstructed strain map at time step 𝑘, using the top 
𝑛 principal components.
4 
Fig. 2. Improvement of the PCA detection of the minimum strain rate time (𝑡min). (a) 
Global strain rate (�̇�) curve for a representative experiment (left 𝑦-axis, blue curve) 
and the corresponding second PCA component projection (right 𝑦-axis, orange curves) 
plotted against the normalized time before failure (𝑡𝑐 − 𝑡)∕𝑡𝑐 (bottom), where 𝑡𝑐 denotes 
the failure time. The filled circles represent the second PCA component projection 
derived from the strain maps spanning from the onset of primary creep until the point 
of failure. The peak location of these component projection serves as the starting index 
for a new PCA analysis (indicated by empty circles) of the same experiment, resulting 
in an improved detection approach with the peak location converging towards 𝑡min
(indicated with a black triangle marker on the global strain rate curve). (b) Peak 
location of the second PCA component projection, 𝑡PCAmin  [Eq. (15)], plotted against the 
time of minimum strain rate, 𝑡min. The filled markers represent the peak location of the 
component projection derived from the entire creep deformation region, while empty 
markers represent the detection of 𝑡min using component projection from improved PCA 
analysis (the case of the curve with empty circles in panel (a)). Colors of the empty 
and filled markers are consistent across the experiments. The black line corresponds to 
the case where 𝑡PCAmin = 𝑡min.

2.2.3. Non-negative matrix factorization (NMF)
Non-negative matrix factorization (NMF) [58] is a dimensionality 

reduction technique that factorizes a non-negative data matrix 𝑋 into 
two lower-dimensional matrices, 𝑊  and 𝐻 , where all elements are non-
negative [59,60]. In the context of analyzing strain maps, NMF extracts 
spatial patterns in a way that allows the coefficients to be non-negative, 
aiding in the interpretability of the results.

Starting with the normalized strain maps in matrix 𝑋, NMF seeks 
to approximate 𝑋 as the product: 
𝑋 ≈ 𝑊 ⋅𝐻, (6)

where 𝑊  represents the basis components (patterns), and 𝐻 represents 
the activation matrix indicating the presence of these components in 
each strain map.

The resulting 𝑊  matrix contains the spatial patterns, while the 𝐻
matrix provides the corresponding NMF coefficients. For better notation 
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clarity, we denote the coefficients as 𝑁𝑀𝐹 𝑘
𝑗 , which represent the 

contribution of the 𝑗th basis component to the strain map at the 𝑘th 
time step.

The ‘‘component maps’’ are derived by reshaping the columns of 
𝑊  to match the size of the original strain maps, providing visual 
representations of the identified spatial patterns.

For the reconstruction of the strain maps, we use the following 
equation: 

�̂�𝑘 =
𝑛
∑

𝑗=1
𝑁𝑀𝐹 𝑘

𝑗 ⋅𝑊𝑗 , (7)

where �̂�𝑘 is the reconstructed strain map at time step 𝑘, and 𝑛 denotes 
the number of NMF basis components used in the reconstruction.

2.2.4. Factor Analysis (FA)
Factor analysis (FA) [61] is a method that explores the underlying 

factors influencing observed variables and captures their interrela-
tionships [62,63]. Post data preprocessing, factor analysis involves 
estimating the factor loading vectors and unique variances.

The factor loading matrix 𝐿 is determined by solving the equation 

𝑋 = 𝐿𝐹 + 𝐸, (8)

where 𝑋 is the data matrix (comprising strain maps in rows), 𝐹  is the 
factor score matrix, and 𝐸 is the matrix of unique variances. The goal 
is to obtain 𝐿 such that 𝐸 is minimized. The factor loading vectors 
represent the weights of each factor for each strain map.

To obtain the factor scores, we project the input vectors (strain 
maps) onto the factor loading vectors as follows: 

𝐹𝐴𝑘
𝑗 = 𝑋𝑘 ⋅ 𝐿

T
𝑗 . (9)

Here, 𝐹𝐴𝑘
𝑗  represents the factor score for the 𝑗th factor at the 𝑘th time 

step, capturing the contribution of that factor to the strain map at time 
step 𝑘.

After obtaining the factor loading vectors, we reshape them to 
match the size of the original strain maps, producing ‘‘component 
maps’’ that illustrate the spatial distribution of each factor’s influence 
across all spatial points.

Finally, the reconstruction of the strain maps from FA can be 
expressed as: 

�̂�𝑘 =
𝑛
∑

𝑗=1
𝐹𝐴𝑘

𝑗 ⋅ 𝐿𝑗 , (10)

where �̂�𝑘 is the reconstructed strain map at time step 𝑘 using the top 
𝑛 factors.

2.2.5. Independent component analysis (ICA)
Independent component analysis (ICA) [64] is a technique that 

separates a multivariate signal into additive, independent components
[65]. In the context of dimensionality reduction for strain maps, ICA 
aims to identify spatial patterns that are statistically independent.

The objective is to find a matrix 𝑊  that satisfies the equation 

𝐼𝐶𝐴𝑘
𝑗 = 𝑋𝑘 ⋅𝑊

T
𝑗 . (11)

In this equation, 𝐼𝐶𝐴𝑘
𝑗  represents the projection of the 𝑗th independent 

component for the strain map at the 𝑘th time step. The columns of 
matrix 𝑊  contain components assigned to each strain map for a specific 
independent component.

ICA is particularly useful when the assumption of statistical in-
dependence among components is valid. After obtaining the matrix 
𝑊 , each column of 𝑊  represents a spatial pattern that is statistically 
independent from the others. These spatial patterns are reshaped to 
match the size of the original strain maps, forming ‘‘component maps’’.
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Finally, for reconstruction, the input data can be reconstructed using 
the inverse transformation: 

�̂�𝑘 =
𝑛
∑

𝑗=1
𝐼𝐶𝐴𝑘

𝑗 ⋅𝑊𝑗 , (12)

where �̂�𝑘 represents the reconstructed strain map at time step 𝑘, and 
𝑛 is the number of independent components.

2.2.6. Dictionary Learning (DL)
Dictionary learning [66] is a versatile technique for represent-

ing data as a linear combination of atoms from a learned dictio-
nary [67]. In the context of strain maps, dictionary learning aims to find 
a sparse representation of the input data, capturing essential patterns 
and features.

Starting with the normalized strain maps in matrix 𝑋, dictionary 
learning seeks to express each strain map as a sparse linear combination 
of basis elements from a dictionary matrix 𝐷. Mathematically, this is 
represented as: 

𝑋 ≈ 𝐷 ⋅ 𝐴, (13)

where 𝐴 is a sparse coefficient matrix. The columns of the matrix 𝐷
are the basis elements or atoms, and the sparse coefficients 𝐴 provide 
insights into the importance of each basis element for a specific strain 
map. Through iterative updates to 𝐷 and 𝐴, the algorithm refines the 
dictionary to capture the most salient features of the strain maps.

For clarity, we introduce dictionary learning (DL) coefficients, de-
noted as 𝐷𝐿𝑘

𝑗 , which represent the contribution of the 𝑗th basis element 
to the strain map at the 𝑘th time step.

In this method, we refer to the ‘‘component maps’’ as the columns 
of the dictionary matrix 𝐷, which can be reshaped to match the size 
of the original strain maps. The component maps offer insights into 
the spatial distribution and importance of each basis element across all 
spatial points.

For data reconstruction, we use the following equation: 

�̂�𝑘 =
𝑛
∑

𝑗=1
𝐷𝐿𝑘

𝑗 ⋅𝐷𝑗 , (14)

where �̂�𝑘 is the reconstructed strain map at time step 𝑘, using the top 
𝑛 basis elements from the dictionary.

At the end of the Dimensionality Reduction (DR) Analysis section, 
we introduce the term ‘‘component weight’’, referring to the projection, 
coefficient, or score of the components, depending on the specific DR 
technique used. For simplicity, the abbreviation of each DR technique’s 
name is used to denote its respective component weight. We summarize 
that the DR techniques are employed to extract components, with their 
associated component weight plotted as time series to help detect the 
onset of tertiary creep, a critical transition in the deformation process. 
Additionally, these components are used to create ‘‘component maps’’, 
providing spatial insights into the deformation patterns leading up to 
failure. The DR techniques are also used to reconstruct the strain maps, 
enabling an assessment of each technique’s accuracy by analyzing the 
mean and standard deviation of the differences between the original 
and reconstructed maps.

3. Results

The present section is divided into three subsections. First, we 
present the detection of the tertiary creep onset based on the evolution 
of the component weights obtained from dimensionality reduction 
techniques. Then, we discuss the prediction of the failure location using 
component maps derived from the same techniques. Finally, we provide 
a comparative assessment of the different methods to evaluate their 
performance.



B. Mammadli et al. International Journal of Mechanical Sciences 303 (2025) 110612 
Table 1
Time of the minimum of the global strain rate signal, 𝑡min, and its detection using 
the analysis of the local strain fields with five dimensionality reduction techniques. 
All values are divided by the time of failure, 𝑡𝑐 . The last three columns indicate the 
average values across the four tests, with the standard deviation (STD) and coefficient 
of variation (CV) computed based on those averages.
 Test 1 Test 2 Test 3 Test 4 Average STD CV (%) 
 𝑡min∕𝑡𝑐 0.8644 0.8835 0.8448 0.8104 0.8508 0.0305 3.58  
 𝑃𝐶𝐴 0.7107 0.7273 0.6716 0.6959 0.7014 0.0225 3.20  
 𝑁𝑀𝐹 0.7107 0.7273 0.6716 0.7242 0.7084 0.0246 3.48  
 𝐹𝐴 0.7107 0.7273 0.6865 0.6818 0.7016 0.0195 2.78  
 𝐼𝐶𝐴 0.6736 0.6653 0.6087 0.6393 0.6467 0.0274 4.24  
 𝐷𝐿 0.6901 0.7397 0.7056 0.7242 0.7150 0.0209 2.92  

3.1. Detection of tertiary creep onset

In the paper creep experiments, we encountered excessively noisy 
global strain rate signals. To enhance the clarity of the data, we 
applied noise reduction techniques by utilizing a moving average of 
the strain with a small time interval. An example demonstrating the 
global strain rate signal is presented in Fig.  2 a (left y-axis). Here, 
we observe the characteristic creep behavior: a decrease in strain rate 
during the primary creep phase, followed by a period of relatively 
constant fluctuating signals, which would correspond to the secondary 
creep regime. Finally, we observe an acceleration towards failure in a 
power-law fashion, indicative of the tertiary creep regime. However, it 
is important to note that in a highly noisy signal, precisely determining 
the region of secondary creep (which is often very small in the case of 
paper creep deformation) and identifying the minimum of the global 
strain rate curve is significantly challenging. One sensible approach that 
we used to determine the minimum strain rate is by employing a larger 
averaging window. By systematically increasing the averaging window 
size across the tests, we observed that after a certain threshold the 
global strain rate signal consistently exhibited a single clear minimum 
without noise-induced fluctuations, and the detected 𝑡min remained 
unchanged with further increases in window size, allowing for a robust 
identification of 𝑡min. A detailed analysis of this methodology and the 
impact of different averaging window sizes is provided in Appendix. 
However, for visualization of creep behavior, smaller window sizes 
were used to better demonstrate creep stages. In highly noise-reduced 
signals, we then identify the minimum and its corresponding time, 
which would correspond to the onset of tertiary creep. After determin-
ing the minimum strain rate time (𝑡min) from global strain rate signal, 
we compare it with the detected time for tertiary creep onset from the 
dimensionality reduction analysis of the local strain fields.

We demonstrate the capability to capture the essential character-
istics of local strain field evolution through dimensionality reduction 
analysis applied to the matrix containing all strain maps during defor-
mation. Principal Component Analysis (PCA) serves as an illustrative 
example, identifying orthogonal components that capture the most 
variability in the DIC strain fields. By utilizing the strain maps from 
the onset of primary creep until failure (Fig.  2a), we observe that the 
second PCA component projection shows a clear peak around the point 
where global strain rate signals start to plateau, would correspond to 
the onset of the secondary creep regime. However, our primary goal 
is to define the onset of tertiary creep (the time of minimum global 
strain rate, 𝑡min) as a failure precursor. Therefore, we discard the strain 
maps before the peak location of the second PCA component projection 
and select strain maps from the detected secondary creep onset until 
failure for a new PCA analysis. As a result, we observe a peak on the 
second PCA component projection around the time of minimum global 
strain rate, which corresponds to the onset of tertiary creep. We refer 
to this approach as the ‘‘improved PCA analysis’’ for the detection of 
tertiary creep onset, as it involves using a specific range of strain maps 
determined by the PCA analysis. We then define the following relation: 

𝑡PCA = argmax𝑃𝐶𝐴 . (15)
min 2
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In Fig.  2b, across all the experiments, we observe that the results of 
the PCA analysis that utilize the strain maps from the whole creep 
deformation region (indicated with filled circles) exhibit more scatter 
from the detected time of tertiary creep onset (𝑡min) from global strain 
rate signals. Nonetheless, it is noteworthy that all these time points 
that correspond to the beginning of the plateau on the global strain 
rate signals, correspond to the onset of secondary creep. However, the 
results of the improved PCA analysis (indicated with empty circles) 
consistently approach the time of minimum global strain rate signals 
which detect the tertiary creep onset.

We utilized the same range of strain maps that were used in the 
improved PCA analysis for detecting the onset of tertiary creep (refer 
to Fig.  2) as input for the other dimensionality reduction techniques. 
This is demonstrated in Fig.  3, which shows the component weight 
of all methods across three components. At first glance, we observe 
that the components weight of three methods (PCA, NMF, and DL) 
exhibit consistent behavior across all tests. However, for FA and ICA, 
the components weight may vary depending on the specific test. In 
cases where the tests display consistent behavior, we note that the 
third NMF (Fig.  3f) and first DL (Fig.  3m) components coefficient show 
a clear peak around the peak location of the second PCA component 
projection (Fig.  3b), occurring near the time of minimum strain rate. 
Subsequently, we define the following equations for the detection of 
𝑡min using NMF and DL components coefficient, similar to Eq.  (15): 
𝑡NMF
min = argmax𝑁𝑀𝐹3 (16)

and 
𝑡DLmin = argmax𝐷𝐿1. (17)

For the second FA (Fig.  3h) and first ICA (Fig.  3j) components weight, 
we observe a minimum around the maximum peak position of the 
components weight from other methods (those used to detect 𝑡min) 
in three out of the four tests. The exception occurs in Test 3, where 
the third FA component score (Fig.  3i) also shows a similar behavior. 
However, in Test 1, the second ICA component projection (Fig.  3k) 
shows a maximum around the detected 𝑡min.

After obtaining the definitions [Eqs. (15), (16), (17)] for PCA, NMF, 
and DL for the detection of 𝑡min, and considering the cases of FA 
and ICA, including their respective minimum peaks of the second and 
first components weight (including exceptional cases), we present the 
results in Table  1. The table shows the detected 𝑡min values from DIC 
strain fields and global strain rate signals as the ratio 𝑡min∕𝑡𝑐 , normal-
ized by the failure time 𝑡𝑐 . The dimensionality reduction techniques 
generally outperform the global strain rate signals in detecting the onset 
of tertiary creep, as the global strain rate case exhibits a higher standard 
deviation. Additionally, in some tests, the results of PCA, NMF, and 
FA are identical, suggesting a potential universal characteristic in the 
evolution of strain fields.

The table also highlights the consistency of the dimensionality 
reduction techniques in detecting 𝑡min. PCA, FA, and DL demonstrate 
closely aligned results with lower variability, whereas NMF and ICA 
exhibit more variation, as indicated by their higher standard deviations 
(STD) and coefficients of variation (CV) computed based on the average 
values across four tests. ICA, in particular, has the highest standard 
deviation, indicating it may be more sensitive to noise or component 
selection. A detailed analysis of the causes behind the observed vari-
ability among the different techniques, particularly for ICA and NMF, 
is provided in Section 3.3. Overall, the average 𝑡min∕𝑡𝑐 across all DR 
techniques remains relatively close, suggesting each method is capable 
of identifying the critical point of deformation.

By further examining Fig.  3, we can provide additional insights 
into the remaining components weight of the methods. Regarding the 
PCA components projection, we observe that the first PCA component 
projection (Fig.  3a) transitions from a low value to a high constant 
value around the peak position of the second PCA component projec-
tion (Fig.  3b). Additionally, the third PCA component projection (Fig. 
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Fig. 3. The tabular figure displays the plots of the three components weight (indicated by column names) for the five-dimensionality reduction techniques (indicated by row 
names) across four experiments (a) PCA1, (b) PCA2, (c) PCA3, (d) NMF1, (e) NMF2, (f) NMF3, (g) FA1, (h) FA2, (i) FA3, (j) ICA1, (k) ICA2, (l) ICA3, (m) DL1, (n) DL2, (o) DL3. The 
colors of the curves remain consistent across all figures for the experiments. The range of strain maps chosen corresponds to the range utilized in the improved PCA detection 
analysis (refer to Fig.  2) and is used to generate all components weight of the methods. Normalized components weight with the unit boundaries are plotted against normalized 
time before failure (𝑡𝑐 − 𝑡)∕𝑡𝑐 . Note that time in these plots goes from right to left.
3c) displays two peaks: one maximum and one minimum. Notably, 
the transition from the maximum peak to the minimum peak occurs 
near the detection point of the second PCA component projection. 
Concerning the NMF components coefficient, the first NMF component 
coefficient (Fig.  3d) shows a transition from a low constant value to 
a high constant value, while the second NMF component coefficient 
(Fig.  3e) exhibits a transition from a high value to a constant low 
value around the peak position of the third component coefficient 
(Fig.  3f), which is used for detection. For the FA components score, 
the first FA component score (Fig.  3g) transitions from a high value 
to a low constant value, and the third FA component score (Fig.  3i) 
shows a transition from a maximum peak to a minimum peak (similar 
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to the third PCA component projection) around the detection point 
of the minimum peak of the second FA component score (Fig.  3h), 
with one exception. As for the ICA components projection, the be-
havior appears experiment-dependent. The remaining ICA components 
projection, aside from those involved in peak detection, show either 
transitions from high to low values or transitions between two peaks 
around the detection point. Finally, for the DL components coefficient, 
the second DL component coefficient (Fig.  3n) transitions from a high 
value to a low value near the maximum peak position of the first 
DL component coefficient (Fig.  3m), while the third DL component 
coefficient (Fig.  3o) exhibits a minimum peak at the same position, 
which is used for detection.
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Fig. 4. An example experiment (Test 1) illustrating the 𝜖𝑦𝑦 strain maps at two different deformation stages and component maps obtained through dimensionality reduction 
techniques, generated from a specific region of deformation. (a) Image of the material’s crack surface at the sample failure moment. The red box indicates the Region of Interest 
(ROI) for the strain maps, and the dashed red line represents the crack path within this area. (b) 𝜖𝑦𝑦 strain map during the tertiary creep deformation stage. (c) 𝜖𝑦𝑦 strain map at 
the time of the minimum strain rate. (d) Component maps resulting from dimensionality reduction techniques, derived from fifty 𝜖𝑦𝑦 strain maps up to the index corresponding to 
the minimum strain rate time. This range is highlighted with a yellow area on the curve. The crack path (red dashed line) is overlaid onto some of the component maps which 
show signatures of the failure of the sample, and onto the strain map at the tertiary creep regime.
Fig. 5. Zoomed-in view around the crack path within the ROI area for selected maps from Fig.  4. (a) Red arrows indicate the direction of crack propagation, drawn on the crack 
surface and overlaid onto the 𝜖𝑦𝑦 strain map at the tertiary creep phase, as well as onto the component maps in (b) and (c). (b) Component maps from three dimensionality 
reduction techniques (PCA, FA, and ICA) predict the final strain localization region through maximum and minimum hotspots. (c) Second PCA and first ICA component maps 
predict the entire crack path. The black dashed line represents the ‘‘separation path’’, marking the boundary between the uniform and patterned regions in the component maps, 
drawn slightly below this boundary for clarity. This dashed line is then shifted to align with the strain localization point predicted by other components (as seen in (b)), resulting 
in the solid black line that accurately represents the predicted crack path.
3.2. Prediction of the failure location

Predicting the localization of failure and the emergence of a final 
crack in a system without a dominant crack is a significant challenge. 
One of the initial approaches explored in previous studies involves 
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analyzing the ‘‘activity spots’’ detected by DIC during early deforma-
tion stages, though these spots have not shown a strong correlation 
with the final deformation localization  [18]. However, final failure 
localization becomes more apparent during the latest tertiary creep 
stage, as it results from a gradual evolution rather than a sudden 
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Fig. 6. The tabular figure demonstrates the same scenario as Fig.  4 but for all tests (a) 1, (b) 2, (c) 3, (d) (4). For each test, it shows the crack path inside the ROI area, 
strain maps at the time of minimum global strain rate, strain maps at tertiary creep deformation time (approximately 0.3 s before failure time), and the three most informative 
component maps (generated from 50 strain maps directly before the time of minimum global strain rate). The crack path is indicated with a red dashed line and is overlaid onto 
the strain maps at tertiary creep deformation time and onto the component maps. The orange empty circle indicates the location of the maximum or minimum hot spots of the 
maps. Component maps exhibit distinct patterns that consistently indicate the failure location across different experiments.
event in this phase of deformation  [19]. Furthermore, evidence sug-
gesting the predictability of failure time based on the critical level of 
accumulation of historical creep damage at the minimum strain rate 
level provides insights that the evolution of final deformation may 
commence relatively early, even close to the tertiary creep regime but 
not directly discernible on the local strain fields. Rather than examining 
a single strain map at a specific time, our method suggests producing a 
‘‘characteristic image’’ of deformation through a set of strain maps that 
capture observed features across all spatial points over time. In this 
paper, these ‘‘characteristic images’’ are referred to as the ‘‘component 
maps’’ of the dimensionality reduction techniques.

We obtained the most informative component maps for predicting 
final deformation localization and crack path by utilizing 50 strain 
maps produced up to the time of the minimum global strain rate signal, 
starting about 1.7 s before 𝑡min. In the example test case illustrated in 
Fig.  4, the prediction of failure location is achieved approximately 6 s 
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before the failure time (or at 86% of the sample lifetime), providing 
a significant advancement in early and accurate forecasting of sample 
failure. However, strain localization can start to be visually detectable 
on local strain maps approximately 1 s before failure in the best-case 
scenario. In Fig.  4d, we demonstrate all three component maps of the 
five dimensionality reduction techniques. Upon careful examination 
of all 15 component maps, it is evident that three techniques (PCA, 
FA, and ICA) perform well in predicting the final failure location. In 
contrast, the remaining two techniques (NMF and DL) show early signs 
of hotspots in the strain maps, particularly in the bottom right regions; 
however, they are generally less informative for predicting final defor-
mation. Notably, the second NMF map displayed a maximum at the 
final deformation localization in this experiment, but this observation 
was not consistent across other experiments.

In Fig.  5, we closely examine selected component maps from Fig.  4, 
which reveal signatures of the failure location. By zooming in on the 
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crack path region in these component maps, we make further observa-
tions about predicting the final strain localization point and the entire 
crack path within the ROI area. Notably, the first PCA and second ICA 
component maps predict the precise location of the final deformation 
localization with distinct maximum hotspots, while the first and third 
FA component maps indicate clear minimum hotspots (see Fig.  5b). 
Additionally, the second PCA and first ICA component maps predict 
the entire crack path (see Fig.  5c), displaying a relatively uniform, 
pattern-free area where the actual crack path, when overlaid, appears 
centrally within this region. The separation path between the uniform 
and patterned regions closely resembles the actual crack path. Aligning 
this separation path with the strain localization point predicted by other 
components enables an accurate prediction of the crack path.

In Fig.  6, we present the three most informative component maps 
for all four experiments, obtained from the three dimensionality re-
duction techniques (PCA, FA, and ICA), which demonstrated robust 
performance in predicting the final failure location. It is noteworthy 
that the first PCA and FA component maps consistently predict the 
failure location across all tests, whereas the predictive components in 
the ICA maps may vary between experiments. For clarity, the case of 
Test 1 (Fig.  6a) is illustrated in the previous Figs.  4, 5 and explained 
above. Similarly, for the other experiments, we generated component 
maps from the range of 50 strain maps just before the time of the 
minimum global strain rate (𝑡min). In the case of Test 2 (Fig.  6b), 
two distinct strain localization hot spots are clearly observed on the 
strain map in the tertiary regime: one is located at the top of the 
map, while the other is positioned underneath it on the left side. 
Notably, the top hot spot is also visible on the strain map at the time 
of 𝑡min, whereas the other hot spot, from which the crack initiates, is 
not apparent at that time. However, the component maps predict the 
location of the main strain localization where the sample fractures with 
clear minimum (for PCA and FA) and maximum (for ICA) points on 
them. Moreover, the crack path surrounds the region with a stripe of 
minimum points (for PCA and FA) and maximum points (for ICA) on 
the component maps. This stripe originates from the most distinctly 
defined minimum and maximum points, establishing a clear trajectory. 
In the case of Test 3 (Fig.  6c), there is no strain localization at the 
end stage of the deformation, possibly due to the formation of a shear 
band and the uniform distribution of failure stress along the crack path. 
Consequently, the component maps do not show clear maximum or 
minimum points; instead, a uniform pattern-free area is observed on 
the component maps, overlapping with the crack path (notably, this 
uniform area is consistently observed on all three component maps of 
PCA, FA, and ICA for this experiment). Regarding the case of Test 4 
(Fig.  6d), a coupling of the minimum and maximum hot spots of the 
first component maps of PCA and FA is located on the crack path but 
on the opposite side (right) of where the final deformation localization 
occurs (left side). This coupling would be a clear sign of the specific 
crack propagation like phenomena, where the flow of deformation 
starts from the right side and then localizes at the left side after the 
𝑡min time. Notably, in this experiment, the predictive ICA map is the 
second component, where the entire crack path is observable with a 
small uniform area, and the maximum is located near the right side 
around the crack path.

3.3. Comparison of dimensionality reduction techniques

In the first results sub-section, we identified optimal ranges of strain 
maps for detecting tertiary creep onset (the time of the minimum 
strain rate, 𝑡min). Using the strain maps from these ranges as input for 
dimensionality reduction techniques, we analyzed three components 
weight (projection, coefficient, or score of the components) and defined 
the corresponding specific component weight for each DR technique to 
detect 𝑡min. The results are discussed in the sub-section and presented 
in Table  1. Although we have a small sample size, overall, PCA, FA, 
and DL show consistent results with less variability, while NMF and 
ICA exhibit greater fluctuations, as indicated by their higher standard 
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deviations (STD) and coefficients of variation (CV) calculated from the 
average values across four tests. This observed variability can be traced 
back to the intrinsic mathematical properties of the methods. PCA and 
FA prioritize variance maximization and modeling of the covariance 
structure, respectively, both of which focus on capturing dominant and 
robust features of the data, leading to their stable behavior across dif-
ferent samples. In contrast, ICA seeks to find statistically independent 
components, making it highly sensitive to noise and minor fluctuations 
in the data, as reported in resting-state fMRI studies [68], supporting 
our observations in strain field analysis. Even subtle differences across 
samples can lead ICA to different independent component solutions, 
which explains the greater sample-to-sample variation observed in 
our results. Similarly, NMF introduces additional variability due to 
its non-negativity constraint and its strong dependence on the initial 
conditions of the optimization; different initializations can cause NMF 
to converge to different local minima, as highlighted in muscle synergy 
extraction studies [69]. DL, while also a matrix factorization method, 
showed relatively more stable behavior compared to NMF, likely be-
cause its sparsity constraint forces the extracted components to focus 
on dominant localized patterns, thereby reducing sensitivity to noise 
and initialization variability. These considerations explain the strengths 
and weaknesses observed across the dimensionality reduction methods 
in predicting failure timing and localization. Despite these method-
specific differences, it is noteworthy that under certain conditions, 
multiple techniques still produced closely aligned results. Interestingly, 
in some tests, the results from PCA, NMF, and FA are identical, suggest-
ing a possible universal characteristic in the evolution of strain fields, 
where the time of failure can be predicted at approximately 70% of the 
sample lifetime.

In the second results sub-section, similar to the first, we analyzed 
the top three components of the DR methods. By deriving the com-
ponents from the specific range of strain maps close to the time of 
the minimum global strain rate (tertiary creep onset), we reshaped the 
component vectors to match the size of the strain maps. Among all the 
techniques, PCA, FA, and ICA demonstrated the potential to predict 
the failure location. By examining the three component maps for each 
technique, we found that several components were informative. When 
a localization point was identified in one component map, examining 
the same location in another map could even reveal the signature of the 
entire crack path, even if the localization was not directly observable.

In the previous sub-sections, we compared the performance of 
the DR techniques based on the functionality of their specific com-
ponents. However, to provide a more comprehensive assessment of 
these techniques, it is essential to consider the contribution of the 
top three components presented separately in the results. By tak-
ing into account the contributions of all three components, we can 
reconstruct the strain maps from the dimensionally-reduced spaces 
(refer to Eqs. (5), (7), (10), (12), (14)). As shown in Fig.  7, we may 
assess the ability of these techniques to capture the key features of 
the original data by comparing the differences between processed 
original strain maps 𝑋𝑘 and the reconstructed strain maps �̂�𝑘 at the 
𝑘th time step, given the chosen dimensional reduction. To ensure a 
clear and standardized comparison, the mean and standard deviation 
of these differences are normalized by the average strain maps ⟨𝑋𝑘⟩ and 
plotted as a function of normalized time 𝑡∕𝑡𝑐 with the failure time 𝑡𝑐 , 
during creep testing. This approach helps to highlight the techniques’ 
ability to approximate the original strain data over time, with lower 
mean differences and standard deviations in Fig.  7 signifying better 
dimensional reduction technique’s performance.

In Fig.  7, the original and reconstructed strain maps used to compute 
the differences are selected from the same optimal range identified in 
the first results sub-section, where the input strain maps for the DR 
techniques were used to detect the onset of tertiary creep. At first 
glance, we can see that the mean differences across all tests remain 
close to zero for most of the deformation process but increase signif-
icantly near the failure time. To ensure a clearer visual comparison 
across tests, the 𝑦-axis limits were adjusted to focus on the main range 
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Fig. 7. The tabular figure presents the plots of the mean (first column) and standard deviation (second column) of the differences between the normalized original strain maps 
𝑋𝑘 (refer to Eq.  (1)) and reconstructed strain maps �̂�𝑘 (refer to Eqs. (5), (7), (10), (12), (14)) for tests (a) 1, (b) 2, (c) 3, (d) 4, across five dimensionality reduction techniques. 
The colors of the curves are consistent across all figures for the DR techniques. The range of the original and reconstructed strain maps corresponds to the range used in Fig.  3. 
The mean and standard deviation of the differences are divided by the average of the processed strain maps ⟨𝑋𝑘⟩ and plotted against the normalized time 𝑡∕𝑡𝑐 .
of variation and avoid distraction from large fluctuations occurring 
at failure. These observations suggest that, overall, the DR techniques 
effectively capture the main features of the original data when using 
the top three components. However, the standard deviation plots reveal 
that NMF and DL exhibit slightly higher deviations, showing similar 
behavior across all tests. In contrast, PCA, ICA, and FA display lower 
deviations, with PCA and ICA producing nearly identical results. These 
lower deviations indicate that PCA, FA, and ICA perform better, as their 
mean differences are closer to zero, which also aligns with their success 
in predicting failure locations. An interesting observation from the plots 
across all the techniques is that the fluctuations tend to converge to 
zero mean differences and the curves overlap around the normalized 
time 𝑡∕𝑡𝑐 = 0.7, corresponding to the detected onset of tertiary creep 
identified through dimensionality reduction techniques.
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Overall, a valuable finding from an engineering perspective is that 
more than two dimensionality reduction techniques produce similar re-
sults. This is evident in Fig.  7, where the results from three techniques—
PCA, ICA, and FA—as well as from two techniques—NMF and DL—
show similar behavior. Additionally, at specific time steps, all the 
curves overlap, and the mean of the differences approaches zero. This 
overlap may explain why, in Table  1, we observe identical results in 
the detected onset of tertiary creep for PCA, NMF, and FA. All of 
these observations support the existence of universal characteristics in 
the evolution of local strain fields, providing a valuable framework 
for studying material mechanics from this perspective. Importantly, 
these findings enable significant predictions related to material failure, 
highlighting the practical applications of these techniques.
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4. Discussion

We investigated the detection of the onset of tertiary creep failure 
and the prediction of the final deformation location by identifying 
universal features in the evolution of local strain fields obtained from 
DIC. By applying dimensionality reduction techniques as a form of un-
supervised machine learning, we extracted and analyzed these features. 
Our developed methodology produced two types of results after reduc-
ing the matrix containing the strain maps throughout the deformation 
process: one in the form of a single curve and another as a single map 
representing the main characteristic of the evolution of the local strain 
fields.

By utilizing strain maps from the beginning of primary creep until 
failure as input for PCA analysis, we observed a peak in the second 
component projection around the time when the global strain rate 
signals started to plateau. This observation suggested easier detection of 
the onset of secondary creep compared to the challenging detection of 
the transition from the primary to secondary creep phase in noisy global 
strain rate signals. However, the main objective was to detect the onset 
of tertiary creep, as this stage represented the acceleration towards 
sample failure and served as a failure precursor, defined by the time of 
minimum global strain rate. To achieve this, we used strain maps from 
the time of secondary creep onset, as detected by PCA analysis, until 
failure for a new PCA analysis (referred to as improved PCA analysis). 
This approach resulted in improved detection of the onset of tertiary 
creep. Subsequently, we utilized the same range of strain maps from 
the improved PCA analysis as input for other dimensionality reduction 
techniques.

Despite differences in the working principles of the dimensionality 
reduction techniques, we observed that most of them identified the 
time values (𝑡min) for the detection of tertiary creep onset, which, when 
normalized by the failure time 𝑡𝑐 , appeared mostly identical (see Table 
1). This finding suggests the presence of a universal characteristic in the 
evolution of local strain fields that facilitates the prediction of failure 
time. When comparing the average of the main ratio 𝑡min∕𝑡𝑐 across all 
tests, detected from global strain rate signals and with the application 
of dimensionality reduction techniques on the local strain data, we 
observed that the values showed less deviation from the average in 
the case of detection with dimensionality reduction techniques. Addi-
tionally, failure time could be predicted at 70% of the sample lifetime 
under static loading, preceding the prediction made by the Monkman-
Grant relation (around 85% for the experiments in this study) for global 
strain data. Furthermore, from Fig.  2b (filled markers), it can be seen 
that even earlier predictions, around 40% of the sample lifetime, are 
possible by considering the secondary creep onset detected by PCA 
analysis. However, due to the limited number of samples, establishing 
strong statistical validity would require analyzing a larger number of 
experiments, which could be addressed in future studies.

Another significant discovery in this study was our ability to predict 
the location of failure (note that this approach is clearly different from 
segmentation of damage sites as presented e.g. in [45,46]) by using 
strain maps from the time range very close to the time of minimum 
global strain rate (onset of tertiary creep) to produce single ‘‘component 
maps’’. However, while the deformation (or strain) localization was 
not discernible on the strain map at the time of minimum global 
strain rate, these component maps from some dimensionality reduction 
techniques (PCA, FA, and ICA) showed clear signatures of the failure 
location (see Fig.  4). Our technique not only predicted the deformation 
localization point but also the entire crack path. As demonstrated in 
the example of Test 1, the first PCA, first and third FA, and second 
ICA component maps (see Fig.  5b) accurately predicted the location of 
strain localization. By examining the region around the strain localiza-
tion point predicted by these components on the second PCA and first 
ICA component maps (see Fig.  5c), we identified a relatively uniform, 
pattern-free area. Adjusting the separation path between the uniform 
and patterned regions to align with the predicted strain localization 
point enabled an accurate prediction of the crack path.

Also, for the cases of the rest of the experiments (Fig.  6), we 
obtained insightful results. For example, if we observed two localization 
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hotspots on the strain map from the early deformation stage, the 
technique selected the correct one where the sample fractured (as in 
the case of Test 2). If there was no localization point, the technique 
identified the crack path area as a uniform, pattern-free region (as 
in the case of Test 3). Additionally, if the technique revealed both 
maximum and minimum coupling of the hotspots on the component 
maps instead of a single hotspot, it appeared on the opposite side of the 
strain localization point but on the crack path (as in the case of Test 
4). All of these findings for different cases showed that our technique 
had the power to reveal the signature of failure independent of the 
deformation phenomena and provided accurate predictions of failure 
location.

We provided an overall assessment of the dimensionality reduc-
tion techniques in Fig.  7 by considering the contributions of the top 
three components. Strain maps were reconstructed from dimension-
ally reduced spaces and subtracted from the original strain maps. By 
examining the mean and standard deviation of the differences, we 
found that techniques such as PCA, ICA, and FA performed better, 
as their standard deviations were lower and mean differences were 
closer to zero, and they excelled in predicting failure locations on 
the material surfaces. Interestingly, at specific time steps, the curves 
of all techniques overlapped around the zero mean differences, with 
one of these steps aligning with the detection of tertiary creep. Al-
though NMF and DL exhibited higher deviations in the differences, 
they still provided reasonable and comparable results for detecting the 
onset of tertiary creep. We also note that, although ICA performed 
well in predicting failure locations on the material surface, it did 
not perform as effectively in detecting the onset of tertiary creep. 
The values showed noticeable deviations from the average across the 
experiments and also from the results of the other techniques (see 
Table  1). Among the dimensionality reduction techniques, ICA exhib-
ited greater sample-to-sample variability because it seeks statistically 
independent components, making it highly sensitive to noise and subtle 
differences across datasets. NMF, on the other hand, showed variability 
due to its dependence on initialization and its non-negativity constraint, 
which can cause convergence to different local minima. These intrinsic 
characteristics explain why PCA and FA, which prioritize capturing 
dominant variations in a more stable manner, outperformed the others 
in both detecting tertiary creep onset and predicting failure locations. 
In conclusion, based on the overall assessment of the five techniques, 
we conclude that PCA and FA performed better in both detecting 
tertiary creep onset and predicting failure locations.

In this study, we conducted a limited number of experiments, as 
our main objective was to demonstrate the practicality of applying 
dimensionality reduction techniques to the analysis of local strain data 
for studying the creep mechanics of materials. By applying five different 
dimensionality reduction techniques, we demonstrated their effective-
ness, and, through obtaining similar results from most of them, we 
highlighted a valuable finding: the presence of universal characteristics 
in the evolution of local strain fields. These characteristics can be 
revealed and utilized for precise failure prediction through our novel 
framework. While this study focused on a small sample size, future 
work will involve increasing the number of experiments to further 
validate these findings and explore the broader applicability of these 
techniques.

The present article investigated paper and an example of a quasi-
brittle composite material. This group includes important structural 
materials such as concrete [70], mortar [71], ceramics [72], rocks [73,
74] and some FRP composites [75]. Moreover, paper has a master 
curve creep behavior similar to many other materials and thus can be 
considered as a model material [76]. While the current dataset has been 
limited to paper samples, the dimensionality reduction techniques used 
are not material-specific. Rather, they operate purely on the structure 
of strain fields, making them applicable across materials where defor-
mation fields can be measured. For instance, PCA has been applied in 
previous work to DIC strain maps obtained from uniaxial tension tests 
of nickel-based alloys (cf. [20]). This example demonstrates that DR 
techniques can be successfully applied not only to other quasi-brittle 
materials, but also to metals and alloys.
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5. Conclusions

In this study, we developed a methodology based on dimensionality 
reduction techniques to extract universal features from the evolution 
of local strain fields during creep deformation. By analyzing the strain 
field evolution with five different techniques, we demonstrated that 
it is possible to detect the onset of tertiary creep and to predict the 
failure time. Our approach enabled the robust prediction of deforma-
tion localization and the early identification of crack paths well before 
macroscopic localization became visible. These findings highlight the 
effectiveness of dimensionality reduction techniques in advancing the 
understanding and prediction of material failure phenomena.

In this research, we used quasi-brittle paper samples to study creep 
phenomena through the analysis of local strain fields. While paper’s 
creep behavior is similar to that of engineering materials, it has a 
much higher creep rate and a shorter secondary creep phase. These 
findings motivate further studies on other materials, such as ductile 
metals, which have longer creep phases and require extended testing 
times [12,77]. Our developed techniques can be applied to these mate-
rials, offering early failure predictions. A key advantage is that failure 
prediction relies solely on DIC strain maps, making it applicable to 
components in operating systems where traditional mechanical testing 
is impractical. By using surface images alone, weak regions can be 
identified and reinforced, extending the lifespan of these components.

CRediT authorship contribution statement

Bakhtiyar Mammadli: Writing – review & editing, Writing – origi-
nal draft, Visualization, Methodology, Investigation, Formal analysis, 
Data curation. Tero Mäkinen: Writing – review & editing, Visual-
ization, Data curation. Karol Frydrych: Writing – review & editing, 
Writing – original draft. Panagiotis G. Asteris: Writing – review & edit-
ing, Methodology. Stefanos Papanikolaou: Writing – review & editing, 
13 
Supervision, Project administration, Methodology, Funding acquisition, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

The publication was created within the framework of the project 
of the Minister of Science and Higher Education ‘‘Support for the 
activities of Centres of Excellence established in Poland under Horizon 
2020’’ under contract no. MEiN/2023/DIR/3795. We acknowledge the 
computational resources provided by the National Centre for Nuclear 
Research in Poland. T.M. acknowledges support from the FinnCERES 
flagship (grant no. 151830423), Business Finland (grant nos. 211835, 
211909, and 211989), and Future Makers programs. We also acknowl-
edge the Complex Systems and Materials (CSM) lab at the Department 
of Applied Physics, Aalto University, Finland, for their support with the 
experiments.

Appendix. Effect of the averaging window on the minimum strain 
rate time

To quantitatively assess the robustness of minimum strain rate 
detection, we analyzed the effect of different averaging window sizes 
applied to the global strain rate signals. Fig.  8 illustrates the outcome 
for a representative experiment (Test 1). As shown in Fig.  8a, applying 
a large averaging window (1400 datapoints, corresponding to 14 s) 
effectively suppresses noise and reveals a distinct single minimum in 
the strain rate signal, corresponding to the onset of tertiary creep. 
Fig. 8. Robust identification of the minimum strain rate time 𝑡min from global strain rate (�̇�) signals demonstrated using data from Test 1. (a) Smoothed global strain rate curve 
obtained with a large averaging window size of 1400 data points, revealing a clear single minimum (marked in red), which corresponds to the onset of the tertiary creep phase. 
The inset highlights this well-defined minimum in linear scale. (b) Corresponding curve using a smaller window size of 40 points, which better visualizes the creep phases but 
retains more noise. This window size is used in Figs.  2 and 4. Note that in both plots (a) and (b), time goes from right to left. (c) Normalized minimum strain rate time (𝑡min∕𝑡𝑐 ) 
plotted against varying averaging window sizes. Beyond a threshold (around 1400 points), the detected 𝑡min stabilizes, confirming the robustness of the method.
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In contrast, Fig.  8b demonstrates that while a smaller window size 
(40 points) retains more noise, it enables the visualization of the full 
creep behavior, including transitions between primary, secondary, and 
tertiary phases.

To further evaluate the sensitivity of the detected minimum, we 
plotted the normalized minimum time (𝑡min∕𝑡𝑐) against a range of 
averaging window sizes in Fig.  8c. The results show that once the 
window size exceeds a certain threshold (around 1400 datapoints), the 
detected 𝑡min remains constant despite further increases in smoothing. 
This confirms that the proposed approach provides a robust and re-
producible method for identifying the onset of tertiary creep in noisy 
experimental signals.

Data availability

The data used in this study are available on Zenodo: https://doi.
org/10.5281/zenodo.15554332.
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