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Abstract

This study investigates the regulation of tissue growth through mathematical modeling
of systemic and local feedback mechanisms. Employing reaction-diffusion equations,
the models explore the dynamics of tissue growth, emphasizing endocrine signaling and
inter-tissue communication. The analysis identifies critical factors influencing the emer-
gence of spatial structures, bifurcation phenomena, the existence and stability of station-
ary pulse and wave solutions. It also elucidates mechanisms for achieving coordinated
tissue growth. In particular, if negative feedback is sufficiently strong, their final finite size
is provided by a stable pulse, otherwise they manifest unlimited growth in the form of a
wave. These findings contribute to the theoretical insights into biological processes such
as embryogenesis, regeneration, and tumor development, while highlighting the role of
feedback systems in maintaining physiological homeostasis.

1 Introduction
1.1 Tissue growth regulation

The proportions of the human body, including the size and relative proportions of differ-

ent organs, are primarily determined by a combination of genetic factors [1] and biological
signaling pathways during growth, development and regeneration [2,3]. Genes play a crit-
ical role in determining how organs develop and maintain proper proportions relative to

one another. For example, genes regulate the production of growth factors, hormones, and
proteins that influence cell growth, organ formation, and the overall shape of the body. Hox
genes, in particular, are a set of genes that determine the basic body plan and help control the
spatial arrangement of organs and tissues during embryonic development. They ensure that
organs form in the correct places and proportions.

Growth factors like fibroblast growth factor (FGF), transforming growth factor (TGF), and
insulin-like growth factor (IGF) regulate cell division and growth [4,5]. They ensure that dif-
ferent tissues and organs grow at appropriate rates and stop growing when they reach a cer-
tain size. Hormones such as growth hormone (produced by the pituitary gland) and thyroid
hormone play critical roles in controlling growth in specific organs and overall body devel-
opment [6]. For example, during puberty, growth hormone and sex hormones cause rapid
growth in bones and muscles. Different organs have intrinsic growth programs that regulate
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their size independently to a certain degree. For example, the heart develops and grows at a
rate that is proportional to the overall body size to ensure proper circulation [7]. The liver

has a remarkable ability to regenerate and maintain its proportional size even if a portion is
removed [8]. The body uses feedback mechanisms to regulate growth. As certain tissues grow,
signals are sent to stop further growth when a critical size is reached. This prevents organs
from growing too large or too small in relation to the rest of the body.

Although genetics plays an important role, environmental factors such as nutrition, phys-
ical activity, and exposure to toxins can influence how the body grows and how the organs
maintain their proportion [2]. For instance, poor nutrition during childhood can lead to
stunted growth and smaller organ size.

In general, a complex interaction between genetic, hormonal, and environmental factors
governs the proportionality between different organs of the human body. Considering genetic
and environmental factors as given, in this work we will focus on feedback mechanisms and
tissue cross-talk based on the exchange of signaling molecules such as hormones and growth
factors.

1.2 Tissue cross-talk

Tissue cross-talk refers to the communication and interaction between different tissues within
an organism, particularly through signaling molecules like hormones, cytokines, growth fac-
tors, and extracellular vesicles. This communication is crucial for coordinating tissue growth,
repair, and maintenance in a multicellular organism. During the regulation of tissue growth,
these interactions help ensure that different tissues grow in harmony and adapt to changing
physiological demands [2].

There are different mechanisms of tissue cross-talk in growth regulation. In the case of
paracrine signaling, cells release signaling molecules (such as growth factors) that act on
nearby cells. For instance, fibroblasts in connective tissue release growth factors like fibroblast
growth factor (FGF), which promote the proliferation of epithelial cells in the skin or other
tissues [9]. In endocrine signaling, hormones are released into the bloodstream and affect dis-
tant tissues. An example is growth hormone (GH) produced by the pituitary gland, which
stimulates growth in bones and muscles [10]. Insulin-like growth factors (IGFs), produced
in response to GH, also play a key role in tissue growth regulation [11]. Extracellular vesicles
such as exosomes can carry proteins, lipids, and RNA between tissues, allowing them to com-
municate over long distances. These vesicles can regulate cell proliferation, differentiation,
and tissue repair by transferring growth-promoting or inhibitory signals [12].

The immune system is also involved in tissue growth regulation. For example, macrophages
and other immune cells release cytokines that promote or inhibit cell proliferation and tissue
growth, depending on the context (e.g., during injury repair or in chronic inflammation) [13].

Among key examples of tissue cross-talk in growth regulation we can cite bone-muscle
cross-talk [14]. During skeletal growth, there is coordination between bone and muscle
tissues. Muscle-derived growth factors, such as myokines, influence bone development,
while bone-derived factors, such as osteokines, regulate muscle growth. This interaction
is crucial for proper musculoskeletal development and maintaining function throughout
life.

Adipose tissue (fat) and muscle also engage in cross-talk through hormones like leptin and
adiponectin [15]. Leptin, secreted by fat cells, influences energy metabolism and muscle func-
tion, while muscle-derived myokines regulate fat metabolism. This interaction is important in
obesity, where dysregulation can lead to abnormal tissue growth and metabolic issues.
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In cancer, the cross-talk between tumor cells and surrounding stromal tissue is a key
aspect of tumor growth regulation [16]. Stromal cells can secrete growth factors and remodel
the ECM to support tumor expansion, while tumor cells can influence the surrounding
microenvironment to suppress immune responses or promote angiogenesis.

Tissue cross-talk plays a dynamic role in coordinating the growth and adaptation of dif-
ferent tissues, allowing the organism to maintain a balanced physiological state. When these
interactions are disrupted, it can lead to abnormal growth patterns or diseases such as cancer,
fibrosis, or tissue degeneration.

1.3 Models of endocrine system and tissue growth control

Endocrine axes govern and regulate the secretion of hormones from different glands through
a sequence of signals. They maintain homeostasis, regulate a plethora of physiological pro-
cesses (e.g. growth and development, reproductive functions), correlate responses of organ-
isms to environmental changes (e.g. adaptation to stress). Endocrine axes rely on negative
feedback loops to maintain appropriate balance between levels of different target hormones
thus regulating diverse physiological phenomena. We will discuss the biological mechanisms
of such feedbacks in Sect 5.

Mathematical models provide indispensable tools to study tissue cross-talk and related
time oscillations in neuroendocrinology [17], energy homeostasis [18], stress response [19],
and other body systems [20]. One of the first ODE model of growth processes based on neg-
ative feedbacks was presented in [21]. This approach is commonly used in more recent works
(see, e.g., [22]). Gradient scaling models and temporal dynamics models in the regulation of
drosophila wing disk are reviewed in [2,23,24]. Mathematical models of tissue regeneration
are presented in [25].

The main difference and the novelty of the present work is that we consider growing tis-
sue as a spatially distributed system. This approach is quite common in tumor growth mod-
els, wound healing or morphogenesis (see, e.g., [26]) but there are few spatial models of tissue
growth regulation with systemic feedback. We can cite the models of infection progression
with a negative feedback by the adaptive immune response [27-29]. From the point of view
of modelling and analysis, the interest of such models is that they contain integral terms and
represent nonlocal reaction-diffusion equations with some different properties in comparison
with the classical reaction-diffusion models.

In the next section, we will develop mathematical models of tissue growth regulation with
systemic feedback. We will make abstraction of specific tissues and signaling molecules in
order to develop a general framework of such models. Specific tissues and their cross-talk will
be studied in the other works. Sect 3 is devoted to differentiation and growth of a single tissue,
and Sect 4 to coordinated growth of two tissues. In Sect 5, we discuss different mechanism of
tissue growth control in relation to the modelling results, and conclude this paper in the last
section.

2 Tissue growth regulation models

In this section, we will derive the tissue growth models, which will be studied in the next
sections. We focus on the regulation of tissue growth through endocrine signaling involving
another tissue or organ of the body. We begin with growth regulation of a single tissue and
continue with the mutual regulation of two growing tissues.
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2.1 Endocrine regulation of a single tissue

The cell concentration u(x,t) in the tissue is described by the equation

ou_ B

5; - Pz TFw0), ey

where C is the concentration of some biochemical substance (growth factor, hormone) reg-
ulating tissue growth. We take into account random cell motion described by the diffusion
term. The function F(u,C) is considered in the form

F(u,C) =fo(C)(a+ bu)u(l - u) - g(C)u. (2)

The first term in this function describes cell proliferation rate and the second term cell
death. The logistic term u(1-u), commonly used to model tissue growth and cell prolifera-
tion, captures the phenomenon of density-dependent proliferation, where cell division slows
down as cell density increases. This is a well-established concept both biologically [30-32] and
mathematically [33-35].

The extended proliferation term (a + bu)u(1-u) in tissue growth models introduces
density-dependent signaling effects—particularly autocrine and paracrine signaling—which
modulate cell division beyond the basic logistic growth. The factor (a + bu) reflects posi-
tive feedback where cells stimulate their own proliferation or that of their neighbors through
chemical signaling. As such, many cells produce growth factors (e.g., EGE, FGF, TGF-f) that
stimulate their own division (autocrine) or that of nearby cells (paracrine). The local con-
centration of these factors increases with cell density u, hence justifying a term like (a + bu)
to represent enhanced division [36-38]. In models of tumor growth or wound healing, the
proliferation rate is often modeled as a function of local signal concentration, which in turn
depends on u [39]. Models explicitly accounting for autocrine loops introduce proliferation
terms with overlinear growth to reflect increasing signaling strength with density [40,41].

The functions f,(C) and gy(C) show the dependence of cell proliferation and death on
endocrine signaling. Endocrine signaling profoundly influences both cell proliferation and
death across tissues by modulating signaling pathways, transcription factors, and feedback
loops. This regulation is not only experimentally established but also supported by a range
of mathematical models, which help in predicting dynamics under normal and pathologi-
cal conditions. Hormones produced by endocrine glands travel through the bloodstream and
affect target tissues by binding to specific receptors, regulating gene expression, and thereby
influencing cell proliferation. As such, estrogens stimulate the proliferation of breast epithe-
lial cells. Estrogen binds to estrogen receptors (ER), leading to activation of genes promot-
ing cell cycle progression [42]. Insulin and IGF-1 promote proliferation in various tissues,
including muscle, liver, and even in tumor cells. Insulin-like growth factor 1 (IGF-1) activates
PI3K/AKT and MAPK pathways, which promote survival and proliferation [43]. Endocrine
factors also regulate programmed cell death, which is crucial for tissue homeostasis. In par-
ticular, cortisol (glucocorticoid) induces apoptosis in immune cells such as lymphocytes [44].
This is crucial during inflammation resolution. Thyroid hormones regulate apoptosis dur-
ing brain development and metamorphosis in amphibians [45]. Endocrine regulation is con-
sidered in mathematical models of cancer [46,47], hematopoiesis [48], immune response
[49].

Endocrine signaling is characterized by hormones secreted into the bloodstream by
endocrine glands (e.g., pituitary, thyroid, adrenal glands) that regulate the activity of distant
target tissues. However, the regulation is not unidirectional. There is substantial evidence that
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target tissues themselves produce feedback signals, often in proportion to their mass, activ-
ity, or functional state, to modulate the upstream endocrine output. This allows the organism
to match hormonal stimulation to physiological need. Among many examples of such feed-
back regulation between the target tissue and endocrine signaling, we can cite hypothalamic-
pituitary-endocrine axis [50,51], erythropoiesis regulation [52,53], insulin and glucose home-
ostasis [54,55], bone mass and FGF23 [56,57], muscle-liver feedback [58,59].

Thus, target tissues often secrete feedback molecules that serve as informative cues about
their volume, activity, or functional state. Denote by B its level in the organism. Then

dB
E:kl](u)—alB. (3)

Its production rate is proportional to the total tissue volume,

J(u) = /_: u(x, t)dx

(for the space variable x considered on the whole axis). The second term in the right-hand
side of Eq (3) describes its degradation or depletion.

This substance B is transported to another organ or tissue by blood flow and stimulates
there production of the endocrine signaling molecule C regulating tissue growth in Eq (1):

dc =k,B-0,C-05](u)C. (4)
dt
Here C is its concentration in the organism (or its level in blood). It acts on the cells of the
tissue where its depletion is proportional to the total cell concentration J(u) (Fig 1). Note
that the characteristic time scale of hormone distribution by the blood circulation is essen-
tially less than the characteristic time of cell division and tissue growth. Therefore, hormone
redistribution is considered as instantaneous, and the process of this redistribution is not
considered in the models of tissue growth and regeneration.
Problem (1)-(4) represents a combination of a reaction-diffusion equation for the vari-
able u(x,t) as a function of space and time with ordinary differential equations for B(¢) and

/Controlling\\ ‘,/ Growing tissue \\\‘
LN

W uxt) )

Fig 1. Schematic representation of the model. Growing tissue produces some signaling molecule B with the produc-
tion rate proportional to the total cell concentration [ u(x, t)dx. It is transported by the blood flow to the controlling
organ and stimulates there production of a feedback signaling molecule C which can amplify or inhibit tissue growth.

https://doi.org/10.1371/journal.pone.0319120.9001
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C(t). Eq (1) will be considered either on the whole axis or in a bounded interval with Neu-
mann boundary conditions. Note that all variables in these equations are dimensionless. As
such, u(x,t) is the cell concentration, that is the number of cells in unit volume, normalized
to its maximal value. Dimensionless equation (1) is obtained from the dimensional equa-
tion by division on the maximal cell concentration. Parameter a in this equation has a mean-
ing of cell proliferation rate normalized by the maximal cell concentration, that is, relative
increase of cell concentration in a unit volume during a unit time. Parameter b characterizes
the influence of cell-cell interaction on their division rate. Diffusion coefficient D has dimen-
sion (sun)*/tus, where s,, is a space unit, ¢,, is a time unit. Functions f and g represent dimen-
sionless rate coefficients. Coeflicients ky, k;, 01,0, 03 characterize the rates of production or
degradation of signaling molecules B and C.

Since production and redistribution of B and C can be considered as fast compared to the
cell division and death, we can use a quasi-stationary approximation in Egs (3), (4) setting
zero the time derivatives:

B=kJ(u)/o), C=k,B/(0;+05](u)).

Therefore,

_ klkzj(u)
Coy(oy+a3J(u))

can be substituted into Eq (1).
Substituting all these expressions in Eq (1) we obtain the following equation

du d%u
a—:D—2 +f(J(w))(a+bu)u(l -u) -g(J(u))u. (5)
t Ox
All coefficients in this equation are some positive constants. We consider it either on the
whole axis or on a bounded interval with no-flux (Neumann) boundary conditions. We will

specify the functions f(C) and g(C) below.

2.2 Tissue cross-talk and coordinated growth

Tissue cross-talk refers to the biochemical communication between different tissues via sig-
naling molecules such as cytokines, growth factors, hormones, or extracellular vesicles. This
communication is crucial for maintaining homeostasis and coordinating complex physiologi-
cal processes like development, regeneration, and immune responses. The coordinated growth
of tissues via cross-talk ensures that organs develop proportionately and functionally integrate
during embryogenesis, wound healing, and disease.

Tissues secrete signaling molecules that act on nearby (paracrine) or distant (endocrine)
cells to modulate their behavior, including proliferation and apoptosis. As such, in limb devel-
opment, mesenchymal and epithelial tissues communicate via Fibroblast Growth Factors
(FGFs) and Sonic Hedgehog (Shh). FGFs from the apical ectodermal ridge stimulate mes-
enchymal proliferation, while Shh from the zone of polarizing activity influences patterning
and growth coordination [60].

Tissue cross-talk during organogenesis involves reciprocal signaling loops, ensuring pro-
portional and coordinated organ development. For example, in the liver—pancreas axis, FGF
and BMP signals from the cardiac mesoderm and septum transversum mesenchyme guide
hepatic specification, and later liver-derived signals modulate pancreatic islet development
[61]. In metabolic regulation of adipose-muscle tissue cross-talk, adipose tissue secretes
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adipokines (e.g., leptin, adiponectin) and muscle secretes myokines (e.g., IL-6, irisin), which
regulate each other’s growth and function [58].

In tumors, the tumor microenvironment (fibroblasts, immune cells) and cancer cells
engage in cross-talk that regulates tumor cell proliferation and apoptosis. Though pathologi-
cal, this illustrates the broader principle of cross-tissue signaling influencing growth. In par-
ticular, cancer-associated fibroblasts (CAFs) secrete TGF-f, VEGE, and other growth factors
that stimulate tumor growth and angiogenesis [62].

In bone marrow-immune system interactions, hematopoietic stem cells (HSCs) in bone
marrow receive signals from bone-forming osteoblasts and vice versa. Osteoblasts secrete
osteopontin, which affects HSC quiescence and proliferation. This interaction ensures that the
expansion of the bone matrix and the replenishment of blood cells are coordinated [63].

Thus, tissue cross-talk via diffusible factors, extracellular vesicles, or direct cell-cell con-
tact ensures synchronized growth by adjusting proliferation/apoptosis rates based on sys-
temic needs, mediating feedback loops during development and regeneration, responding to
physiological and pathological stimuli.

We now develop a mathematical model for the description of coordinated growth of two
tissues. Consider two tissues with normalized concentrations of cells u(x,t) and v(x,t), respec-
tively. These concentrations are described by the following system of equations:

a 92
761: = D—axz +filene)(ar +biw)u(l —u) - g (e, 0)u, (6)
v &
67: B Daxz +fa(e1, 2) (a2 + bav)v(1 - v) - ga(c1, 2)v. @)

Each of these equations is similar to Eqs (1), (2) described in Sect 2.1. As before, the right-
hand side of Eq (6) describes random cell motion, cell proliferation and death. Cell prolifer-
ation rate is proportional to their concentration u and to the logistic term (1-u) describing
density-dependent proliferation. The factor (a; + byu) shows that proliferation rate increases
with u due to local cell-cell communication. Finally, the factor fi (¢, c;) shows how the pro-
liferation rate depends on the cytokines produced by both tissues. The properties of this and
other functions will be specified below. Cell death rate also depends on the concentrations of
cytokines through the function g; (c;, ¢;). A similar equation is considered for the concentra-
tion v.

According to the biological data on tissue cross-talk described above, each tissue produces
a signaling molecule acting on the rates of cell proliferation and death. Their concentrations
are described by the equations:

d
% =kiJi(u) - ke, (8)
d
% = k21]2(V) = kxcs. 9

Here
Ti(u) = ] ¥ (o Ddx, J(v) = f " (e £)dx

are the total tissue volumes (for the problem considered on the whole axis). In order to sim-
plify the model, we consider that the same molecule ¢; (c;) produced by the first (second)
tissue participates in the regulation of both tissues. In a more general case, these signaling
molecules can be different.
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There are different cases according to the form of the functions f;, g;:

o Cell death is promoted by cells of the same type and down-regulated by cells of the different
type, cell proliferation is independent of them,

r1+ 101 S1t8520

, g2(C1)C2): f,El, i=1,2. (10)

gl(CbCz) = >
13 +14C) S§3 +84Cq

« Cell proliferation is promoted by cells of the different type and down-regulated by cells of
the same type, cell death is independent of them,
r +1c $1+80

fl(ChCZ):i) _fZ(Cl)CZ)Zi) giEL i:1;2- (11)
13 +14C1 S§3 +54Cp

o Cell death and proliferation can depend on signaling with ¢; and c,.

Summarizing these different conditions, we assume that each tissue down-regulates its
own growth through a negative feedback determined by the tissue volume. On the other
hand, each tissue promotes growth of the other one (Fig 2). These assumptions are confirmed
by some biological observations [64]. Moreover, according to this work, cessation of develop-
mental growth is, in the final stages, due more to an increase in the rate of cell loss than to a
reduction in the rate of cell proliferation.

3 Differentiation and growth of a single tissue

We consider the following equation for the concentration of tissue cells u(x,t):

2
%:D% +f(c)(a+bu)u(l-u)-g(c)u. (1)
down-regulation down-regulation
ﬂ up-regulation
//"//‘/f - T P /,,/'""'77 o T -2
/ \
/ First growing / L

‘ ,‘ | Second growing \

\ tissue u(x,t) / ‘\\\ tissue v(x,t) /

up-regulation

Fig 2. Schematic representation of the model for the coordinated growth of two tissues. Each of them
down-regulates its own growth and up-regulates growth of the other one.

https://doi.org/10.1371/journal.pone.0319120.g002

PLOS One | https://doi.org/10.1371/journal.pone.0319120  August 29, 2025 8/ 32



https://doi.org/10.1371/journal.pone.0319120.g002
https://doi.org/10.1371/journal.pone.0319120

PLOS One Mathematical modelling of tissue growth control by positive and negative feedbacks

The diffusion term in the right-hand side of this equation describes random cell motion,
the next term characterizes cell proliferation and the last term their death. The cell prolif-
eration rate is considered in logistic form taking into account the decrease and arrest of the
proliferation rate for the dimensionless cell concentration u = 1. On the other hand, cell pro-
liferation increase due local cell-cell communication and paracrine signaling is described by
the factor (a + bu). Finally, endocrine signaling on cell proliferation is described by the func-
tion f(c). Its influence on cell death is taken into account through the function g(c). These
functions will be specified below. We recall that, according to Eq. (5), c = [ u(x, t)dx for the
problem on the whole axis. For the problem on a bounded interval, the integral is taken with
respect to this interval.

3.1 Bifurcation of spatially distributed solutions

For simplicity of calculations, we suppose that f(c) = 1. Let g(c) be a non-negative continuous
function defined for ¢ > 0. The particular case g(c) = ¢ is studied in [65].

Consider Eq (1) on a bounded interval [0,L] with the Neumann boundary conditions:

x:O,L:a—u:O. (2)
Ox

For a positive homogeneous in space stationary solution of problem (1), (2), J(u) = Lu, and
it can be found as a solution of the equation

(a+bu)(1-u)=g(Lu). (3)

Suppose that such solution exists and denote it by uy.
We linearize Eq (1) about this solution and obtain the eigenvalue problem:

Dv'' + (a - 2auq + 2bug - 3bug)v - g(Lug)v - g (Lug ) ueJ(v) = Av, (4)

or, taking into account (3),

DV + (a+b-2bug)ugv - g (Lug)uoJ(v) = Av )

with the boundary conditions

v (0)=v'(L)=0. (6)

We consider the eigenfunctions
n
vp(x) = cos (T x) , 1=0,1,2,...

and determine the corresponding eigenvalues:

2
Ao =(b-a-2buy)ug - g (Lug)Luy, Anz(b—a—Zbuo)uo—D(%) ,n=12,... (7)
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The properties of the eigenvalues are formulated in the following theorem.

Theorem 3.1. Suppose that

¢ (Lug) >0, 0<u0<2;ba, )

and
1 /
D< =) min ((b —a-2bug)ugl’, g (LuO)L3uo) .
Then A, is a positive eigenvalue with the maximal real part,

/11>0, /11>Ao, /11>/1y,, n=2,3..

The assertion of the theorem follows directly from (7). It means that the loss of stability of
the homogeneous in space solution occurs with a space-dependent eigenfunction (see, e.g.,
[66], p. 528). Therefore, this instability leads to the bifurcation of a space-dependent solution.
This is different for the equation without the integral term. In this case, 4o > 1;, and spatial
structures do not emerge (see more details in [65]).

Note that if b>a and g(u) = kgo (1), where go(u) is a positive growing function such that
£0(0) =0, then the conditions of the theorem are satisfied for all k sufficiently large and all D
sufficiently small.

Example. Let g(J) = kJ and a = 0. Then the instability conditions can be written in the fol-
lowing form [65]: b/(2k) < L < b/k, D< L*(2kL - b)(b - kL)/(br?). Note that the instability
emerges for the values of L in some bounded interval. This is different in comparison with the
Turing instability for which L should only exceed some minimal value.

Some examples of solutions bifurcating from the spatially uniform solution are shown in
Fig 3. Let us note that for an asymmetric initial condition, solution converges to the half-pulse
solution, while for a symmetric initial condition to the whole pulse solution. Since the initial
condition is symmetric, it is orthogonal to the first eigenfunction, and the solution remains
in this subspace. Since the second eigenvalue 4, is also positive for these values of parameters,
the solution converges to a symmetric pulse solution.

0.04 - 0.025 -~
0.015
350.02 )
0.01
0.01
0.005
0 0 A
0 100 200 300 400 500 0 100 200 300 400 500
X X

Fig 3. Numerical simulations of equation (1) with f(J) =1 and g(J) =kJ,a=0.5,b =1, k= 0.1. Left: D = 50, the initial
data are: 0.1H(x-250-50)H(250-x). Right: D = 20, the initial data are: 0.1H(x - 250 - 25) H(250 + 25 - x).

https://doi.org/10.1371/journal.pone.0319120.g003
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Taking into account different possible applications and wide variation of biological
parameters, the choice of parameter values is motivated by the purposes of modelling,
such as the conditions of the emergence of spatial structures and different regimes of tissue
growth.

3.2 Existence and stability of pulses on the whole axis

We consider the stationary equation
Dw' + (a+bw)w(1-w)-g(J(w))w=0 )
on the whole axis. We look for a positive solution of this equation vanishing at infinity,
w(xo0) = 0. (10)
Consider the auxiliary problem
Dw' +(a+bw)w(l -w) —hw=0, w(+0)=0, w(x)>0, x€R (11)
and denote by wy,(x) its positive solution. Then solution of the equation

gU(wn)) =h (12)

provides a solution of problem (9), (10).
Problem (11) has a solution if b>a >0 and a < h < h,, where h, > a is a positive number
which can be determined analytically (see p. 4 in [65]). Moreover,

h—a

0 >
](Wh)*{ o , hh

We can now formulate the existence result.

Theorem 3.2. Suppose that b >a >0, g(0) < a,g(o0) > hx or g(0) > a,g(c0) < h*. Then
problem (9), (10) has a positive solution.
Consider some examples.

Examples. If g(¢) = kc”" with some positive k and n, then the conditions of the theorem
are satisfied. They are also satisfied for negative n, but these two cases are different. Intro-
duce the function F(h) = g(J(wy)) - h and consider the equation F(h) = 0. If it has a sin-
gle solution hy, then F'(hy) > 0 for n>0 and F'(hy) < 0 for n < 0. This is related to stabil-
ity and bifurcations of solutions. If n = 0, then Eq (9) is independent of J(u) and the pulse is
unstable [67].

Remark. If the function f(J) is not constant, then equation
Dw'" +f(J(w))(a+bw)w(l-w) -g(J(w))w=0 (13)

can be reduced to an equation similar to (9) by the introduction of a new function

v(xyfU(w))) = w(x).
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3.3 Numerical simulations

Some examples of numerical simulations are shown in Figs 4 and 5. If conditions of Theo-
rem 2.2 are satisfied, then there exists a stationary pulse solution. For the values of param-
eters in Figs 4 (left), it is stable, and the solution of Eq (1) converges to it. On the contrary,
for the values of parameters in Figs 4 (right), the pulse does not exist, and we observe wave
propagation.

Under the conditions of the theorem, if solution / of Eq (12) is sufficiently close to the
value h,, then the pulse solution exists, it is wide and top-flat (Fig 5, left). The figure shows
convergence of solution of the initial boundary value problem to the stationary pulse solution.
Let us note that the initial condition is small. Contrary to the conventional bistable reaction-
diffusion equation, here the solution can grow even for any small initial condition. In fact,
the presence of the integral in the equation changes its type from the monostable case for
small J(u) to the bistable case for large values. Thus, solution grows, takes the form of a flat

0.055 0.55
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Fig 4. Numerical simulations of Eq (1) with f(J) =1 and g(J) = k1 + k2J/(1+]), a = 0.5, b = 1. Left: solution converges
to a stationary pulse, k; = 0.2,k = 0.5,] = 1.7237, t = 1200. Right: solution propagates as a wave, k1 = 0.2,k = 0.3, ¢ =
0, 50, 100, ..., 600.

https://doi.org/10.1371/journal.pone.0319120.g004
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Fig 5. Numerical simulations of Eq (1) with f(J) = 1 and g(J) = (k1 + k2exp(0.05])/(100 + exp(0.05]))),a=0.5,b=1,
k1 = 0.05, ky = 0.75. The left panel shows convergence of solution to the stationary pulse, ¢ = 0, 50, 100, ..., 1000. The
corresponding function J(u)(t) is shown in the right panel.

https://doi.org/10.1371/journal.pone.0319120.g005
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pulse, then decreases its height and increases its width. The right panel in this figure shows the
convergence of J(u)(¢) to its limiting value.

The decrease of the plateau value in Fig 5 is determined by the density-dependent cell pro-
liferation. If the decrease of the proliferation rate is faster, then the decrease of the plateau
value is not so essential. For example, if we impose the condition that cells stop proliferation
if they touch each other and proliferate otherwise, then for a uniform cell distribution, pro-
liferation rate becomes (a + bu)ug(u), where ¢p(u) =gy >0for0 <u<1land $(1)=0. An
example of such simulation is presented in Fig 6.

4 Coordinated growth of two tissues

Growth of different tissues during the development of the organism is precisely coordinated.
In this section, we study simultaneous growth of two tissues which exchange signals and
influence their respective growth rates and final sizes.

4.1 Existence of pulses

We consider quasi-stationary approximations in Eqs (8), (9). Then

a1 =kiJi(u)lkia, ¢ =knla(v)lka, (1

and Egs (6), (7) become as follows:

ou o%u r + ki1 (u)
—=D—+(m+biu)u(l-u) - ———u, 2
ot Ox2 @1+ bruju( ) ry+koJa(v) @
ov 0% sp+na(v)
—=D—+(a+byv)v(l-v)- ——=, 3
ot dx? (a2 +bav)( ) sy +ma)1(u) ®
J
1 180
0.9 B 160
0.8 | 140
0.7 | 120t
=,0.6 .—,100
0.5 80
0.4 60,
0.3 ‘ ’ 40
0.2 i ( 20
=] |
/ / — 00 200 400 600 800 1000
160 200 250 300 340 Time
X

Fig 6. Numerical simulations of Eq (1) with f(J) = 1 and g(J) = (k1 + k2exp(0.05])/(100 + exp(0.05])) ), a=0.5,b =1,
k1 = 0.05, k; = 1.1. The left panel shows convergence of solution to the stationary pulse, t = 0,12.5, 25, 50, 100, 200,

400, 800, 1000. The corresponding function J(u)(t) is shown in the right panel. The proliferation rate is given by the function
(a+bu)u(1-ut%/(u% +0.1)) with the density dependence approximating a step-wise constant function ¢ (u).

https://doi.org/10.1371/journal.pone.0319120.g006
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where
_ kiyra _ kary _ kiys, _ kaysq

ki = , k= R = s = .
T S

We look for a positive stationary solution w(x),z(x) of this system of equations on the
whole axis:

_r1+k1]1(w) _

Dw" b 1- =0, 4
w' + (a1 + byw)w(1l - w) ko (2) w (4)
1 s1+n12(2)
D b l1-z)- ————ZL z= 5
72"+ (ay + byz)z(1 - 2) Tl () (5)
vanishing at infinity:
w(£00) =0, z(xo0)=0. (6)
Consider the auxiliary problem
Dw" + (a; + byw)w(1 -w) —pw=0, (7)
DZ" + (ay +by2)z(1-2) - qz =0, (8)
w(£00) =0, z(xo00)=0, 9)

and denote its solution by (w,(x), z;(x)). This solution provides a solution of problem (4)-(6)
if

st +k1]1(Wp)
b/ _ 10
1"2+k2]2(2q) p ( )
and
s+ ma(zg) -q. (11)

) +I’l2]1(Wp)

Lemma 4.1. The function J,(w)) is positive and continuous in the interval a; < p < p,. for
some p,. > ay, J1(wp) =0 for p = ay, and J;(wp) — 00 as p — p... The function J,(z,) is positive
and continuous in the interval a; < q < q. for some q. > a, J,(z4) = 0 for q = a,, and J,(z;) —
00 s q = .

Proof. By definition, w,(x) is a positive solution of Eq (7) vanishing at infinity. It is inde-
pendent of g. The function Fj,(w) = (a + bw)w(1 - w) - hw can have from one to three non-
negative zeros. Suppose that there are three of them. This is the case if

2
b>a, a<h<M.
4b

Denote by wy(h) the maximal solution of the equation F,(w) = 0. It is known that Eq (7)
has a positive solution wy,(x) vanishing at infinity if and only if [OWO(h) Fp(w)dw > 0. This
inequality holds for a < h < h, = (2(a+b)? +ab)/(9b).

Denote w,,(h) = maxyeg wp(x). Then wy,(h) < wo(h).Ifh / h,, then w,,(h) / wo(h),
wp(x) = wo(h) uniformly in x on every bounded interval and, consequently, J; (wy,) - oo (see
[65] for more detail).
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Next, suppose that i \, a and set & = a + €. Then Eq (7) can be written as follows:
Dw" + (b-a)w* —bw’ —ew=0. (12)

Let us introduce a new function u(y) by the equality w(x) = ev(/ex). Then it satisfies the
equation

DV'+(b-a)v* -v-bev’ =0, (13)

where prime denotes the derivative with respect to y. If b > a and ¢ is sufficiently small, then
this equation has a positive solution v (y) vanishing at infinity. Then

]1(wh):[: wh(x)dxzefmve(\/gx)dx:\/E[:ve(y)dy~\/E[:vo(y)dyeo

o0

ase —~ 0.
The second part of the lemma for J,(w,) can be proved similarly. The lemma is proved.

Lemma 4.2. Suppose that system (10), (11) has a solution for a, < p < ps, ax < q < q. in some
parameter range. Then J;(w,) — oo if and only if ]>(z,) — 0.

Proof. Suppose that J;(w,) = oo but J;(z,) remains bounded. Then the left-hand side of
equality (10) tends to infinity, while the right-hand side remain bounded since a; < p < p..
The second case is proved similarly. The lemma is proved.

Lemma 4.3. If
e #:px-qm (14)

then for p and q satisfying (10), (11), convergence J;(w,) — 00, 5(z4) = oo does not hold.

Proof. If this convergence occurs, then p — p.,q — g«. From Eqs (10), (11) we obtain

T1+k1]1(‘WP) N 51+}’11]2(Zq)
r2+k2]2(zq) * 52+n2]1(wp)

* o

Multiplying these equations, we get

11 +k1]1(Wp) ) S1 +I’l1]2(Zq)
1+ kz]z(Zq) S+ nzh(wp)

= Dxqx-

The expression in the left-hand side converges to kyn;/(kyny ). This contradiction proves
the lemma.

We begin the analysis of the existence of solutions of system of (10), (11) with the case r; =
ry = s1 = 5, = 0. Then, multiplying these equations, we obtain pq = x, where x = kyn1/(kyn,).
The function h,(p) = J2(zxsp) is defined on the interval a, < x/p < g, or x/q. <p <x/a;.
Together with the function h; (p) = J1(w, ), they are defined on the intersection of the intervals

I=[ay,p+) N (x/q.. xlaz].
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We recall that h; (a;) =0, by (p.) = 00, hy(x/q.) = 00, hy(x/a;) = 0, and these functions are
positive inside their intervals of definition.
Assume that x/q. < p. and consider the function

_ kihi (p)
kahy(p)’

H(p)

p1=max(ay,x/q.) <p <min(p,,x/ay) = p,.

Since hy(a;) = 0 and h,(x/q.) = 00, then H(p;) = 0. Next, equalities /; (p.) = 00 and
hy(x/ay) = 0 implies that H(p,) = co0. Hence, equation H(p) = p (equivalent to Eq (10)) has a
solution in this interval. We proved the following result.

Proposition 4.4. Suppose that ry =r, =5, =5, =0 and

7<P*fb- (15)
2

Then problem (4)-(6) has a positive solution. If the inequality is opposite, such solution does
not exist.
We will now consider the case without the assumption that some coeflicients vanish.

Theorem 4.5. If r1/r, < ay,$1/s2 < ap and

e >P*q>«> (16)

then problem (4)-(6) has a positive solution.

Proof. If r;/r, < a;, then Eq (10) with respect to p has a solution in the interval (a;, p.) for
any q € 4,49 ) fixed. Indeed, for p = ay, J1(w,) =0, J,(w,) >0, and

Y1+k1]1(Wp) 11

1) + k2]2(Zq) - &) <@ _P-

On the other hand, J; (w;) — o0 as p — p,, and the last inequality becomes opposite for
p sufficiently close to p.. Therefore, Eq (10) has a solution for some intermediate value of p.
Denote it by S(q). Then, S(a) > a1, S(q) = p« as ¢ = q«.

Similarly, If /s, < a,, then Eq (11) with respect to g has a solution in the interval (a,, g )
for any p € [ay,p. ). We denote it by T(p), and T(a;) > ap, T(p) — g+ as p — pa.

We need to verify that the curve p = S(g) and g = T(p) intersect for some a, < g < g, a; <
P < p». This point of intersection provides solution of system (10), (11) and, consequently,
of problem (4)-(6). We will show that condition (16) implies that the curve p = S(q) is above
q=T(p) in some vicinity of the point (p.,q.) (Fig 7). Then the curves intersect inside the
rectangle.

We consider the inverse function g = R(p) to the function p = S(g). For simplicity of nota-
tion, set

fp) =1i(wp), &1(p) =J2(wy) for q=R(p), g(p)=7J2(w,) for q="T(p).
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q
q*
q=T(p)
p=5(q) 0
a 2

Fig 7. Schematic representation of the curves p = S(q) and q = T(p) on the (p,q)-plane. The former starts at the
lower boundary of the domain and tends to the point (p«, g« ). The latter starts at the left boundary and tends to the
same point. If the first curve is above the second curve near this point, as shown in the theorem, they have a point of
intersection inside the domain.

https://doi.org/10.1371/journal.pone.0319120.g007

Then Egs (10), (11) become as follows:
n+kif(p) _ si+mg(p) T(p).
n+kgi(p) 7 s+ mf(p)

We obtain from these equations:

Ap) = kil (rop-n+kopgi(p)), fip)T(p)= niz(sl +mg(p) -2 T(p))-

Multiplying the first equation by T(p) and equating the right-hand sides, we get the equal-
ity:
g1(p) =a(p)g:(p) +B(p); (17)
where

k1 ni _ k1
kanopT(p)’ kanopT(p)
Since p < p«, T(p) < g+, then by virtue of condition (16),

a(p) = 8(p) (51 -:T(p)) - é(fzp n).

kyny S kymy N
konopT(p) — kanopaqe

a(p) =

Furthermore, |8(p)| < M, where M is some positive constant independent of p.

Eq (17) implies that g1 (p) > g2(p) for p sufficiently close to p.. Indeed, if g1 (p;) < g2(p:)
for some sequence p; such that p; /* p., then from (17),

)gZ(Pi) B(pi) kyny M

+ > -

1=« i .
b si(pi)  &(pi)  kamapeqs  £1(pi)

Since the first term in the right-hand side of this inequality is larger than 1, and the second
one converges to 0, we obtain a contradiction.
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Thus, we proved that
J2(Wr(py) > J2(wr(py) for psufficiently close top,. (18)

If J,(wy) is a monotone function of g for g sufficiently close to g., then we conclude that
R(p)>T(p).

Monotonicity of J,(w,) is not needed if we want to verify that R(po) > T(pq) for some py.
This is sufficient for the intersection of the curves and for the existence of solution. We take a
value qo of J,(wy) for which J>(w,) < Ja(wy, ) if q < go. Existence of such g, follows from the
fact that J,(w,) tends to infinity. Then for any q; such that J,(wg, ) > J>(wg,) it follows that
q1 > qo. We choose py such that go = T(po). It follows from (18) that J,(wg(py)) > Ja(Wr(p,))-
Then R(po) > T(po).

4.2 Existence of waves

System of Egs (2), (3) cannot have travelling wave solutions with one of the limits at infinity
different from zero since the integrals J; (u), J,(v) are not defined in this case. Instead of trav-
elling waves in the classical definition, we will consider the solution of the Cauchy problem
converging to two waves moving in the opposite directions, one to minus infinity, another one
to plus infinity. In this case, the integrals are well defined. Let us proceed to the description of
such solutions and to the conditions of their existence.

Consider the equations

ou d%u

EZD@‘F((Jl*'blu)u(l—u)—Pu, (19)
Q—D&+(a +byv)v(1-v) - Qv (20)
ot o 7 ’

where P and Q are some positive constants. If

(611+b1)2 a2<Q< (a2+b2)2

bj>a;, i=1,2, a;<P<
oo ! 4b, 4b,

1)

then these are bistable equations. In this case, each of the equations
(a1 +byuw)u(l-u) =Pu, (ay+byv)v(1-v)=Qv

has three non-negative solutions, 0, 41, u, and 0, v, v,. Egs (19), (20) have travelling wave
solutions with the limits [0, u,] and [0, v,]. Moreover, there are some values p, > a; and g, >
a, (the same as in Lemma 4.1) such that the inequalities

a1 <P<p., a2<Q<q. (22)

provide the positivity of the wave speeds. Denote the wave speeds by ¢; and c,, respectively. If
0 < P < ay, then the corresponding equation is monostable, the wave still exists, and we denote
by ¢; the minimal wave speed. Similarly, if 0 < Q < a,, ¢, is the minimal wave speed for the
second equation.
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Consider the solution u(x,t) of the Cauchy problem for Eq (19) with a sufficiently large ini-
tial condition u(x,0) vanishing at infinity, u(x,0) — 0 as x & co. Then this solution approaches
two waves propagating in the opposite directions and u(x, t) — u, as t - oo uniformly on
every bounded interval. Therefore, J; (1) ~ 2uyc;t as t - oo. Similarly for Eq (20), Jo(v) ~
2v,6pt as t — oo. We call such solutions expanding wave solutions. We have

ri+kiJi(u) N kiJy(u) N kiciuy
r2 +k2]2(V) kz]z(V) kycovy ’

t— oo,

sp+mfa(v) N mi>(v) L moy,
S+ ”2]1(14) 7’12]1(11) nyC1uy ’

t— o0.

System (2), (3) can be reduced asymptotically for large time to system (19), (20) if the
following relations are satisfied:

ke (Pu(P) _, ma(Q)v:(Q) _
ke (Qva(Q) 7 maci (P)uz(P)

(23)

We take into account here that ¢; and u, depend on P, ¢, and v, depend on Q,
Multiplying these two equalities, we obtain

p- kﬂ’ll 1
kany Q

Since Q € (0, 4. ), then

klf’l] 1
—— — <P<oo.
k2”2 qx

On the other hand, P is defined in the interval (0, p. ). These two intervals intersect if

klf’ll
x> 7. 24
Pege> 10 (24)

It is the same condition as in Proposition 4.4 for the existence of pulses. Assuming that it is
satisfied, we consider the equation

lel(P)uz(P)
F(P)= ————~+= (25)
(P) kyc2(Q)v2(Q)
with respect to P, where
kll’ll 1 kli’ll 1
— =, =— —<P<p.
Q k2n2 P kzl’lz qx p

Note that ¢; (po) > 0,¢;(p+) = 0. Moreover, if P = py, then Q = g, and ¢(Q) =0.If P=p,,
then Q < ., and ¢(Q)>0. Therefore F(py) = 00, F(p.) = 0. Moreover, functions u,(P) and
v2(Q) are bounded from above and from below by some positive constants. Therefore, Eq
(25) has a solution. We proved the following theorem.

Theorem 4.6 If system of Eqs (2), (3) has an expanding wave solution, then inequality (24) is
satisfied.
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This assertion does not give sufficient conditions of the existence of such solutions. How-
ever, for constant P and Q such solutions do exist. Their existence can be proved for time-
dependent P and Q converging to some limits. So, we can expect existence of such solutions
for the coupled problem (2), (3).

Conditions of Theorem 4.5 exclude the existence of such solutions, while conditions of
Proposition 4.4 admit them. Combining these results with the results of numerical simula-
tions discussed below, we can conclude that waves with positive speeds (Theorem 4.6) exist
together with unstable pulses (provided by Proposition 4.4), but not with stable pulses. This
is similar for the scalar equation and monotone systems for which unstable pulses exist if and
only if the wave speed is positive [68]. Stable pulses do not exist for the scalar equations and
monotone systems [67].

The results on tissue growth can be summarized in terms of the non-dimensional parame-
ter

_ kll’ll
kanap.q.

characterizing the strength of the feedback. If $>1, then the solutions converge to a stable
pulse. If the inequality is opposite, they propagate as a wave.

4.3 Numerical simulations

According to the analytical results presented above, inequality

k
1—nl<p*q* or S<1 (1)
kzi’lz

is associated with the existence of expanding solutions, that is, waves with positive speeds.
Theorem 4.6 proves that it is a necessary condition of the existence of such solutions. Numer-
ical simulations confirm their existence (Fig 8). Note that the wave speeds for the two compo-
nents of solutions are, in general, different from each other.
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Fig 8. Time profiles of the function u; (left) and of the function u, (right) for r; = s; = 0.5, r, =5 = 1.5, k1 = 1.2, n; = 0.4. The initial
condition is a piece-wise constant function; a; = a; = 1, b1 = by =4, k, = 1, n, = 0.5. For these values of parameters p. = g« = 1.5 and
S~ 0.427. Dynamics of solutions corresponds to expanding waves.

https://doi.org/10.1371/journal.pone.0319120.g008
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If inequality (1) is opposite and conditions of Theorem 3.5 are satisfied, then there exist
stationary pulses (Fig 9). We note that the components u; and u; of solution of problem (4)-
(6) are coupled only through the values of their integrals. Therefore, for any solution u; (x),
u(x) of this problem, then functions u; (x), uy (x + h) also satisfy it for any real h. This prop-
erty is illustrated in Fig 9 (left). Increase of the value of k; decreases the component u; of the
solution (Fig 9, right). It also leads to the decrease of u, through the integral J(u1).

Let us now consider the case r; = s; =, = s, = 0 (cf. Proposition 4.4). If condition (1) is
satisfied, then numerical simulations show that the stationary pulses are unstable, and we
observe wave propagation (Fig 10). If inequality (1) is opposite, waves with negative speeds
are observed (Fig 11). In agreement with Proposition 4.4, there are no stationary pulses.

Convergence of solution to a wide flat pulse is shown in Fig 12. In the beginning of sim-
ulation, solution resembles a travelling wave. After some time, it slows down and stops. Bio-
logically, this example illustrates coordinated growth of two tissues to their final sizes. We use
this example for numerical simulations of tissue regeneration. We cut the first tissue, while
the second tissue is not changed. In the model, this means that we consider the initial con-
dition with a partially truncated first component, while the initial condition for the second
component represents the same stationary pulse as in the previous simulation. The solution of
this problem converges to the same pulse solution. The integrals of the first and second com-
ponents of the solution are shown in Fig 13. The integral of the first component monotoni-
cally converges to its stationary value, while the integral of the second component decreases
in the beginning and grows later. This decrease in the beginning of simulations shows that the
second tissue decreases its size to adjust to the first tissue.

5 Discussion

As indicated above in the introduction, tissue growth control can be influenced by tissue
cross-talk and negative feedback. We will discuss here the biological mechanisms of this
feedback and their realization in the model.
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Fig 9. Left panel: profiles of the pulses #; and u; for r; = s; = 0.5, 2 = s, = 1.5, kg = 2, n; = 1. The initial data for 4; and u; are given by
rectangles shifted by 30 space units. Right panel: profiles of the u; pulses for r; =51 = 0.5, r, = s, = 1.5, and fixed n; = 2. The maximal value
of the profiles decreases with k; equal respectively to 0.75, 1, 2, 3. Other parameters: a; =a> = 1,b1 =by =4, ky = 1,1 = 0.5, and S~ 1.78.

https://doi.org/10.1371/journal.pone.0319120.g009
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times: (0, 100, ..., 500, 580.5) x100 times: (0, 100, ..., 500, 580.5) x100

0.5 - S ; 0.5 /‘/ 77 B \\

Ll el I 0.4 frocfdinf -

u2

02 T ‘\ [
," \‘ 0.1 gl bt

fdire | ..t . | ] | \i\
i / \ 0 /) )

160 180 200 220 240 260 280 160 180 200 220 240 260 280 300
X X

Fig 11. Time profiles of the function u; (left) and of the function u, (right) for r; =s; =r; =5, =0, k; = 1.67725, n1 = 0.6709. The
initial condition is a piece-wise constant function. At time ¢ = 581 - 100 the functions u; (x, t) and u» (x, t) are point-wise smaller than
107°: the solution converges to zero. The values of parameters: a; =a; = 1,b1 =by =4,ky = 1,1 = 0.5, px = g+ = 1.5, and S x 1.00023. In
agreement with Proposition 4.4, no pulse solution is observed.

https://doi.org/10.1371/journal.pone.0319120.g011

5.1 Chalones, growth-inhibitory feedback mechanisms, functional
feedbacks

Chalones are tissue-specific, secreted factors that inhibit further cell proliferation in the tissue
of origin. The concept of chalones originated with the hypothesis that organ size is regulated
by locally produced substances that act to limit growth when a critical mass is achieved [64,
69]. Chalones are secreted in proportion to the size or cell number of the tissue. As the tissue
grows, their concentration increases locally or systemically, inhibiting further proliferation.

Chalones are critical for maintaining tissue homeostasis and preventing excessive growth.
The disruption of chalone signaling can result in unregulated tissue growth, contributing to
tumorigenesis. For example, loss of myostatin expression in some cancers correlates with
tumor progression and metastasis.
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component, it first decreases, then grows to its stationary value.

https://doi.org/10.1371/journal.pone.0319120.g013

The concept of chalones is being discussed during already more than a century with some
examples and counter-examples (see the reviews in [2,64,70]). In the modern biological litera-
ture, it is accepted that it can work for some organs (see Table 1 in [69]), but it is not universal.
Other mechanisms are also involved in tissue growth regulation depending on the tissue in
question and physiological conditions (embryogenesis, development, trauma, neoplasia).

Growth is often regulated through negative feedback loops, which maintain a balance

between proliferation and tissue size. These feedback loops can involve systemic signals (e.g.,
hormones) or local factors (e.g., chalones, mechanical stress).
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Local feedback mechanisms include contact inhibition, where high cell density suppresses
cell division, is a classic feedback mechanism. Mechanical cues, such as stiffness of the extra-
cellular matrix (ECM), can signal cells to reduce proliferation as tissue tension increases.
Molecules like FGF (fibroblast growth factors) and VEGF (vascular endothelial growth factor)
operate in local feedback loops to regulate organ development and maintain proportions.

Parabiosis studies in mice (joining circulatory systems of two animals) have shown that
systemic factors can rejuvenate aged tissues, but intrinsic local feedback mechanisms primar-
ily govern growth control.

Another growth control is based on functional feedback mechanisms that use organ per-
formance or output to regulate growth. Unlike chalones, which depend on mass or cell num-
ber, functional feedback ensures that tissue size matches physiological needs.

Examples of functional control include liver and bile acid flux. Bile acids synthesized by
the liver are recirculated through the enterohepatic system. When bile acid flux increases
due to enhanced digestion demands, hepatocyte proliferation is induced to expand liver size.
Conversely, reduced bile acid flux signals that the liver has reached a sufficient size.

Another example concerns kidney and functional compensation. Following unilateral
nephrectomy, the remaining kidney undergoes hypertrophy to compensate for lost func-
tion. The signal for this compensation may involve increased serum creatinine levels or local
mechanical stress. Importantly, this compensatory growth primarily involves hypertrophy
rather than hyperplasia. In thyroid and endocrine glands, negative feedback loops involving
hormone levels (e.g., TSH and thyroid hormone) regulate the size and activity of endocrine
organs. Hypothyroidism leads to compensatory thyroid hypertrophy (goiter), while hyperthy-
roidism suppresses TSH secretion, reducing thyroid size.

In distinction from chalones, functional feedback is performance-driven, whereas chalone
mechanisms are based on physical size or cell number. Functional feedback often operates
through systemic signaling, as seen in liver regeneration involving bile acids or kidney com-
pensation mediated by metabolic demands.

5.2 Models of growth with negative feedbacks

The mechanisms of tissue growth control presented above act through negative feedback. Bio-
logical mechanisms of this feedback and their implementations in the models can be differ-
ent. A common feature of these mechanisms, including functional feedback, is that there is
some characterization of the tissue (signal, function) proportional to its size J(u). If we denote
its level by B, then we obtain Eq (3) for its time evolution.

From this point on, these mechanisms begin to differentiate. Global (systemic) feed-
back can be expressed by another signaling molecule C produced by some other organ and
described by Eq (4). This endocrine signaling can up-regulate cell death in Eq (1) or down-
regulate its proliferation.

Functional feedback, which is also systemic, is determined by some given value B, required
by the organism. Therefore, tissue growth is proportional to (By - B) or, in the dimensionless
form, to (1-J(u)) entering as a factor in the tissue proliferation rate. From the modelling point
of view, this is similar to systemic feedback down-regulating cell proliferation in the previous
paragraph.

Local (autocrine, paracrine) feedback, associated with chalones (though their action can
also be systemic), decreases cell proliferation. However, the quantity of substance B with
respect to a single tissue cell, that is B/J(u) remains constant since B ~ J(u). Therefore, its
action does not depend on the tissue volume, and cannot control its growth.
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There is a principal difference between the local feedback, where the total quantity of sub-
stance B is proportional to J(u), and systemic feedback, where the concentration (level) of C in
blood (or in the whole organism) is proportional to J(u). In the first case, as discussed above,
the quantity of B with respect to a single cell remains approximately constant, and feedback
intensity does not depend on the tissue volume (Fig 14). But relative concentration of B can
increase with time and act as growth inhibitor or growth promoter that decreases expression
of their growth [69]. In the second case, depletion of C in the tissue is negligible compared to
the whole organism, we do not divide C by J(u). In this case, feedback intensity depends on
the tissue volume J(u).

Thus, we model systemic feedback, the mechanism of which can be related to chalones and
to other negative feedbacks, or to the functional feedback.

5.3 Modelling results and biological interpretations

5.3.1 Single tissue with systemic feedback

Spatially-distributed solutions and tissue differentiation. The question of tissue differ-
entiation in a growing embryo was first addressed by A. Turing in his seminal work [71]. He
proposed a mechanism based on diffusion-driven instability, which arises from the interplay
between long-range inhibition and short-range activation. This mechanism results in the for-
mation of spatially periodic patterns. In spite of the enormous interest to Turing structures in
mathematical biology, the mechanisms of cell differentiation in a growing embryo are likely
to be different [72].

In Sect 3.1, we proposed an alternative mechanism for the emergence of spatial structures,
which bifurcate from a spatially homogeneous solution. Biologically, this mechanism relies
on local cell communication, which promotes cell proliferation, and global negative feedback,
which stimulates cell death.

The global feedback operates through the integral term J(u), which modifies the eigenvalue
distribution of the linearized problem. Specifically, it decreases the eigenvalue A, with the
largest real part, as the corresponding eigenfunction ¢y is a positive constant, and J(¢o) > 0.
However, for all other eigenfunctions, ¢;(x) = cos(7nx/L), the integral vanishes, leaving the
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Fig 14. Local (left) and systemic (right) feedback on tissue growth by some factors produced by the tissue. In
the local case, increasing the tissue twice (T1 + T2), increases the total amount of the produced factor. However, its
amount with respect to the unit tissue volume remains the same. Therefore, local feedback cannot determine the tis-
sue size. In systemic feedback, instead of the total amount of the produced factor in the whole organism, we measure
its level (concentration). Increasing twice the tissue, we also increase twice this level. Its feedback on the unit tissue
volume also increases.

https://doi.org/10.1371/journal.pone.0319120.g014
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eigenvalues unchanged. Consequently, under certain parameter conditions, the second eigen-
value A, surpasses 4¢. This instability in the spatially homogeneous solution then leads to the
formation of spatial structures.

A more detailed comparison between this instability and Turing instability is provided in
[65], particularly regarding its dependence on interval length and the rates of cell division and
death.

It is worth noting that in Eq (1), u(x,t) is interpreted as cell concentration, with the dif-
fusion term representing random cell motion. Alternatively, this variable can also be under-
stood as the concentration of an autocrine signaling molecule or other locally produced
molecules that regulate cell division or differentiation.

Existence of pulses. Spatially distributed solutions bifurcating from a constant solution
take the form of pulses further into the instability region. This bifurcation occurs in problems
defined on a bounded interval but not on the whole axis. On the whole axis, the integral of a
positive constant solution is not defined, and for the zero solution, bifurcation does not occur.
Therefore, in this context, we focus on the existence of pulses rather than their bifurcation.

The existence of pulses depends on the properties of the feedback function g(J(u)). Under
the conditions specified in Theorem 3.2, Eq (12) admits a solution, which ensures the exis-
tence of a pulse. However, the uniqueness of this solution is not guaranteed by the theorem
and may not generally hold. In the generic case, where solutions do not overlap, their num-
ber is odd. If the conditions on the feedback function are not met, the number of solutions
becomes even, potentially resulting in no solutions at all. Notably, two pulse solutions were
identified in [66] for a different function F in a population dynamics model.

One of the key conditions for the existence of pulses is b>a. Biologically, this implies that
the effect of local cell-cell communication on the proliferation rate must be sufficiently strong.
This phenomenon has some resemblance to the emergence of Turing structures, where short-
range activation and long-range inhibition drive pattern formation. In this case, the long-
range inhibition is provided by the negative feedback.

Stability of pulses. If g(J(u)) =const, that is, Eq (1) does not depend on the integral, then
the pulse solution is unstable. Indeed, the eigenfunction of the zero eigenvalue of the corre-
sponding eigenvalue problem is the derivative of the pulse solution. Therefore, it has variable
sign. On the other hand, the eigenfunction corresponding to the eigenvalue with the maximal
real part is positive [67]. Hence, A = 0 is not the principal eigenvalue and, consequently, there
is a positive eigenvalue. This means that the pulse solution is unstable.

Introduction of the integral term in the equation can make this solution stable (see also
[73]). This is not proved mathematically but confirmed in numerical simulations. Stability of
pulses can be related to existence and bifurcation of solutions of Eq (12).

Convergence to wide flat pulses is appropriate for tissue growth control. The solution
dynamics looks like a wave propagation. After some time, its speed decreases and the prop-
agation stops (Fig 6). This growth arrest is determined by the negative feedback through the
tissue size J(u).

It is important to note that such behavior of solution is observed for any small initial con-
dition. Due to the time dependence of the integral J(u), the nonlinearity in the equation is
of the monostable type in the beginning of the simulation and of the bistable type some time
later. This change in the type of equation provides growth of solution in the beginning and
existence of a stable pulse for large time. From the biological point of view, this is appropriate
for the description of tissue growth in embryogenesis, and in modelling of tumor growth.

5.3.2 Coordinated growth of two tissues. All tissues and organs in the growing organ-
ism precisely correspond to each other in their sizes and functionality. The question about the
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mechanisms of this coordination is largely discussed in the biological literature (see the dis-
cussion above). In the model, tissue growth regulation is provided by a negative feedback by
each tissue on itself, and by a positive feedback on the other one (see [64] for the biological
discussion). The former controls tissue convergence to a final size (similar to the model of a
single tissue), while the latter determines the proportional growth between the two tissues.
The question about other possible models remains open. Note that for a model in population
dynamics stable pulses can exist in the case where all interactions are negative [74].

In this work, we considered tissue cross-talk through the rate of cell death. Their interac-
tion in the cell proliferation rate will be studied in the future works.

Existence of waves and pulses. Dynamics of solutions in the model of two tissue is deter-
mined by the parameter S which characterizes the feedback in the rate of cell death for both
tissues. Larger values of this parameter correspond to stronger feedback. If $>1, then there
exists a pulse solution (Theorem 4.5). Numerical simulations show that such solutions are
stable. Thus, in the case of strong feedback, the final tissue sizes are finite.

Weak feedback in cell death corresponds to wave propagation (Theorem 4.6). In this case,
existence of pulses is not observed in numerical simulations. We can conclude that weak
feedback leads to the unlimited tissue growth.

Additional condition of the existence of pulses in Theorem 4.5, r1/r; < a1, s1/s; < az, sig-
nify that in the beginning of tissue growth, when the feedback is negligible, the cell prolif-
eration rate exceeds the death rate. Therefore, tissue growth can occur with any small initial
condition. This corresponds to the biological understanding of this process.

An interesting case is provided by the conditions r; = r, = s; =, = 0 which cannot be con-
sidered as a particular example of the more general case discussed above. This case is different
from the point of view of the imposed conditions and of the corresponding results. The pulses
can exist in this case but they are unstable, and wave propagation is observed in this case in
numerical simulations.

Tissue growth rate. Tissue growth dynamics exhibit distinct phases: an initial expo-
nential growth, a phase of constant growth, and a final phase of deceleration as the tissue
stabilizes to its ultimate size [64,69]. These phases reflect both biological and model-based
representations of tissue growth (Figs 5, 6, 13). Early exponential growth is driven by rapid
cell proliferation, supported by abundant resources and minimal constraints. As cell density
increases, however, growth transitions to a constant rate due to density-dependent inhibi-
tion of cell division. This phenomenon reflects contact inhibition and competition for limited
resources, which collectively cap the proliferation rate. In the final phase, systemic feedback
mechanisms come into play, curbing growth through the promotion of cell death or senes-
cence. Negative feedback from systemic factors, such as signaling molecules or hormones,
ensures that tissues do not exceed their optimal size, maintaining homeostasis.

In the modelling, the transition from the exponential growth to a constant growth rate
occurs due to the logistic term in the proliferation rate. Instead of simultaneous cell divi-
sion in the whole volume at the first stage, we observe predominant cell division at the exte-
rior part of the tissue and lateral growth lile a reaction-diffusion wave. At the third stage,
this propagation slows down and stops due to the integral term describing negative systemic
feedback.

In regeneration, tissue growth dynamics involve additional complexities. When one tissue
is ablated, compensatory mechanisms in the surrounding tissues are activated. These mecha-
nisms often result in an initial decrease in the size of adjacent tissues, enabling proper recali-
bration and eventual size restoration [75] (cf. Fig 13). This decrease is thought to be regulated
by systemic feedback that synchronizes growth rates across tissues, ensuring proportional
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regeneration. The interplay of local cellular factors and systemic regulatory signals high-
lights the intricate control mechanisms underlying tissue growth and regeneration, providing
insights into both normal development and potential therapeutic interventions. Understand-
ing these processes is essential for unraveling the principles governing tissue homeostasis and
recovery after injury.

6 Conclusions

This study presents a comprehensive mathematical framework for understanding tissue
growth regulation via endocrine signaling. Through the development of reaction-diffusion
models, we examined the interplay between local and systemic feedback mechanisms in con-
trolling cell proliferation and tissue size. The models elucidate several critical phenomena,
including:

Emergence of spatial structures. The analysis reveals that tissue growth and differentiation
can be driven by local cell-cell communication, coupled with global feedback mechanisms.
This combination leads to stationary pulse solutions, offering a novel explanation for tissue
differentiation beyond classical Turing instability.

Regulation through negative feedback. The results highlight the importance of systemic
feedback mechanisms, such as endocrine signaling, in stabilizing tissue growth and achieving
proportionate sizes. Stability and existence of pulse solutions depend on the strength and type
of feedback, with strong feedback ensuring finite tissue sizes, while weaker feedback leads to
unlimited growth.

Coordinated growth of tissues. The study demonstrates that inter-tissue signaling can coor-
dinate the growth of multiple tissues, ensuring harmonious development. Positive feedback
between tissues amplifies this coordination, while negative feedback determines the final
tissue size.

Bifurcation and stability of solutions. The existence and stability of stationary pulses and
traveling wave solutions were characterized under various parameter regimes. These findings
provide a mathematical basis for understanding phenomena such as growth arrest, regenera-
tion, and tumor expansion.

Biological implications. The models suggested in this work offer insights into diverse bio-
logical processes, including embryogenesis, organ size regulation, and pathological conditions
such as cancer. This framework also underscores the role of tissue cross-talk in maintaining
systemic homeostasis.

Future work will extend these models to include additional biological complexities, such
as functional feedback mechanisms and specific signaling pathways, to further enhance our
understanding of growth regulation and tissue coordination.
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