
Academic Editors: Pavlos Lazaridis,

Christos Tachtatzis and Euler Cássio

Tavares De Macêdo

Received: 30 May 2025

Revised: 25 July 2025

Accepted: 28 July 2025

Published: 30 July 2025

Citation: Tauzowski, P.; Ostrowski,

M.; Bogucki, D.; Jarosik, P.;

Blachowski, B. Structural Component

Identification and Damage

Localization of Civil Infrastructure

Using Semantic Segmentation. Sensors

2025, 25, 4698. https://doi.org/

10.3390/s25154698

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Structural Component Identification and Damage Localization of
Civil Infrastructure Using Semantic Segmentation
Piotr Tauzowski 1 , Mariusz Ostrowski 1 , Dominik Bogucki 1,2, Piotr Jarosik 1 , Bartłomiej Błachowski 1,*

1 Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland;
ptauzow@ippt.pan.pl (P.T.); mostr@ippt.pan.pl (M.O.); dbogucki@ippt.pan.pl (D.B.);
pjarosik@ippt.pan.pl (P.J.)

2 IDEAS NCBR Sp. z o. o., 00-801 Warszawa, Poland
* Correspondence: bblach@ippt.pan.pl

Abstract

Visual inspection of civil infrastructure for structural health assessment, as performed by
structural engineers, is expensive and time-consuming. Therefore, automating this process
is highly attractive, which has received significant attention in recent years. With the in-
creasing capabilities of computers, deep neural networks have become a standard tool and
can be used for structural health inspections. A key challenge, however, is the availability of
reliable datasets. In this work, the U-net and DeepLab v3+ convolutional neural networks
are trained on a synthetic Tokaido dataset. This dataset comprises images representative
of data acquired by unmanned aerial vehicle (UAV) imagery and corresponding ground
truth data. The data includes semantic segmentation masks for both categorizing struc-
tural elements (slabs, beams, and columns) and assessing structural damage (concrete
spalling or exposed rebars). Data augmentation, including both image quality degradation
(e.g., brightness modification, added noise) and image transformations (e.g., image flip-
ping), is applied to the synthetic dataset. The selected neural network architectures achieve
excellent performance, reaching values of 97% for accuracy and 87% for Mean Intersection
over Union (mIoU) on the validation data. It also demonstrates promising results in the
semantic segmentation of real-world structures captured in photographs, despite being
trained solely on synthetic data. Additionally, based on the obtained results of seman-
tic segmentation, it can be concluded that DeepLabV3+ outperforms U-net in structural
component identification. However, this is not the case in the damage identification task.

Keywords: semantic segmentation; structural health monitoring; computer vision-based
techniques

1. Introduction
Maintaining the traffic infrastructure in good technical condition is a key element of

rail and road traffic safety. The expansion of traffic infrastructure increases the problems
related to the maintenance of facilities. Therefore, there is a need for intensive monitoring
of the technical condition of a large number of objects. The intensive development of
vision techniques, together with artificial intelligence, allows for effective automation
of the inspection process of traffic infrastructure facilities. Installed cameras, as well as
remotely controlled or autonomous vehicles or drones, can independently monitor by
capturing images. The next step is image processing by artificial intelligence systems based
on deep learning, which recognizes whether a structure has damage or not. To perform
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this task, it is necessary to train deep neural networks capable of recognizing damage in
the images. It is also essential to distinguish parts of the structure in the images to properly
locate the damage, as well as to find out how important the structural elements that occur
are. Convolutional neural networks seem to be one of the most suitable tools for this
demanding task.

The fundamentals of neural network architecture date back to the 1960s. Hubel
et al. [1] proposed the concept of receptive fields based on their study of the visual cortex
in monkeys. Their findings influenced the idea of local receptive fields in convolutional
neural networks (CNNs), where each convolutional filter detects localized features within
small regions of an image. The hierarchical feature detection model of the visual cortex
further inspired the multi-layer architecture of CNNs, with early layers capturing simple
features and deeper layers identifying more complex patterns.

The biological concept of shared weights in the visual cortex led to the implementa-
tion of weight sharing in CNN filters, which enables translation equivariance in feature
detection. In 1974, Werbos [2] introduced the concept of gradient-based learning for neural
networks, which was mathematically similar to the modern backpropagation algorithm,
though it was not yet fully formalized under that name. He referred to it using terms
like gradient descent and error correction for training neural networks. Werbos outlined the
fundamental principles of propagating errors through layers to adjust weights. Around the
same period, Fukushima [3] developed Neocognitron, a neural network with multiple lay-
ers of neurons designed to process increasingly complex visual features. The Neocognitron
employed multiple stages to extract features from input images, mirroring the hierarchical
processing of the human brain. This model became one of the key precursors to modern
CNNs. In this architecture, convolutional layers similarly utilize local receptive fields
(filters) to capture small-scale patterns in input images, enabling the network to learn
hierarchical feature representations at various scales.

A major breakthrough came in the 1980s when Rumelhart et al. [4] formalized and
popularized the backpropagation algorithm, demonstrating its effectiveness in training
multi-layer neural networks. Their work provided a practical method for adjusting weights
through error propagation, significantly improving learning efficiency. This development
marked a turning point, enabling deeper networks to be trained effectively and fueling
the rise of modern deep learning. The practical application of CNNs gained momentum
with LeCun et al. [5], who demonstrated the effectiveness of gradient-based learning for
document recognition, leading to widespread adoption in optical character recognition
and early deep learning applications. The field saw a transformative shift in 2012 with
Krizhevsky et al.’s [6] AlexNet, which leveraged deep CNNs and GPU acceleration to
achieve a breakthrough in the ImageNet competition, dramatically improving image clas-
sification performance. Building on these advancements, Simonyan and Zisserman [7]
introduced VGG networks, demonstrating that increasing network depth with small con-
volutional filters further enhances performance.

The evolution of CNNs also extended to semantic segmentation, with Long et al. [8] pi-
oneering fully convolutional networks (FCNs), which replaced fully connected layers with
convolutional ones to enable pixel-wise classification. Ronneberger et al. [9] further refined
these ideas with U-Net, a model specifically designed for biomedical image segmentation,
featuring an encoder–decoder architecture with skip connections for improved localiza-
tion accuracy. Subsequent research by Chen et al. [10–12] led to the development of the
DeepLab architecture, introducing atrous (dilated) convolution and fully connected Condi-
tional Random Fields (CRFs) to enhance segmentation accuracy and capture multi-scale
contextual information.
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In the domain of civil infrastructure monitoring, Ros et al. [13] introduced the SYN-
THIA dataset, which consists of synthetic images designed for urban scene segmentation.
While primarily developed for autonomous driving applications, SYNTHIA’s realistic
textures, lighting conditions, and diverse structural layouts provide valuable insights
into training models to segment complex structural elements in civil engineering con-
texts. Spencer et al. [14] provided a comprehensive review of computer vision applications
in structural inspection, describing how deep learning enables damage detection, crack
identification, and deformation analysis in bridges and buildings. Their work outlined
the transition from traditional manual inspections to automated, vision-based methods,
highlighting challenges such as data scarcity, environmental variations, and model gen-
eralization. Another excellent overview of computer vision-based techniques for SHM
(CV-SHM) was presented by Azimi et al. [15]. In their paper, they discussed various neural
architectures such as AlexNet, VGG16 and VGG19, Resnet50, GoogleNet, ZFNet or Crack-
Net and various software frameworks for CV-SHM applications such as TensorFlow v2.19,
PyTorch, Keras v.3.9, Caffe and Theano.

Bao et al. [16] explored the integration of machine learning with structural health
monitoring (SHM), emphasizing the role of data-driven approaches in anomaly detection,
predictive maintenance, and long-term structural assessment. Their study highlighted how
deep learning can process sensor data, thermal imagery, and high-resolution photographs
to track structural degradation over time. Bianchi and Hebdon [17] compiled a benchmark
dataset for visual structural inspections, containing labeled images of bridges, viaducts, and
other civil infrastructure elements with corresponding damage annotations. Their dataset
aids the development of robust, generalizable models for detecting cracks, corrosion, and
material degradation in large-scale infrastructure networks.

An application of the U-net neural network architecture for crack identification in
concrete structures was proposed by Bhowmick et al. [18]. In order to demonstrate the
real-life applicability of the proposed approach, the authors conducted the laboratory
experiment on an 8-foot-long beam, which is gradually loaded until it failed in flexure.

Recent work in structural and pavement damage segmentation has focused on en-
hancing model architectures and employing attention mechanisms for improved crack
delineation. For example, Cha et al. (2024) [19] reviewed DL-based SHM methods, in-
cluding nondestructive testing, UAV vision, digital twins, and physics-informed models,
emphasizing opportunities for enhanced reliability and automation. Gao et al. (2023) [20]
proposed a Multiattribute Multitask Transformer (MAMT2) framework that jointly ad-
dresses classification, localization, and segmentation of structural damages, outperforming
CNNs on a large benchmark dataset by leveraging inter-task relationships. Azimi and Yang
(2024) [21] introduced the Refined Segment Anything Model (R-SAM), which combines
zero-shot segmentation with a refinement module to achieve high-accuracy multiclass
segmentation without extensive training, supporting tasks like tracking and 3D reconstruc-
tion. Shahin et al. (2024) [22] enhanced concrete crack detection using a hybrid Visual
Transformer with image enhancement techniques, achieving near-perfect accuracy and
demonstrating a fast, efficient alternative to conventional CNNs aligned with Industry 4.0
goals. Shen et al. [23] incorporated boundary refinement within DeepLabV3+, while Yuan
et al. [24] and Hang et al. [25] embedded the ECA-UNet– and CBAM-based attention mod-
ules into U-Net backbones, achieving significant gains in IoU and recall. Zhou et al. [26]
proposed a residual feature pyramid attention network for efficient crack detection in
underground utility tunnels. For synthetic data and domain adaptation, Graybeal et al. [27]
introduced a residual sharp U-Net (Rs-Net) with multi-scale feature fusion, demonstrating
robustness across diverse pavement crack datasets.
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Finally, Cheng et al. [28] proposed a random bridge generator, a framework that
synthetically creates bridge structures with varying geometries and defect patterns. This
synthetic data serves as a training platform for deep learning models, allowing researchers
to develop and validate computer-vision-based structural inspection algorithms in a con-
trolled environment before real-world deployment.

In addition to peer-reviewed studies, several recent preprints have explored the use
of synthetic and semi-synthetic data to improve segmentation performance in damage
detection tasks. For instance, Parslov et al. [29] introduced a procedural pipeline to simulate
and annotate damage on 3D vehicle models, showing that a combination of synthetic
and real data improves segmentation quality. Dondi et al. [30] proposed a semi-synthetic
approach for crack detection under earthquake conditions, using parametric 3D modeling to
generate training data. Nowacka et al. [31] applied a 3D U-Net to segment micro-CT images
of fiber-reinforced concrete using semi-synthetic labels, while Jaziri et al. [32] employed
a fractal-based crack simulator to pretrain a hybrid segmentation model for improved
real-world generalization. Although these works are preprints, they reflect current trends
in data-centric model development for fine-grained structural damage analysis.

These recent advances reflect the trend toward combining architectural sophistica-
tion with data-centric strategies to address the inherent class imbalance and fine-detail
segmentation challenges in structural damage detection.

It is also worth mentioning the recently created tool Segment anything [33]. Based
on the Vision Transformer architecture, it is capable of segmenting any image. However,
due to the high requirements of the presented architecture, it is not an alternative in all
applications today.

These advancements provide the foundation for applying semantic segmentation tech-
niques to structural viaduct inspection, enabling automated structural part identification
and damage localization with a deep learning approach.

The objective of this work is to propose a training procedure for state-of-the-art models
for two neural networks: U-net and DeepLabV3+. The effectiveness of the trained models
in the semantic segmentation of civil infrastructures has been demonstrated on two tasks:
structural component identification and damage localization. Both tasks have been tested
on the Tokaido dataset, containing realistic images of high-speed railway viaducts.

The remainder of the paper is organized as follows: In the second section, the method-
ology for semantic segmentation of civil infrastructure images is proposed. The third
section describes the results of the semantic segmentation using two neural networks,
namely Unet and DeepLabV3+. A comparison of the results obtained using these two
networks indicates that DeepLabV3+ outperforms U-net in both component identification
and damage detection tasks. The paper concludes with a summary and enumeration of the
most important observations from our research.

2. The Proposed Methodology for Semantic Segmentation of Civil
Infrastructure Images
2.1. Overview of the Proposed Methodology for the Training Process

The proposed methodology for the semantic segmentation of images of civil engineer-
ing structures relies on a deep learning approach and a synthetic dataset utilized in the
training process. The training process consists of four main steps described below and
presented in Figure 1:
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Figure 1. Flowchart of the training process.

Step 1. Data Preparation—Image acquisition
The first step of the proposed methodology involves the acquisition of images of real

engineering structures. This goal can be achieved, for example, using autonomous cars or
unmanned aviation vehicles (UAVs). The image acquisition process itself usually requires
a high-resolution camera with image stabilization.

Step 2. Preprocessing of collected data—Image augmentation
Neural networks trained solely on original data suffer from a weak robustness property.

Therefore, in the second step of our methodology, we apply image augmentation. This
augmentation involves introducing small perturbations to the training set, expressing
imperfections in data acquisition, such as contrast, brightness, exposure, or matrix noise.

Step 3. Training process—Selection of neural network architecture
The quality of the results obtained using deep learning strongly depends on the neural

network architectures used. Therefore, in the third step, two different architectures were
proposed, namely, the U-net and DeepLabV3+. These are models containing tens of millions
of parameters, and their training on modern computers equipped with graphics cards takes
from a few to a dozen or so hours.

Step 4. Making predictions—Semantic segmentation
The final step of the proposed methodology is related to making predictions for

both semantic segmentation tasks, i.e., structural component identification and damage
detection. The first task provides information about the probability of assignment of the
individual pixels in the image to a selected category of structural components such as
beams or columns. The second task reveals areas of the image with concrete spalling or
reinforcement exposure.

2.2. Data Set Description

To train a neural network model, a substantial set of training and validation data is
needed. This task uses a dataset of 7575 artificially generated images of viaducts, created
using Blender3D, a computer graphics system, based on 3D models created by [34]. The
dataset also includes a depth channel and eight segmentation mask channels. The number
of masks corresponds to the number of structural object types being detected in the images
and indicates their locations. This dataset forms the basis for neural network training.
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The images illustrate a 3D model of a straight section of a railway viaduct in two
versions: one with crossbeams between the columns and one without. The structural
elements are textured with images, most commonly concrete, though stone textures are
also used. The ground is textured with various images, ranging from wood to stubble, and
occasionally with unusual textures that are difficult to identify.

There are approximately 100 different versions of this scene, each featuring different
textures. For each version, several dozen images of the viaduct are captured, typically along
its axis. Interestingly, there are no views taken perpendicular to the viaduct in the dataset.

At a certain distance from the viaduct (approximately equal to its height), vertical
panels parallel to the viaduct are placed. These panels display various urban, landscape, or
even graffiti images to simulate different real-world environments surrounding the viaduct.
Below are some examples of the different texture variations (see Figure 2).

Figure 2. Sample images of railway viaducts included in the Tokaido synthetic dataset [34].

In addition to the visual inspection of the data, which has a qualitative nature, certain
quantitative characteristics should be established. For the multi-class semantic segmenta-
tion problem, one of the basic values is the empirical distribution of pixels belonging to
individual classes.

The pie chart illustrating the pixel distribution for the presented viaduct images is
depicted in Figure 3. The chart shows that the most pixels belong to the non-structural
class. This is explained by the fact that most shots of the viaduct are taken from middle
distance and include the background, sky, or ground. Images of details of the structure
are in the minority. As for structural elements such as beams, slabs, or columns, there is a
slight predominance of columns. The reason for this quantitative advantage is the fact that
the columns are a more exposed part of the structure than the slabs or beams and therefore
take up more pixels in the photos. The least pixel-occupying objects are non-structural
elements such as poles, cables, fences, tracks, or railway sleepers. These elements occupy
small areas of the image in comparison with structural elements. Furthermore, there are
not many images of the track in the dataset.
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12%
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Figure 3. Pixel distribution of individual classes in particular segmentation masks.

2.3. Training Protocol and Learning Rate Schedule

All models were trained using the Adam optimizer with an initial learning rate of
1 × 10−4. To ensure efficient convergence and prevent overfitting, we employed three
training callbacks:

• ModelCheckpoint: During training, the model was monitored using the validation
loss. The best-performing model (with the lowest validation loss) was saved to disk.
This ensured that the final model used for evaluation did not suffer from overfitting
or suboptimal convergence due to later epochs.

• ReduceLROnPlateau: To dynamically adapt the learning rate during training, we
used a reduction-on-plateau strategy. If the validation loss did not improve for
5 consecutive epochs, the learning rate was reduced by a factor of 0.5. This allowed
the optimizer to take smaller steps during later training stages, which helped stabilize
convergence and fine-tune the weights.

• EarlyStopping: Training was halted if the validation loss did not improve for
10 consecutive epochs. The weights from the best epoch (according to validation
loss) were automatically restored, ensuring that the final model did not overfit.

This training protocol led to smooth convergence across experiments. The learning
rate typically underwent 1–3 reductions per training session, resulting in final learning
rates between 1 × 10−4 and 2.5 × 10−5, depending on the model configuration. The combi-
nation of adaptive learning and early stopping contributed to both training stability and
generalization to the test set.

Recently, the Segment Anything model was developed by Kirillov et al. [33]. This neural
network, based on the Vision Transformer architecture, performs semantic segmentation of
any image. We tested this promising solution on our photos. However, it quickly became
apparent that it would not be a suitable alternative to our solution. First, the model is ten
times larger, requiring a powerful graphics card for predictions. In contrast, our model can
be loaded onto a website, and predictions can be easily performed by a standard processor.
Second, the model’s precision is significantly lower. As Figure 4 demonstrates, it fails to
distinguish between a slab and a beam. Finely training such a large model is a process that
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exceeds the capabilities of even a high-end desktop computer. Third, the segmentation
results in a multitude of classes, sometimes even within the same category (e.g., viaduct
columns), where individual columns are assigned different classes. Consequently, the
classification results necessitate additional post-processing. Therefore, we conclude that a
smaller, dedicated model, specifically trained for our purposes, would be far more effective.

Figure 4. Instance segmentation using Segment Anything [33] (on the photograph: viaduct located
in Budapest).

2.4. Image Augmentation

In the task of semantic segmentation for engineering structures, data augmentation
plays a crucial role in enhancing model robustness and generalization. The image set
presented in Figure 5 illustrates several augmentation techniques applied to viaduct scenes,
ensuring better performance in diverse conditions. The brightness, contrast, and gamma
adjustments modify the illumination of the image, simulating varying lighting conditions,
which is essential for real-world applications where light exposure fluctuates. Usually, the
above concepts are intuitively understandable; however, for the sake of scientific accuracy,
we will provide below the mathematical formulas for the above image transformations. Let
Iin(x, y) denote the input image intensity at pixel location (x, y), and Iout(x, y) the output
intensity after transformation. All intensity values are assumed to be normalized to the
interval [0, 1].

(a) Original image. In formal mathematical language, the usage of the original image is
equivalent to identity mapping between the input and output images:

Iout(x, y) = Iin(x, y)

(b) Brightness Adjustment. A brightness shift adds a scalar bias β to each pixel:

Iout(x, y) = clip(Iin(x, y) + β, 0, 1).

Here, clip(a, 0, 1) limits the value to the range [0, 1].
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(c) Contrast Adjustment. Contrast is adjusted by scaling the deviation from the mean
intensity µ:

Iout(x, y) = clip(α [Iin(x, y)− µ] + µ, 0, 1),

where α is the contrast factor and

µ =
1

WH

W

∑
x=1

H

∑
y=1

Iin(x, y)

is the mean image intensity over a W × H image.
(d) Gamma Correction. Gamma correction applies a nonlinear transformation:

Iout(x, y) = Iin(x, y)γ

The parameter γ controls the shape of the correction curve, where for γ < 1, the image
appears brighter, while for γ > 1, the image appears darker.

(e) Noise injection. Noise injection introduces random perturbations, making the model
more resilient to sensor noise, especially in shadows. Gaussian (normal) noise was
used for each image in the input batch.

Iout(x, y) = clip(Iin(x, y) +N (0, σ), 0, 1)

Augmentation function generates pixel-wise noise drawn from a Gaussian distribution
with a mean value 0 and variable standard deviation given in Table 1.

(f) Flipping. Flipping generates different perspectives of the viaduct, which helps the
model learn orientation-independent features. In our application, horizontal flipping
was used

Iout(x, y) = Iin(W − x, y)

(g) Rotation. Rotation transformation R(θ) can be described as follows:

Iout(x, y) = Iin(x′, y′),

where [
x′

y′

]
= clip(R(θ)

[
x
y

]
,

[
0
0

]
,

[
W
H

]
),

and θ is the rotation angle.
(h) CutMix technique. CutMix, a technique that replaces a region of an image with an image

taken from another sample (see Figure 5h). It helps in learning more discriminative
features by forcing the model to focus on multiple context regions. In the CutMix
augmentation strategy, a rectangular region from one training image xa is copied
and pasted into a target image xb. The pasted region is defined by its top-left corner
coordinates (x0, y0) and size (w, h). The target image and corresponding label are
modified as follows:

x′ = M ⊙ xa + (1 − M)⊙ xb, y′ = M ⊙ ya + (1 − M)⊙ yb, (1)

where M ∈ {0, 1}H×W is a binary mask that equals 1 within the rectangular region
and 0 elsewhere, and ⊙ denotes element-wise multiplication. The values of x0, y0, w,
and h are sampled uniformly within valid image bounds to ensure that the pasted
region fits entirely within the image dimensions.
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Although CutMix was included as one of the augmentation strategies in this study,
we note that its effectiveness for damage detection tasks may be limited. The sharp
rectangular boundaries introduced by standard CutMix are visually artificial and may be
easily identified by the network, which could reduce the augmentation’s intended effect. In
future work, we plan to explore more realistic and adaptive data mixing techniques, such
as irregular mask-based blending or texture synthesis methods, which better approximate
the spatial characteristics of actual damage.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Various approaches to image augmentation applied in the training process: (a) ground
truth, (b) brightness adjustment, (c) contrast modification, (d) gamma correction, (e) noise addition,
(f) horizontal flip, (g) arbitrary rotation and (h) CutMix operation.

These augmentations, combined with the original images, create a richer dataset,
ultimately improving the segmentation accuracy and robustness in real-world deploy-
ments. The variability values of individual augmentation parameters that were used in the
implementation are presented in Table 1.
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Table 1. Augmentation parameters with probability of occurrence.

Augmentation Parameters Probability [%]

Brightness β = [−0.2, 0.2] 40

Contrast α = [0.8, 1.2] 40

Gamma γ = [0.7, 1.3] 40

Noise σ = [0.01, 0.05] 40

Rotation θ = [−18◦, +18◦] 60

Flip N/A 50

CutMix position (x0, y0), size (w, h) 40

The probabilities assigned to each augmentation technique were selected based on a
combination of insights from the existing literature, empirical experimentation, and the
specific characteristics of the Tokaido synthetic dataset used in this study.

• Brightness, Contrast, Gamma, and Noise (40%): These augmentations simulate
varying image acquisition conditions, such as lighting inconsistencies and sensor noise,
which are common in UAV-based inspections. A probability of 40% offers a balanced
trade-off—frequent enough to improve model generalization but not so dominant as
to degrade data fidelity. This rate is consistent with augmentation strategies adopted
in related deep learning studies on civil infrastructure monitoring [14,15].

• Flip (50%): Horizontal flipping is applied with a probability of 50%, a standard setting
in many vision-based learning pipelines. This is particularly relevant for viaduct
imagery, which often exhibits axial symmetry. A 50% rate introduces orientation
variation while preserving the structural coherence of the scene.

• Rotation (60%): A slightly higher probability was chosen for rotation to reflect the
diversity of camera angles typically encountered in UAV inspections. The selected
range of θ ∈ [−18◦,+18◦] corresponds to realistic off-axis views without introducing
distortions. A 60% probability ensures adequate rotational diversity, which was
empirically shown to enhance performance in both segmentation tasks.

• CutMix (40%): CutMix introduces strong contextual perturbations by blending regions
from different images. While this encourages the model to learn more robust features,
excessive use can reduce semantic coherence, particularly in structured scenes like
viaducts. Hence, a conservative value of 40% was adopted.

The chosen probabilities were also verified through validation experiments. Increasing
them further (e.g., above 70%) often led to decreased performance or instability during
training, especially for the damage detection task, where fine details are critical. Thus,
the selected values reflect a carefully tuned balance between diversity and realism in the
augmented data.

2.5. Architectures of Neural Networks for the Semantic Segmentation Problem

The problem of multi-class semantic segmentation was solved using deep learning
methods. The most effective neural architectures in image processing are convolutional
neural networks because they can learn to recognize certain patterns regardless of their
location in the image (equivariance and invariance to feature translation). In this study,
U-net and DeeplabV3+ neural networks are employed. Diagrams of these architectures are
presented in Figures 6 and 7. These models are implemented in the Keras 3.9, Python 3.12.9
package with the Tensorflow 2.19 backend.
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Figure 6. U-Net architecture according to the paper by Ronneberger [9].
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1x1 conv
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Encoder

Figure 7. DeeplabV3+ architecture according to the paper by Chen et al. [35].

2.5.1. U-Net Architecture with Optional Attention and Customizations

As a first architecture of the neural network in this study, we employ a customizable
U-Net (Figure 6). Our implementation is based on Keras API, which provides support
for several advanced features such as attention gates, flexible upsampling, and dropout
control. The model is implemented in a modular fashion to allow adaptation for different
semantic segmentation tasks:

• Input and output. The network accepts input images of arbitrary spatial dimensions,
specified by the input_shape parameter, and produces a segmentation mask with
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either a single channel (sigmoid activation for binary segmentation) or multiple
channels (softmax for multi-class segmentation), controlled by the num_classes and
output_activation arguments.
Encoder (Contracting Path). The encoder consists of a configurable number of levels
(num_layers). At each level:

- A double convolution block is applied.
- Each convolution block may include optional batch normalization, spatial or

standard dropout, and ReLU activation (or other activation functions).
- After the convolution block, max pooling is applied to downsample the feature

maps by a factor of 2.
- The number of filters starts at a base value (filters, typically 16) and doubles at

each subsequent level.
- The dropout rate can increase with each layer to gradually regularize deeper

layers.

• Bottleneck. After the encoder, a central convolution block (the bottleneck) captures
high-level features. This block uses the highest number of filters and the final dropout
level before upsampling begins.

• Decoder (Expanding Path). The decoder path reconstructs the segmentation mask
through upsampling: Each upsampling step uses either transposed convolution
(Conv2DTranspose) or nearest-neighbor upsampling followed by convolution, as
selected by upsample_mode (deconv or simple). The feature maps from the corre-
sponding encoder level are concatenated via skip connections to retain spatial details.
Optionally, attention gates can be applied to modulate skip connections. These gates
compute attention coefficients based on both the encoder and decoder features, en-
hancing relevant spatial regions and suppressing irrelevant ones. A convolution block
follows each concatenation to refine the fused features.

• Output layer Final 1 × 1 convolution reduces the number of output channels to
num_classes, and the activation function (sigmoid or softmax) produces the pixel-
wise class probabilities.

• Attention Mechanism. The optional attention gate mechanism follows the additive
attention formulation. It uses 1 × 1 convolutions on both the decoder input and
the encoder skip connection to compute intermediate features, which are added and
passed through ReLU and sigmoid activations to produce an attention mask. This
mask is then applied multiplicatively to the skip connection before concatenation,
effectively guiding the model to focus on relevant spatial regions.

2.5.2. DeepLabV3+ Network Architecture

We also employed a customized implementation of DeepLabV3+ (Figure 7) for se-
mantic segmentation, constructed using TensorFlow and Keras. The model follows the
standard DeepLabV3+ architecture, integrating a dilated convolution-based encoder and a
multi-scale context module, followed by a decoder for fine spatial recovery.

The key components of the DeepLabV3 + architecture are described below:

• Backbone Feature Extractor. The encoder utilizes a ResNet101V2 backbone pretrained on
ImageNet and excludes the top classification layers. Intermediate feature maps are
extracted from

– conv4_block6_2_relu (deep feature map) for the context module;
– conv2_block3_2_relu (early feature map) for spatial detail recovery in the decoder.

• Atrous Spatial Pyramid Pooling (ASPP). We adopt a modified ASPP block that applies
convolutions with different dilation rates to capture multi-scale contextual infor-
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mation. Specifically, this module includes global average pooling followed by a
1 × 1 convolution and upsampling; parallel 1 × 1 and 3 × 3 convolutions with dilation
rates of 4, 6, 12, and 18; concatenation of all branches; and a final 1 × 1 convolution
to aggregate features. An extended variant DilatedSpatialPyramidPoolingD4 is also
defined and tested, supporting finer granularity via additional dilation rates (e.g., 4, 8,
. . . , 24), but it is not used in the main model function due to the minor impact of the
24 dilation rate observed.

• Decoder and Upsampling. To refine segmentation boundaries, the decoder combines the
ASPP output with high-resolution features from the early encoder stage. The decoder
consists of a 2 × 2 transposed convolution applied to the ASPP output (upsampling
by a factor of 2), a 1 × 1 convolution applied to the early feature map for dimension
alignment, the concatenation of both feature streams, two convolutional refinement
blocks, and further upsampling using transposed convolutions (with strides of 4 and
2) and interleaved with ReLU-activated convolutions. The final prediction layer is
a 1 × 1 convolution with num_classes output channels and the specified activation
function (softmax or other).

3. Loss Function and Evaluation Metrics
A loss function is a critical component in deep learning that quantifies the difference

between a model’s predictions and the actual target values. It essentially measures how
well a model is performing and guides the optimization process by minimizing the loss,
leading to improved accuracy. In this study, categorical cross-entropy is used as the loss
function, which can be expressed as follows:

L = −
N

∑
i=1

yi log(pi),

where N is the number of categories, yi is the true probability distribution (one-hot encoded
vector), and pi is the predicted probability distribution. While effective for general classifi-
cation, categorical cross-entropy proved suboptimal for fine-grained damage segmentation
due to extreme class imbalance, particularly when the target damage regions (e.g., cracks
and reinforcement) occupy a small fraction of the image.

To address this, we adopted the weighted focal Tversky loss, which is more suitable
for semantic segmentation tasks with rare classes. The Tversky index generalizes the Dice
coefficient by introducing asymmetric weighting of false positives and false negatives:

Tverskyc =
TPc + ϵ

TPc + α · FPc + β · FNc + ϵ
,

where TPc, FPc, and FNc represent the number of true positive, false positive, and false
negative pixels for class c, respectively. After hyperparameter tuning, we selected α = 0.3,
β = 0.7 to prioritize recall—a key objective in damage detection. The Tversky index was
extended into a focal form to concentrate learning on hard-to-classify regions:

LFT =
C

∑
c=1

wc · (1 − Tverskyc)
γ,

with γ = 1.5 and class weights wc = [0.05, 0.3, 0.65] assigned to background, cracks, and
reinforcement, respectively. This weighting scheme downplayed the dominant background
class and emphasized minority damage classes.
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To quantify the results obtained by the two above network architectures, one has
to select the appropriate evaluation metrics. In this study the following metrics have
been applied:

Accuracy is a metric that tells us how close a given set of classified pixels is to their
ground truth

Accuracy =
Nc

Nt
,

where Nc represents the number of correct predictions and Nt is related to the total number
of predictions.

It is important to emphasize that the accuracy metric is not particularly suitable for
our application, especially in the context of damage detection. Accuracy is computed
as the ratio of correctly classified pixels (including true positives and true negatives) to
the total number of pixels. In the semantic segmentation of structural damage, the vast
majority of pixels belong to the background class (true negatives), while damage regions
such as cracks or spalling represent only a small fraction of the image. Consequently,
a model that completely fails to localize the damage may still achieve deceptively high
accuracy (e.g., >90%) simply by correctly classifying the background. This renders the
metric insensitive to errors in the small, yet critical, damage regions. For this reason, we
rely on evaluation metrics such as Mean Intersection over Union (mIoU), Recall, Precision,
and F1 score (Dice coefficient), which are more robust to class imbalance and better reflect
performance on the underrepresented damage classes.

The Mean Intersection over Union (mIoU) metric quantifies the overlap between the
predicted and ground truth segmentation masks by computing the ratio of the intersection
area (true positives) to the union of the two masks, which includes both false positives (FP)
and false negatives (FN) (Figure 8). This metric treats over-segmentation (FP) and under-
segmentation (FN) symmetrically. In the semantic segmentation of structural elements,
mIoU is well suited, as the objective is to delineate the full extent of structural components
with high spatial accuracy.

IoU =

Figure 8. IoU = Area of Overlap/Area of Union.

However, in the context of damage detection, the relative importance of false posi-
tives and false negatives is not symmetric. False positives—i.e., overestimations where
non-damage pixels are misclassified as damage—are generally less critical than false nega-
tives, where actual damage is missed. In safety-critical applications, missing a damaged
region can have severe consequences. Therefore, Recall and Precision metrics offer more
informative evaluation in this setting. Both relate the area of correctly predicted damage
(true positives, TPs) to only one type of error:

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

To assess the trade-off between these two error types, we also report the F1 score,
defined as the harmonic mean of Precision and Recall:

F1 Score = 2 · Precision · Recall
Precision + Recall

(4)

The F1 score provides a single summary metric that balances the two and is especially
useful when the importance of avoiding false negatives and false positives needs to be
jointly considered. In our case, while Recall remains the most critical metric due to the risk
of missing damage, the F1 score allows us to monitor overall detection quality in a more
balanced way.

For reference, the mIoU metric is defined as

mIoU =
TP

TP + FP + FN
(5)

where TP, FP, and FN refer to the number of true positives, false positives, and false
negatives, respectively, computed per class.

This comprehensive metric suite provides a more damage-sensitive evaluation. No-
tably, the reinforcement class, previously undetected under cross-entropy loss, achieved
an F1 score of 0.61 and IoU of 0.44 with the proposed loss function, while crack detection
improved to an F1 of 0.65 and an IoU of 0.48—demonstrating the effectiveness of the
adapted training strategy.

After defining the loss function and metrics used for the training process, one can
characterize the dimensions of the input and output layers of the proposed neural network
architecture. Figure 9 illustrates the process for the structural component identification task.
It depicts a deep learning pipeline utilizing DL models such as U-Net and DeepLabV3+.

DL models

U-Net

320x160x3 (RGB) 320x160x4

1 background
2 - Slab
3 - Beam
4 - Column

R – red channel
G – green channel
B – blue channel

DeepLabV3+

Input Output

Figure 9. Input and output layers for the structural component identification task.

• The input to the models is shown as 320 × 160 × 3 data. The last dimension in the
input represents the three color channels: red (R), green (G), and blue (B).

• The output of the models for this task is represented as 320 × 160 × 4 with four classes.
• The Figure 9 also indicates that the segmentation process distinguishes between

different structural components and the background, assigning pixels to specific
classes. For this task, the following four classes are detected: Background, Slab, Beam,
and Column.

The flowchart presented in Figure 9 visually summarizes the architecture and data flow
for training or inference on images used for identification and segmentation of structural
members like slabs and beams within a viaduct.
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Figure 10 presents the process for the damage detection and segmentation task. Sim-
ilarly to the structural task, it shows a deep learning pipeline employing DL models
including U-Net and DeepLabV3+.

DL models

U-Net

320x160x3 (RGB) 320x160x3

1 background
2 – Concrete damage 
3 – Reinforcement exposure

R – red channel
G – green channel
B – blue channel

DeepLabV3+

Input Output

Figure 10. Input and output layers for damage detection task.

• The input to the models is also shown as 320 × 160 × 3 data. This input again
corresponds to images with three color channels: red (R), green (G), and blue (B).

• For this specific task, the output of the models is represented as 320 × 160 × 3 with
three classes.

• The figure indicates that the segmentation aims to identify and differentiate types
of damage and the background. For the damage detection task, the following three
classes are identified: Background, Concrete spalling, and Reinforcement exposure.

The flowchart shown in Figure 10 represents the architecture and data flow for training
or inference on images used for detection and segmentation of concrete damage and
exposed reinforcement in the analyzed structural elements.

4. Comparison of the Results Obtained Using Both Architectures
Two variants of both the U-Net and DeepLabV3+ models were trained. In the first one,

only RGB images were used with three channels as input. The second model additionally
contained the depth channel, information on which was included in the data set. The
learning process of the neural network spanned a maximum of 200 epochs, providing some
callback on the evolution of the learning rate and avoiding early stopping of the learning
process. In the first, the 2D model (RGB), categorical accuracy is equal to 92.08% while
the loss is equal to 23.69%. In the three-dimensional model (RGB with depth channel),
significantly better results were achieved. Categorical accuracy calculated on validation
data was 97.22%, while the loss was equal to 8.39%. In practice, when inspection images
are captured, they are not made in a stereoscopic version; hence, they will not have a depth
channel. Therefore, the tests for 3D data should be treated as reference results to which the
2D model should aim.

4.1. Results for Task 1: Structural Component Identification

The dataset distribution for structural components of the analyzed viaduct (Figure 11)
and non-structural elements shows that non-structural elements constitute the largest
category at 58% (see Figure 3). Columns represent 18% of the dataset, while both the Slab
and Beam components account for 12% each.
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Reference mask Predicted by U_Net Predicted by DeepLabV3+

Mean IoU =  76% Mean IoU =  87%

Figure 11. Comparison of the results of component identification obtained using both U-Net and
DeepLabV3+ architectures.

• Not Pretrained U-Net Model: For the U-Net model without pretrained weights, the
mIoU values for structural segmentation also fell within the range of 50% to 95%,
using augmentations including Original, Brightness, Contrast, Gamma, Noise, Flip,
Rotation, and All (Figure 12).

• Not Pretrained DeepLabV3+ Model: The version of DeepLabV3+ trained without
initial weights from a large external dataset showed mIoU values in the range of 50%
to 95% across the same set of augmentations (None, Brightness, Contrast, Gamma,
Noise, Flip, Rotation, All) (Figure 13).

• Pretrained DeepLabV3+ Model: When subjected to various augmentations (None,
Brightness, Contrast, Gamma, Noise, Flip, Rotation, All), this model achieved mIoU
values ranging from 50% to 100% (Figure 14).

Figure 12. Mean IoU metric comparison of various augmentations applied for the U-Net model.
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Figure 13. Mean IoU metric comparison of various augmentations applied for the not pretrained
DeepLabV3+ model.

Figure 14. Mean IoU metric comparison of various augmentations applied for the pretrained
DeepLabV3+ model.

Differences Between Pretrained and Not Pretrained Models

Comparing the DeepLabV3+ models based on the use of pretrained weights reveals
key differences:

• Structural parts identification: The pretrained DeepLabV3+ model demonstrated the
potential to reach higher maximum mIoU values (up to 100%) (Figure 14) compared
to the not pretrained DeepLabV3+ model (up to 95%) (Figure 13). This suggests that
leveraging knowledge from a prior, potentially larger, dataset through pretraining can
enhance the model’s capability to accurately segment structural elements, especially
in achieving peak performance.

• Concrete damage detection: Both the pretrained DeepLabV3+ model (range 0–35%)
(Figure 15) and the not pretrained DeepLabV3+ model (range 0–35%) (Figure 16) exhib-
ited a similar range of mIoU values. The relatively low mIoU values observed for dam-
age detection across all models (maximum 35% for DeepLabV3+ (Figures 15 and 16)
and 7% for U-Net (Figure 17)) indicate that identifying damage is a considerably more
challenging task than segmenting the main structural components. In this specific
task, pretraining the DeepLabV3+ model did not appear to offer a distinct advantage
over training from scratch, based on the range of results presented.
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Task 2: Influence of various image augmentations on mIoU (pretrained DeepLabV3+)

Concrete spalling Reinforcement exposure

Figure 15. Mean IoU metric comparison of various augmentations applied in the pretrained
DeepLabV3+ model for the damage prediction task.
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Task 2: Influence of various image augmentations on mIoU (not pretrained DeepLabV3+)
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Figure 16. Mean IoU metric comparison of various augmentations applied for the not pretrained
DeepLabV3+ model in the damage prediction task.
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Task 2: Influence of various image augmentations on mIoU (U-Net)

Concrete spalling Reinforcement exposure

Figure 17. Mean IoU metric comparison of various augmentations applied for the U-Net model in
the damage prediction task.

Furthermore, comparing the models, DeepLabV3+ (both pretrained and not pretrained)
achieved substantially better results in damage detection (range 0–35%, Figures 15 and 16) than
the not pretrained U-Net (range 0–7%, Figure 17). For structural segmentation, the not
pretrained U-Net (range 50–95%, Figure 12) performed comparably to the not pretrained
DeepLabV3+ (range 50–95%, Figure 13), while the pretrained DeepLabV3+ showed the
potential for slightly higher maximum accuracy (up to 100%, Figure 14).

In summary, the results indicate that structural parts segmentation is a task where high
mIoU values are achievable, and pretraining DeepLabV3+ potentially improves maximum
accuracy. Concrete damage detection, conversely, is significantly more difficult, yielding
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much lower mIoU values, and pretraining DeepLabV3+ did not show a clear advantage
over the not pretrained version within the observed ranges. Different data augmentation
strategies were applied and influenced the reported metrics for all evaluated models in
both tasks.

4.2. Results for Task 2: Structural Damage Detection

In the structural damage detection task (Figure 10), which includes cracks and exposed
reinforcement, models were evaluated under a range of image augmentations: None,
Brightness, Contrast, Gamma, Noise, Flip, Rotation, and All.

• Pretrained DeepLabV3+ Model: When trained with standard categorical cross-
entropy loss, the pretrained DeepLabV3+ model produced low mIoU values for
damage classes, ranging-from 0% to 35% , depending on the augmentation used (see
Figure 18). Performance on the reinforcement class was especially poor, with many
predictions missing entirely.

• Trained-from-scratch DeepLabV3+ Model: Similarly, the DeepLabV3+ model with-
out pretrained weights exhibited comparable mIoU values (0–35%), with minimal
improvements under specific augmentations (Figure 16).

• Trained-from-scratch U-Net Model (Baseline): Initially, the U-Net model trained
from scratch using categorical cross-entropy achieved the lowest mIoU values among
all tested architectures—typically in the range of 0% to 7% across augmentations
(Figure 17).

• Improved U-Net Model with Weighted Focal Tversky Loss function: After imple-
menting a weighted focal Tversky loss function with recall-favoring hyperparameters
(α = 3, β = 7, γ = 1.5) and class weights [05, 3, 65] to handle severe class imbalance,
the U-Net model achieved a substantial performance boost (Tables 2 and 3). The
best configuration reached an IoU of 48 for cracks and 44 for reinforcement, with
corresponding F1 scores of 65 and 61, respectively. This demonstrates the importance
of loss adaptation for fine damage segmentation. Background segmentation accu-
racy remained high (IoU = 98), confirming that foreground detection was improved
without sacrificing overall stability.

• Improved DeepLabV3+ Model with Weighted Tversky Loss function: To evaluate
the impact of loss function choice on damage segmentation performance, we compared
the commonly used categorical cross-entropy (CCE) loss with a weighted focal
Tversky loss formulation. The results of both configurations were computed on the
same test set using the same U-Net architecture and are presented in Table 4.
The results indicate that both loss functions yield similarly high performance for the
background class (IoU ≈ 0.97–0.98). However, substantial differences were observed
for the damage classes:

– For cracks, the weighted Tversky loss improved the IoU from 0.20 to 0.42 and
increased the F1 score from 0.39 to 0.59. This reflects a better balance between
precision and recall, which is especially important for detecting small and thin
regions.

– For reinforcement, the Tversky-based configuration significantly outperformed
CCE in all metrics, improving IoU from 0.12 to 0.38 and F1 from 0.29 to 0.55.

These improvements are attributed to the Tversky loss’s ability to penalize false nega-
tives more heavily, which aligns with the safety-critical nature of structural damage
detection, where missing a damaged area is more critical than false alarms. Fur-
thermore, class imbalance was explicitly addressed through weighting, allowing the
network to better learn underrepresented classes. The weighted Tversky loss demon-
strates a clear advantage over categorical cross-entropy for fine-grained segmentation
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tasks involving small and imbalanced damage regions and was therefore adopted
in our final model configuration. A visual comparison between U-Net results and
DeepLabV3+ with the application of Tversky loss function can be found in Figure 19.

Reference mask Predicted by U_Net Predicted by DeepLabV3+

Figure 18. Comparison of the results of damage detection obtained using both U-Net and DeepLabV3+
architectures with a categorical cross-entropy loss function.

Reference mask Predicted by U_Net Predicted by DeepLabV3+

Figure 19. Comparison of the results of damage detection obtained using both the U-Net and
DeepLabV3+ architectures with a weighted Tversky loss function.
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Table 2. Per-class segmentation performance for U-Net.

Class Class Acc.
[%] Precision [%] Recall [%] F1 Score [%] IoU [%]

Background 98 98 99 99 98
Cracks 98 53 45 61 32
Reinforcement 100 19 21 0 11

Table 3. Final segmentation performance using the best U-Net configuration with weighted focal
Tversky loss. Metrics are rounded to two decimal places.

Class Class Acc.
[%] Precision [%] Recall [%] F1 Score [%] IoU [%]

Background 98 99 99 99 98
Cracks 99 61 69 65 48
Reinforcement 00 79 49 61 44

Table 4. Comparison of segmentation performance using categorical cross-entropy and weighted
Tversky loss.

Loss Class Class Acc. Precision Recall F1 Score IoU

CCE [%]
Background 97 98 99 99 97

Cracks 98 0.37 31 39 20
Reinforcement 99 0.19 25 29 12

Tversky [%]
Background 98 99 99 99 98

Cracks 98 57 61 59 42
Reinforcement 100 67 47 55 38

4.3. Train and Validation Evaluation for the U-Net Model

To assess model generalization across dataset splits, we present a detailed breakdown
of performance metrics on the training, validation, and test sets for U-Net models (as most
efficient on our real photo), trained using both the categorical cross-entropy (CCE) and
weighted Tversky loss functions. Results are reported per class in Table 5, with all values
expressed as percentages.

Table 5. Train and validation performance for categorical cross-entropy (CCE) and weighted Tversky
loss for U-Net damage model. All values are in %.

Loss Split Class IoU F1 Score Precision Recall

CCE

Train
Background 98.11 99.28 98.68 99.41
Cracks 39.42 71.07 59.38 53.97
Reinforcement 8.55 0.00 12.85 20.32

Validation
Background 98.04 99.28 98.66 99.36
Cracks 38.65 69.54 58.92 52.90
Reinforcement 9.86 0.00 15.41 21.50

Tversky

Train
Background 98.15 99.07 98.99 99.15
Cracks 35.87 53.02 45.69 62.55
Reinforcement 24.31 39.65 41.33 37.12

Validation
Background 98.25 99.12 99.04 99.20
Cracks 49.16 65.93 59.16 74.41
Reinforcement 48.23 65.08 75.27 57.32

The results confirm that models trained with the weighted Tversky loss achieve
significantly better segmentation of the minority damage classes, particularly cracks and
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reinforcement. For example, in the test set, the IoU for cracks improved from 32.14% (CCE)
to 47.87% and for reinforcement from 11.07% to 43.87%. This improvement is consistent
across training and validation splits, reflecting better generalization and damage sensitivity.

Furthermore, a comparison of metrics across dataset splits offers insight into model behavior:

• Background class performance is highly stable for both loss functions (IoU consis-
tently ≈ 98%), showing the model’s ability to accurately segment dominant classes
without overfitting.

• Cracks: For categorical cross-entropy, there is a notable gap between train (39.4%) and
test (32.1%) IoU, suggesting mild overfitting. In contrast, the Tversky loss achieves
higher and more balanced performance across all splits, even slightly outperforming
train IoU on test data (47.9% test vs. 35.9% train), indicating robust generalization to
unseen samples.

• Reinforcement: Under categorical cross-entropy, segmentation nearly collapses across
all splits (test IoU: 11.1%, train: 8.6%). This class suffers from extreme imbalance and
sparsity. The Tversky loss, in contrast, leads to a significant increase in reinforcement
segmentation (IoU: 43.9% test, 48.2% val), highlighting the effectiveness of weighting
and false-negative sensitivity in loss formulation.

Together, these observations underline the importance of tailored loss functions when
addressing fine-grained and imbalanced damage detection tasks. The weighted Tversky
loss not only boosts absolute performance but also stabilizes training dynamics across
dataset splits, reinforcing its suitability for practical deployment scenarios.

The Tversky-based configuration reduces false negatives—a critical benefit in safety-
relevant applications where missed damage is more consequential than false alarms. Con-
versely, CCE performs well for background segmentation but fails to adequately capture
sparse damage classes. These findings reinforce the suitability of the weighted Tversky loss
for highly imbalanced, fine-grained damage segmentation tasks.

4.4. Real-World Evaluation on Annotated Viaduct Images

To assess model generalization beyond synthetic data, we performed an additional
evaluation on the manually labeled Second using the MATLAB 2024a labeler, a set of
16 real-world viaduct images. Four classes were annotated: slab, beam, column, and non-
structural background. Figure 20 shows a sample qualitative comparison of our model’s
predictions with the reference annotations presented in the paper [28]. Table 6 reports the
quantitative performance, including class accuracy, precision, recall, F1 score, and IoU.

These results indicate that despite being trained solely on synthetic data, the model
retains a moderate degree of generalization to real-world imagery, especially for well-
defined classes such as columns. Further improvements are expected with the integration
of real-world samples in fine-tuning or domain adaptation steps.

Table 6. Real-world segmentation results on 16 annotated viaduct images.

Class Class Acc. [%] Precision [%] Recall [%] F1 Score [%] IoU [%]

Non-structural 50 40 52 45 29
Slab 51 39 26 31 19
Beam 83 08 14 10 05
Column 88 37 27 32 19
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Figure 20. Evaluation of the structural segmentation model with real photos (upper photo). Lower
segmentation image, for comparison, taken from paper [28].

5. Conclusions
In conclusion, the imperative role of maintaining traffic infrastructure in an optimal

technical condition for ensuring road and rail traffic safety cannot be overstated. As
the traffic infrastructure expands, the challenges associated with its maintenance grow
exponentially, necessitating a robust system for continuous monitoring. The integration
of vision techniques with artificial intelligence has emerged as a powerful solution for the
efficient automation of inspection processes.

The deployment of various monitoring tools, including installed cameras, remotely
controlled vehicles, and autonomous drones, enables the independent capture of images,
providing a comprehensive view of the infrastructure. The subsequent utilization of artifi-
cial intelligence, particularly deep learning, in image processing facilitates the identification
of potential damage within the structures. Training deep neural networks is essential for
endowing these systems with the capability to recognize and assess damage accurately.

Based on the results presented in Section 4, we can conclude that it is possible to apply
the neural architectures analyzed in this study to computer-vision-based structural health
monitoring (CV-SHM). However, looking at the investigated Mean IoU metric, we can state
that DeepLabV3+ outperforms U-net in both segmentation tasks. DeeplabV3+ achieves Mean
IoU equal to 87% in the structural component identification task and 35% in the structural
damage detection. U-net for the same tasks reached 76% and 13%, respectively.

While our study focuses on optimizing the loss function and training dynamics, we
acknowledge that architectural adaptations—such as attention modules, multi-scale fusion,
or boundary-aware refinement—may further enhance the segmentation of small-scale
features. These techniques represent a valuable direction for future research, particularly
in conjunction with the proposed loss-based improvements. Our future goal will also be
related to improving the performance of the model to be able to use it in the semantic
segmentation of photographs of real civil engineering structures. Additionally, it would be
interesting to further investigate the possibilities of using other types of neural network
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architectures for CV-SHM applications, in particular, the vision transformer mentioned in
the introduction.
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