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 A B S T R A C T

In this work, a multi-pressure equivalent fluid (MPEF) approach is applied to model non-
conventional acoustic materials that combine different, separate pore networks with contrasting 
tortuosities. A technique for the informed design of such multi-tortuous materials is proposed. It 
is based on the observation that broadband performance of such a material can be achieved by 
tuning the quarter-wavelength resonances corresponding to each network. The material design 
consists therefore in adding and tailoring the separate pore networks to obtain contrasting 
tortuosities that evenly distribute these resonances over the desired frequency range. Additional 
improvement is achieved by independent isotropic scaling of the separate networks. The 
proposed technique is accurate and also very efficient because it is based on semi-analytical 
calculations. All this is demonstrated on several examples of multi-tortuous materials which, 
for simplicity, have an essentially two-dimensional structure. The results obtained in the 
material design process are verified by Navier–Stokes direct numerical simulations as well as 
by the MPEF numerical model. Final validation was also carried out experimentally on an 
additively manufactured sample of one of the multi-tortuous materials designed for this study. 
The multi-resonance phenomenon observed in sound absorption as well as the experimentally 
demonstrated anomalous behaviour of the multi-tortuous material backed by an air gap are 
very well predicted by the modelling and explained in detail on physical grounds.

. Introduction

It is well-known that traditional acoustic treatments such as porous materials do not provide good low-frequency performance 
hen their thickness is limited [1]. However, control of low-frequency noise is often required in practical situations, while at the 
ame time, restrictions are imposed on the volume and weight of the sound insulating or absorbing material. When the noise source 
s well known and tonal in nature, efficient acoustic solutions based on the resonance behaviour of engineered acoustic structures 
r panels can be designed. This is because the designs can be tuned to a known frequency. However, conventional resonance-
ased solutions such as micro-perforated plates (MPP) backed by air cavities and Helmholtz resonators in their classical form are 
ulky when tuned to a low frequency and exhibit narrowband behaviour around the resonance. To reduce the structure thickness, 
arious architected materials and metamaterial solutions [2] have been proposed and investigated in recent years. The goal is 
ub-wavelength performance, which means that the thickness of the acoustic material is much smaller than the wavelength of the 
coustic wave it attenuates; the wavelength is defined in air, i.e. before the wave penetrates the material. Cai et al. [3] proposed 
 sub-wavelength metamaterial solution in the form of thin acoustic panels with coiled coplanar tubes or chambers. Solutions 
ased on similar ideas include: coiled cavities [4,5], coiled Helmholtz resonators [6], labyrinthine channels [7–10], and folded 
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quarter-wavelength resonators [11]. Catapane et al. [12] showed that coiled quarter-wavelength resonators for low-frequency sound 
absorption are also efficient in diffuse acoustic field. Ramos et al. investigated low-frequency acoustic metastructures composed of 
critically coupled sub-wavelength Helmholtz resonators at different incidence angles [13] and under grazing incidence [14].

The narrowband problem can be to some extent alleviated with double-porosity solutions [10]. This approach can be combined 
with multi-resonant solutions, which are most suitable to overcome the problem of narrowband performance at low frequencies. Such 
solutions consist in combining different acoustic materials or structures that are effective in complementary frequency ranges because 
their own resonances (due to quarter-wavelength, membrane or Helmholtz resonators) are different. This idea was implemented by 
Sakagami et al. [15,16] in the form of a parallel combination of two MPPs backed by air cavities. MPP absorbers are well-known 
acoustic solutions that can be tuned to a specific frequency range by changing the cavity depth behind the MPP, while the perforation 
size and rate can be optimised to achieve perfect peak absorption [17]. Therefore, broadband sound absorption can obtained with 
periodically repeated systems of several MPP absorbers arranged in parallel and having different cavity depths [18]. The cavity 
depths should be adjusted for complementary performances. In their seminal work, Verdière et al. [19] applied the transfer matrix 
method (TMM) to the parallel assembly of sound absorbing materials. The method is very useful to study sound absorption and 
transmission by layers of heterogeneous materials such as patchworks, acoustic mosaics, or a collection of acoustic elements in 
parallel.

In recent years, research on multi-resonant techniques and designs for enhanced acoustic treatments has been intensified. Many 
of these combine the concepts of MPP absorbers and coiled cavities or other solutions. For example, a parallel arrangement of three 
perforated plates with extended tubes, open-cell foam and MPP was studied by Li et al. [20]. Elastic MPPs in parallel arrangement 
were investigated by Hyun et al. [21]. Almeida et al. [22] proposed an acoustic metamaterial based on MPP coupled to a multi-
cavity of coiled-up spaces that is similar to a symmetrical labyrinth. Recent similar examples include: a composite sound absorber 
composed of MPPs backed by impedance-matching nesting channels partly filled with a porous material [23], an MPP supported by 
four U-shaped cavities with different depths arranged in parallel [24], an MPP absorber with parallel optimised coiled-up-cavities of 
different-depths [25]. In general, sub-wavelength multi-resonant behaviour can be obtained by various acoustic metamaterials such 
as arrays of Helmholtz resonators and air cavities, membrane or elastic-plate resonators [2]. Representative examples are: parallel 
assemblies of coiled-up resonators [26] or spiral cavities [27], nested or parallel arrangements of Helmholtz resonators [13,28,29]. 
Recent works on broadband, multi-resonant materials and metamaterials also deal with problems and configurations other than 
normal incidence sound absorption; this includes: transmission problems in wide waveguides [30], sound attenuation in ducts 
using nested-network liners under grazing incidence [31], sound attenuation in ducts with grazing flow [32–34]. A significant 
improvement in sound absorption is observed in the case of multi-resonant lateral cavities such a various dead-end pores located 
along the main pore [35] or slits of various length distributed along the profile of an acoustic black hole [36,37].

In this paper, the concept of multi-tortuous acoustic materials with multiple, disconnected open-pore networks is presented, 
along with a full theoretical discussion on the modelling of such materials. In contrast to conventional acoustic approaches usually 
applied for materials with curved channels and coiled-up cavities (see relevant references cited above), a much more versatile 
and highly accurate multi-pressure approach based on dissipative equivalent fluids is proposed that allows modelling materials 
with multiple open-pore networks of virtually any geometry. The unusual acoustic behaviour of such materials, observed when the 
material layer is supported by an air gap, is thoroughly explained on the basis of the developed theory. Based on this modelling, 
an original and effective design method has been developed to combine optimised networks with tuned, contrasting tortuosities, 
ensuring broadband sound attenuation by such a multi-tortuous material. This is achieved due to multi-resonant behaviour resulting 
from different quarter-wavelength resonances distributed (by design) over the desired low-frequency range. The multi-pressure 
model for such materials is introduced in Section 2, starting from the classical theory of porous materials with a rigid frame. An 
original technique for the informed semi-analytical design of multi-tortuous materials is discussed in detail in Section 3, using 
several examples. Section 4 presents an experimental validation of the theory based on a 3D printed sample of one of the designed 
materials, along with additional numerical verification. The specific and unusual acoustic behaviours of multi-tortuous materials 
are also discussed in this section. The main findings and conclusions are summarised in Section 5.

2. Mathematical modelling

2.1. Porous materials with a single pore network

2.1.1. Equivalent-fluid modelling
Let us first consider a porous material with a rigid frame and a single open-pore network denoted by 𝑛, see Fig.  1(a). 

In such a compact (single) network of pores, all pores are open, interconnected and fully saturated with air. It is important 
to note, however, that generally speaking, 𝑛 can denote a group of identical networks, because the equivalent-fluid modelling 
discussed here also applies to the special case where the material contains a periodic arrangement of separate but identical open-
pore networks, channels or slits – as illustrated by the example shown in Fig.  1(b) – in which the wave propagation is the 
same. The pore networks of real porous materials often have a very regular geometry that can be represented by a periodic 
element called a unit cell or a representative elementary volume, while designed 3D printed materials are usually built on such 
a periodic cell. The unit cell contains all the information about the pore network geometry, see Fig.  1, and its intrinsic parameters, 
including the porosity 𝜙𝑛, characteristic dimensions, tortuosity, permeability, etc. The periodicity enables the application of rigorous 
homogenisation techniques such as two-scale asymptotic method [38,39] to model acoustic wave propagation in such materials 
provided that the wavelengths are much larger than the unit cell size. The final results of this homogenisation are briefly discussed 
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Fig. 1. Porous and slotted materials (with a single tortuosity): (a) a rigid-frame porous material with a periodic open-pore network, (b) a rigid-
frame slotted material with a periodic arrangement of identical zigzag-shaped slits.

below. The main outcome is that the porous or slotted material is replaced with a homogeneous lossy medium of an equivalent fluid 
(EF) with frequency-dependent and complex-valued properties that take into account dispersion and visco-thermal dissipation effects 
occurring at the micro-scale, i.e. inside the unit cell. The two independent effective properties of the EF are the effective density 
and the effective speed of sound (see below). They both depend on the dynamic viscous permeability of the porous material, which 
is generally a second-order tensor. However, many porous materials can be treated as isotropic when their viscous permeability is a 
quasi-spherical tensor that can be replaced by its trace. In other cases, and particularly in this work, the analysed wave propagation 
is often in a specific, i.e. known, direction. Then, the permeability tensor can be replaced by its (double) projection onto the direction 
of wave propagation, see Fig.  1(b). As a result, both the effective density and the effective speed of sound are scalars, or rather, 
complex-valued scalar functions of frequency, and the EF is isotropic.

Airborne acoustic waves that penetrate open-porosity materials such as those depicted in Fig.  1 cause oscillatory flow in the 
pores. Let 𝑝(𝑛) and 𝐯(𝑛) denote the average pressure and velocity in the pores, respectively, or rather the frequency-dependent complex 
amplitudes of these state variables, as the wave propagation is described assuming a Fourier time convention of the type exp(+i𝜔𝑡). 
Here, 𝑡 is time, 𝜔 = 2𝜋𝑓 is the angular frequency, 𝑓 is the ‘ordinary’ frequency, and i =

√

−1. In the following, it is convenient to 
use the volumetric flux 𝐕(𝑛) = 𝜙𝑛𝐯(𝑛), i.e. the rate of volume flow across a unit area of a porous material. This flux is related to the 
pressure gradient in two ways [39,40], namely 

𝐕(𝑛) = −
∇𝑝(𝑛)

i𝜔𝜚𝑛(𝜔)
= −

𝑛(𝜔)
𝜂a

∇𝑝(𝑛) , (1)

where 𝜚𝑛 and 𝑛 are the effective density and dynamic viscous permeability of the porous material, respectively, whereas 𝜂a is 
the dynamic viscosity of air. The first relationship follows from the linearised momentum equation, while the second is a dynamic 
generalisation of Darcy’s law [39–41]. The two relations (1) link the effective density with the dynamic permeability. Along with 
the effective compressibility 𝑛, the two fundamental effective properties of an air-saturated porous material are derived as follows 

𝜚𝑛(𝜔) =
𝜂a

i𝜔𝑛(𝜔)
, 𝑛(𝜔) =

𝜙𝑛
𝑃0

(

1 −
𝛩𝑛(𝜔)
𝜙𝑛

(𝛾a − 1)
𝛾a

i𝜔
𝜏a

)

. (2)

Here, 𝑃0 is the ambient mean pressure, 𝛾a is the adiabatic index of air, and 𝜏a is the thermal diffusivity of air, while 𝛩𝑛 is the 
dynamic thermal permeability of the porous material. Homogenisation by the multiscale asymptotic method [38,39] assumes that 
the viscous and thermal effects are uncoupled at the microscale, i.e. inside the pores, which means the two dynamic permeabilities, 
𝑛 and 𝛩𝑛, can be determined independently.

Assuming elastic behaviour and therefore an elastic constitutive relation for the equivalent fluid, the mass continuity equation 
for a porous medium with pore network 𝑛 takes the following form 

∇ ⋅ 𝐕(𝑛) + i𝜔𝑛(𝜔) 𝑝(𝑛) = 0 . (3)

Combining the continuity and momentum equations for oscillatory viscous flow through the pore network 𝑛 saturated with air, i.e. 
Eq. (3) with the first relationship of Eqs. (1), leads to the classic Helmholtz equation 

∇2𝑝(𝑛) + 𝑘2𝑛(𝜔) 𝑝
(𝑛) = 0 (4)

that describes the propagation of acoustic waves in an equivalent fluid replacing the porous medium. Here, the complex wave 
number 𝑘𝑛, together with the effective speed of sound 𝑐𝑛, and the effective characteristic impedance 𝑍𝑛, are calculated for the 
porous material using its fundamental effective properties (2) as follows 

𝑐𝑛(𝜔) =
(

𝜚𝑛(𝜔)𝑛(𝜔)
)−1∕2

, 𝑘𝑛(𝜔) =
𝜔

𝑐𝑛(𝜔)
, 𝑍𝑛(𝜔) = 𝜚𝑛(𝜔)𝑐𝑛(𝜔) . (5)

After the effective properties are determined, wave propagation in a porous material can be studied by solving a boundary value 
problem of the Helmholtz equation (4) defined in the region of the effective acoustic fluid, which is equivalent to the porous 
3 
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material. In general, this requires numerical calculations, but analytical solutions are available, e.g. for plane wave propagation. 
In the case of porous materials or multi-layered systems that include such materials, these solutions form the basis for the transfer 
matrix method (TMM) [1,42] and are often used to determine useful acoustic indicators and even the effective fluid properties [43]. 
One of these indicators is the surface acoustic impedance defined at a given surface as the ratio of the sound pressure at that surface 
to the acoustic particle velocity or its porous-medium equivalent, the volumetric flux. It is an important acoustic property because, 
among other things, it can be used to determine other acoustic indicators such as reflection and sound absorption coefficients [1], 
see Appendix  A.

2.1.2. Surface acoustic impedance and the transfer matrix method
Let us consider plane wave propagation along the 𝑥-axis in the direction of the unit vector 𝐱, see Fig.  2(a). The surface acoustic 

impedance S at point 𝑥 = 𝑥0 can be determined knowing the surface impedance at point 𝑥 = 𝑥0 + 𝓁, namely 

S(𝑥0) =
𝑝(𝑥0)

±𝐯(𝑥0) ⋅ 𝐧
=

𝑝(𝑥0)
𝐯(𝑥0) ⋅ 𝐱

=
𝑇11 + 𝑇12

/

S(𝑥0 + 𝓁)

𝑇21 + 𝑇22
/

S(𝑥0 + 𝓁)
, (6)

where 𝑇11, 𝑇12, 𝑇21 and 𝑇22 are the components of the transfer matrix 𝐓 defining the relationship between acoustic pressure and 
velocity at two points. In the definition (6), 𝑝 and 𝐯 are the sound pressure and acoustic particle velocity, respectively. The latter 
can be formally replaced by the volumetric flux if the point 𝑥 = 𝑥0 lies inside a porous medium, see Fig.  2(b). Furthermore, 𝓁 is 
the distance between the two parallel surfaces, 𝐧 is the unit vector normal to the surface, and the sign ± = 𝐱 ⋅ 𝐧 (note that the unit 
vectors 𝐱 and 𝐧 are collinear, but can have any orientation; in any case: ±𝐯 ⋅ 𝐧 = 𝐯 ⋅ 𝐱).

The transfer matrix 𝐓 depends of the material properties and the distance 𝓁. In particular, 𝐓 = 𝐓(𝑛)(𝓁) for a homogeneous layer 
with a pore network 𝑛, where 

𝐓(𝑛)(𝓁) =

[

𝑇 (𝑛)
11 (𝓁) 𝑇 (𝑛)

12 (𝓁)

𝑇 (𝑛)
21 (𝓁) 𝑇 (𝑛)

22 (𝓁)

]

=
[

cos(𝑘𝑛𝓁) i sin(𝑘𝑛𝓁)𝑍𝑛
i sin(𝑘𝑛𝓁)

/

𝑍𝑛 cos(𝑘𝑛𝓁)

]

. (7)

Note that det 𝐓(𝑛) = 𝑇 (𝑛)
11 𝑇 (𝑛)

22 −𝑇 (𝑛)
12 𝑇 (𝑛)

21 = 1, which means that the material is reciprocal. An impervious, rigid wall at 𝑥 = 𝑥0+𝓁 means 
that S(𝑥0 + 𝓁) → ∞, and in this case S(𝑥0) = 𝑇11∕𝑇21. In particular, for a homogeneous porous layer with thickness 𝐻 set on a 
rigid wall, see Fig.  2(c), S = (𝑛)

S (𝐻), where 

(𝑛)
S (𝐻) =

𝑇 (𝑛)
11 (𝐻)

𝑇 (𝑛)
21 (𝐻)

= 𝑍𝑛 coth
(

i𝑘𝑛𝐻
)

(8)

is the surface impedance for such a layer with a pore network 𝑛, characterised by the wave number 𝑘𝑛 and the characteristic 
impedance 𝑍𝑛. For a multi-layer system set on a rigid wall, the formula S = 𝑇11∕𝑇21 holds, but the transfer matrix 𝐓 is the product 
of the transfer matrices for all subsequent layers. In particular, 𝐓 = 𝐓(𝑛)(𝐻)𝐓(a)(𝐻g) for a two-layer system of a porous material 
with thickness 𝐻 backed by an air gap with thickness 𝐻g, see Fig.  2(d). Here, 𝐓(a)(𝐻g) is the transfer matrix for the air gap, defined 

Fig. 2. Plane wave propagation in homogeneous media such as (a) air, or (b) isotropic fluids equivalent to air-saturated porous materials, and 
(c,d) multilayer systems of such materials – for analysis by the transfer matrix method.
4 
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by Eq.  (7) after substituting 𝑛 = a and 𝓁 = 𝐻g, assuming that 𝑘a = 𝜔∕𝑐a and 𝑍a = 𝜚a 𝑐a are the wave number and characteristic 
impedance of air, respectively, where 𝑐a is the speed of sound and 𝜚a is the density of air. Alternatively, the surface impedance S
for a porous layer backed by an air gap can be calculated using Eq.  (6) with 𝐓 = 𝐓(𝑛)(𝐻) and S(𝑥0 + 𝓁) = (a)

S (𝐻g), where the 
surface impedance of the air gap itself is (a)

S (𝐻g) = 𝑇 (a)
11 (𝐻g)

/

𝑇 (a)
21 (𝐻g) = 𝑍a coth

(

i𝑘a𝐻g
)

, cf. Eq. (8).

2.2. Materials with multiple, i.e. disconnected open-pore networks

2.2.1. Multi-pressure equivalent fluid model
Let us consider a rigid-frame porous material with different open-pore networks saturated with air. Fig.  3(a) shows a two-

dimensional example with 𝑁 = 3 periodic arrangements (groups) of separate networks. The networks from each group are identical, 
and in the case of three-dimensional geometries, they could be interconnected creating one periodic network that is separated from 
the other two periodic networks. Therefore, the networks from each group are collectively assigned a unique successive integer 
𝑛 = 1,… , 𝑁 . The material may have multiple periodicity, but one can usually define a collective unit cell – see the dashed rectangle 
in Fig.  3(a) – that is fully representative for the entire material. To simplify further discussions, we assume that such a collective unit 
cell contains only one network from each group, as exemplified in Fig.  3(a). Note that in the case of three-dimensional geometries, 
different pore networks can share the representative elementary volume of the material in a more sophisticated way than that 
shown in Fig.  3(a). For example, one network can be nested within another (like a channel inside a channel), provided that their 
air domains are separated from each other.

Each network from a given group 𝑛 is fully representative for the entire group and for the sake of simplicity we will rather talk 
about the network 𝑛 even if, more precisely, it is about the entire network group (recall that in 3D a network group can be just one 
compact periodic network). The network 𝑛 is characterised by its intrinsic parameters and properties as indicated in Section 2.1. In 
particular, the porosity 𝜙𝑛 is the volume fraction of network 𝑛 with respect to the total volume of the entire collective unit cell, i.e. 
including the volumes of other networks. However, the standard EF modelling cannot generally be applied to materials with different 
open-pore networks, i.e. when 𝑁 > 1. This is because the pore region inside the unit cell is not compact but it consists of different, 
disconnected networks in which the wave propagation is locally independent and therefore can be fundamentally different. This 
means in particular that the pressures in networks inside the collective representative unit cell may differ in phase and cannot be 
cumulatively replaced by a single averaged macroscopic pressure. This happens especially when the propagation speeds associated 
with each of the pore networks are significantly different. We will show in Section 3 that for networks with higher tortuosities (and 
larger viscous characteristic lengths) those speeds depend primarily on the tortuosity and significant change in tortuosity results 
in a completely different propagation speed. When the separated open-pore networks have identical or very similar tortuosity and 
characteristic lengths, an approach based on one pressure variable, i.e. using a single EF, may be applied as a first approximation. 
However, this single-pressure approach fails in the case of the multi-tortuous materials studied in this work.

Fig.  3(e) shows a simple, generic example of a configuration with a layer of porous material with 𝑁 separated open-pore 
networks. Note that it may be a (periodic) fragment of a larger configuration containing this material. The porous layer is mounted 
on a rigid wall that has an irregular air-saturated cavity which is covered from above with the layer, see also Fig.  3(d). We assume 
that on the left side of the cavity, the layer is glued to the wall, so the pore networks are perfectly sealed on this side, see Fig.  3(b). 
In contrast to this, on the right side of the air cavity, the layer is simply placed loosely on the wall so that an infinitely thin air gap 
is created between them as illustrated in Fig.  3(c). In the case of porous materials with different, i.e. separated, open-pore networks, 
this subtle difference leads to different boundary conditions and ultimately results in fundamentally different wave propagation. 
The hard boundary condition with an infinitely thin air gap naturally transforms into an interface coupling condition when the air 
gap is not infinitely thin, as in the case of air cavity shown in Fig.  3(d). Generally speaking, the interface coupling condition applies 
at the edge of the material, where it meets an air domain (or an EF domain).

We propose a multi-pressure equivalent fluid (MPEF) model to analyse the propagation of sound waves in a material with 𝑁
disconnected pore networks, in configurations with boundary and interface conditions like those described above. This homogenised 
model is composed from 𝑁 effective fluids that independently occupy the same domain of the material, as illustrated by the diagram 
shown in Fig.  3(f) for the case when 𝑁 = 3. The EF denoted by 𝑛 is acoustically equivalent to the corresponding porous material 
with a single network 𝑛 that can be represented by the corresponding unit cell – see Cell 1, 2 and 3 in Fig.  3(f) – and as such 
it is characterised in particular by the wave number 𝑘𝑛 and the characteristic impedance 𝑍𝑛. As a consequence, in the same 
computational domain of the material,1 𝑁 independent Helmholtz equations are defined for all equivalent fluids, each for a different 
acoustic pressure 𝑝(𝑛). The Helmholtz equations are not coupled inside the computational domain. However, they are coupled at the 
interfaces with air domains or other acoustic media (e.g. conventional porous acoustic materials), as well as on some boundaries, 
excluding the perfectly sealed ones or planes of symmetry, as discussed below. In other words, although sound waves propagating 
in the equivalent fluids do not interact within the material domain, their propagation is not independent due to interactions at its 
boundaries. Therefore, to analyse this propagation, one needs to solve the coupled multi-pressure system of 𝑁 Helmholtz equations 
(possibly plus additional Helmholtz – or other – equations defined in adjacent domains).

To simplify the notation below, we assume that summing over 𝑛 means summation over the entire set of 𝑁 pore networks, 
i.e. ∑𝑛(…) ≡

∑𝑁
𝑛=1(…). Thus, for example, the total porosity of the material equals ∑𝑛 𝜙𝑛, while 

∑

𝑛 𝐕(𝑛) is the total volumetric flux, 
i.e. the sum of fluxes coming from all networks.

1 Alternatively, we can also talk about 𝑁 computational domains that completely overlap, i.e. occupy the same geometric space. This is because in the case 
of finite element calculations, a different finite element mesh could possibly be used for each of them, although this would rather be impractical.
5 
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Fig. 3. Material with 𝑁 = 3 separated open-pore networks in a configuration with various boundary and interface conditions: (a) the 
microstructure of the multi-network material, (b,c,d) different boundary and interface conditions, (e) the macroscopic configuration, and (f) the 
corresponding MPEF model.
6 
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2.2.2. Interface coupling and boundary conditions
The MPEF model is distinguished from other models that include the Helmholtz equations defined in different domains by specific 

interface coupling and boundary conditions. Coupling conditions at the MPEF interface with the air domain, see Fig.  3(d), ensure 
the continuity of acoustic pressure and velocity in the following way 

∀𝑛 𝑝(𝑛) = 𝑝 ,
∑

𝑛
𝐕(𝑛) ⋅ 𝐧 = 𝐯 ⋅ 𝐧 . (9)

Such a coupling interface is marked with four asterisks on the MPEF model diagram shown in Fig.  3(f). Here, 𝑝 and 𝐯 are the acoustic 
pressure and particle velocity in the adjacent air domain, and 𝐧 is the unit vector normal to the interface. Note that these are (𝑁+1)
conditions, i.e. 𝑁 conditions for pressure variables and one condition for the total flux. It should also be noted that the pressures 
of all networks equalise at the interface. In the case where the adjacent domain is an air-saturated porous material (instead of air), 
𝑝 and 𝐯 in Eqs. (9) are replaced by the corresponding pore pressure and velocity flux.

Dirichlet boundary conditions can be used to simulate the effect of airborne acoustic waves impinging at normal incidence on 
the surface of the material, see the boundary marked with one asterisk in Fig.  3(e,f). In the case of a material with 𝑁 disconnected 
pore networks, this is realised by the following 𝑁 equations 

∀𝑛 𝑝(𝑛) = 𝑝̂ . (10)

Here, the acoustic pressures coming from all pore networks are coupled on the boundary, as they are equalised by the applied 
pressure 𝑝̂.

Neumann boundary conditions are used to apply a known velocity 𝑣̂, perpendicular to the boundary of the material domain. 
In particular, when a porous material is placed on a rigid wall: 𝑣̂ = 0, which is the well-known condition of sound-hard boundary 
(SHB). This condition applies to the volumetric flux at a rigidly supported boundary of a single-network material. However, for 
materials with multiple disconnected networks, two fundamentally different cases need to be considered. Firstly, if we suppose that 
all pore networks are sealed by the wall, as shown in Fig.  3(b), the flux of each network is zeroed at this boundary, i.e. 

∀𝑛 𝐕(𝑛) ⋅ 𝐧 = 0 . (11)

As a consequence, the pore network pressures remain independent on each other. Eqs. (11) define 𝑁 homogeneous Neumann-type 
conditions for a perfectly sealed SHB. In Fig.  3(f), all SHB conditions are marked with two asterisks. It should be noted that such 
conditions must also be applied in the case of a symmetry plane, because planes of symmetry occur inside the material, i.e. where 
the pore networks are separated. On the other hand, in practical situations, when a porous material is placed on a rigid wall, without 
being glued to it or pressed hard against it, an extremely thin layer of air may often remain between the wall and the material. 
For single-network porous materials, this leakage is usually negligible, since what we have is an infinitely thin air gap. However, 
the situation becomes more dramatic in the case of a porous material with multiple disconnected networks: the thin air layer – 
even an infinitely thin one – connects the substantially different pore networks, as depicted in Fig.  3(c), and thus equalises their 
pressures. We will call this case a network-coupling hard boundary (NCHB). It is fundamentally different from the perfectly sealed 
SHB condition. NCHB is marked with three asterisks in Fig.  3(f) and described by the following 𝑁 boundary conditions 

𝑝(1) = ⋯ = 𝑝(𝑁) ,
∑

𝑛
𝐕(𝑛) ⋅ 𝐧 = 0 , (12)

which equalise the pressures and zero the total velocity flux. Note that for 𝑁 = 1, i.e. for a single network, Eqs. (12) and (11) reduce 
to the same SHB condition: 𝐕(1) ⋅ 𝐧 = 0. Moreover, when all networks happen to be identical but 𝑁 > 1 (i.e. for some reasons the 
number of network groups is not reduced to one), then the wave propagation and the associated oscillatory flow are the same in 
each network, i.e. 𝑝(1) = ⋯ = 𝑝(𝑁) and 𝐕(1) = ⋯ = 𝐕(𝑁), cf. the case of a slotted material with identical slits shown in Fig.  1(b). 
Since all velocity fluxes are identical, in particular at the boundary, the last of the conditions (12) leads to the SHB conditions (11).

We have found that the situation described by conditions (12), or even worse, an imperfect sealing that is only partially similar 
to it, can occur when the material is not tightly attached to the backing wall (e.g. to the rigid termination of the impedance tube 
during experiments). This can especially happen when the surface of the material (and/or wall) is rough. To avoid this, the back 
side of the material must be sealed, e.g. with a thin, impermeable adhesive tape, or glued to the wall.

Conditions analogous to (12) (or, alternatively, to (11)) apply in the general case when a non-zero normal velocity 𝑣̂ is applied 
at a boundary of a multiple-network material. When the velocity 𝑣̂ is specified for the total volumetric flux, this also implies the 
equalisation of pore network pressures at that boundary, namely 

𝑝(1) = ⋯ = 𝑝(𝑁) ,
∑

𝑛
𝐕(𝑛) ⋅ 𝐧 = 𝑣̂ . (13)

Recall that these are 𝑁 conditions, i.e. (𝑁 − 1) equalities for the pressure fields and one condition that specifies the total flux. 
An important feature of conditions (12) and (13) is that although the sound pressure of all networks is equalised, no pressure is 
specified.

Finally, let us consider a situation when all networks of at least one group are closed, i.e. perfectly sealed with rigid plugs on 
one side of the multiple-network material, see Fig.  4. At the same time, all other networks remain open so that their pressures and 
velocity fluxes are coupled to the pressure 𝑝 and particle velocity 𝐯 in the adjacent air layer. Let 𝑚 denotes the types of one-side-closed 
7 
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Fig. 4. The edge of the multi-network material with networks of one group (here, networks 1) closed by rigid plugs and other networks open 
and coupled by the adjacent air domain.

networks (𝑚 = 1 in the example shown in Fig.  4). The corresponding interface-coupling conditions are expressed by the following 
(𝑁 + 1) equations 

∀𝑛 ≠ 𝑚 𝑝(𝑛) = 𝑝 ,
∑

𝑛≠𝑚
𝐕(𝑛) ⋅ 𝐧 = 𝐯 ⋅ 𝐧 , ∀𝑚 𝐕(𝑚) ⋅ 𝐧 = 0 . (14)

Here, only the pressures of networks open at this interface are equal to 𝑝 and the sum ∑𝑛≠𝑚 is only over these networks. The sealed 
networks have zero outward velocity fluxes and – consequently – independent pressures.

2.2.3. Surface acoustic impedance for a back-sealed or air-gap supported layer
Analytical solutions are available for plane wave propagation in materials with multiple pore networks, as it is in the case of 

single-network porous materials. In particular, an analytical formula for the surface acoustic impedance of a porous layer with 𝑁
separated pore networks sealed at the back of the material, in accordance with the boundary conditions (11), can be derived as 
follows 

S =
𝑝

±𝐯 ⋅ 𝐧
=

𝑝
±
∑

𝑛
𝐕(𝑛) ⋅ 𝐧

= 1

±
∑

𝑛

𝐕(𝑛)⋅𝐧
𝑝(𝑛)

= 1
∑

𝑛

1
(𝑛)
S

. (15)

Here, (𝑛)
S  is the surface impedance of a porous layer with a single-network 𝑛, as determined by Eq.  (8). It means that for a multiple-

network material, S is calculated as for a hard-backed composite layer with 𝑁 component materials set in parallel, each with a 
different, single pore network 𝑛. Note that the interface conditions (9) on the front face of the multiple-network layer are used to 
derive formula (15).

The situation becomes more complicated when a layer with separate pore networks is part of a multilayer system, e.g. when 
it is backed by an air gap. In this case, the pressures from all the disconnected networks are equalised on both sides of the layer. 
The same thing happens when the multiple-network layer is placed between fluid layers, in particular, effective fluids equivalent 
to more conventional single-network porous materials. The transfer matrix for a layer with multiple, separated pore networks that 
takes this into account can be derived as for the parallel assembly of porous components, each having a different pore network 𝑛. 
Verdière et al. [19,44] showed that it is more convenient to work with admittances when the porous elements are in parallel. The 
transfer matrix for a parallel assembly of 𝑁 disconnected pore networks has the following form 

𝐓() = 1
∑

𝑛
𝑌 (𝑛)
21

⎡

⎢

⎢

⎣

−
∑

𝑛
𝑌 (𝑛)
22 1

(

∑

𝑛
𝑌 (𝑛)
12

∑

𝑛
𝑌 (𝑛)
21 −

∑

𝑛
𝑌 (𝑛)
11

∑

𝑛
𝑌 (𝑛)
22

)

∑

𝑛
𝑌 (𝑛)
11

⎤

⎥

⎥

⎦

, (16)

where 𝐘(𝑛) is the admittance matrix for a porous layer with network 𝑛. It is related to the corresponding transfer matrix 𝐓(𝑛) as 
follows 

𝐘(𝑛) =

[

𝑌 (𝑛)
11 𝑌 (𝑛)

12

𝑌 (𝑛)
21 𝑌 (𝑛)

22

]

= 1
𝑇 (𝑛)
12

[

𝑇 (𝑛)
22

(

𝑇 (𝑛)
12 𝑇 (𝑛)

21 − 𝑇 (𝑛)
11 𝑇 (𝑛)

22

)

1 −𝑇 (𝑛)
11

]

= 1
𝑇 (𝑛)
12

[

𝑇 (𝑛)
22 −1
1 −𝑇 (𝑛)

11

]

. (17)

The transfer matrix 𝐓() is for use in TMM analysis. In particular, 𝐓() replaces 𝐓 in Eq.  (6) for the surface acoustic impedance of 
a multilayer system with multiple-network material at the front. However, it is very important to notice that for S(𝑥0+𝓁) → ∞, i.e. 
when a multiple-network layer is backed by a rigid wall, Eq. (6) with 𝐓 = 𝐓() does not provide the same result as the formula (15) 
derived above. This is because instead of boundary conditions (11) which mean that the rigid wall perfectly seals all the networks 
keeping them separated also at the boundary, the pressure equalisation is realised by the conditions (12) of an infinitely thin layer 
of air between the material boundary and the wall. Finally, let us recall the case shown in Fig.  4 where some networks are closed 
and others remain open on one side of the multi-network material adjacent to an air layer. The transfer matrix for this case can 
also be derived – in the way applied by Verdière et al. [19].
8 
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3. Designing multi-tortuous materials: discussion based on examples

3.1. Design procedure and its theoretical foundations

In this and subsequent subsections, we discuss in detail a procedure for designing multi-tortuous materials with multi-resonant 
behaviour that results in broadband sound absorption in the desired range of relatively low frequencies. This is mainly achieved 
by adjusting the tortuosity, knowing that by increasing it, the frequency of the associated quarter-wave resonance is lowered [45]. 
The procedure consists of two stages:

1. Adding separate pore networks into the representative material space of the assumed thickness and tailoring them to obtain 
contrasting tortuosities that evenly distribute their quarter-wavelength resonances over the desired frequency range.

2. Independent isotropic scaling of the separate networks for impedance matching to achieve additional sound absorption 
improvement.

An additional goal of tailoring and scaling the pore networks is to fit them tightly inside the representative space of the material 
to make the total porosity as high as possible, while maintaining the network separation. The proposed technique uses mainly 
analytical calculations (or semi-analytical at some limited initial stages), which makes it very efficient. This is because the entire 
design procedure is based on a couple of quite accurate estimation formulas resulting from the theoretical considerations presented 
below.

The equivalent-fluid approach, and in particular the MPEF model, will be used to analyse wave propagation (see Section 2). This 
requires determining the effective properties for a material with a pore network 𝑛. The dynamic permeabilities, 𝑛 and 𝛩𝑛, necessary 
for calculating the effective properties (2), are typically determined using frequency-dependent scaling functions that depend on the 
geometric and transport properties of the porous material, collectively referred to as macro-parameters. Perhaps the most commonly 
used are the scaling functions of the Johnson–Champoux–Allard–Lafarge–Pride (JCALP) model [1,41,46–48] or its reduced versions, 
see Appendices  B and C. The full JCALP model requires 8 macro-parameters [1]: the open porosity 𝜙𝑛, the kinematic tortuosity 𝛼∞𝑛, 
two static permeabilities (viscous 0𝑛 and thermal 𝛩0𝑛), two characteristic lengths (viscous 𝛬v𝑛 and thermal 𝛬t𝑛), and two static 
tortuosities (viscous 𝛼0v𝑛 and thermal 𝛼0t𝑛).

All tortuosities and characteristic lengths are porosity independent. This is also true for the ratios 0𝑛∕𝜙𝑛 and 𝛩0𝑛∕𝜙𝑛, because 
both static permeabilities depend on the material porosity in linear way. The same applies to the dynamic permeabilities 𝑛(𝜔)
and 𝛩𝑛(𝜔): when divided by 𝜙𝑛 they are no longer porosity dependent. Correctly constructed scaling functions ensure this property. 
Therefore, the effective speed of sound in a porous material 

𝑐𝑛(𝜔) =
1

√

𝜚𝑛(𝜔)𝑛(𝜔)
=

√

i𝜔𝑛(𝜔)
𝜂a 𝑛(𝜔)

=

√

√

√

√

√

√

[

𝑛(𝜔)
𝜙𝑛

]

i𝜔𝑃0
𝜂a

1 −
[

𝛩𝑛(𝜔)
𝜙𝑛

]

(𝛾a−1)
𝛾a

i𝜔
𝜏a

(18)

does not depend on the material porosity, though it depends on both dynamic permeabilities, but each of them is divided by 𝜙𝑛
(see two terms marked with square brackets in the formula above). This fact is not trivial2 and very important, because to some 
extent we can design pore networks without prior knowledge (or any assumption) of their porosity, i.e. their volume fraction within 
the material. This allows to make separate network designs and fit them into the same material space to create a multi-tortuous 
metamaterial with separated pore networks as demonstrated below.

Let 𝜆𝑛 denotes the wavelength in the porous material with network 𝑛. It is determined at frequency 𝑓 using a standard formula, 
viz. 𝜆𝑛(𝑓 ) = 𝑐w𝑛(𝑓 )

/

𝑓 , in which the wave velocity 𝑐w𝑛 = Re 𝑐𝑛 is defined as the real part of the effective speed of sound, 
therefore 𝜆𝑛(𝑓 ) = Re 𝑐𝑛(2𝜋𝑓 )

/

𝑓 . Now, let 𝑓 (𝑛,𝐻)
𝑟∕4  denotes the frequency of the 𝑟-quarter wavelength resonance (for 𝑟 = 1, 3, 5,…) 

or antiresonance (for 𝑟 = 2, 4, 6,…) in a layer of thickness 𝐻 of porous material with network 𝑛 (or related to this network in the 
case of materials with several different separated networks). Such resonances (antiresonances) occur for 𝐻 = 𝑟

4𝜆𝑛(𝑓 ), i.e. when 
the layer thickness is an odd (even) multiple of one quarter of the wavelength in the porous material. Sound absorption of the 
hard-backed porous layer has peaks near the resonant frequencies and troughs near the antiresonant frequencies. This is due to the 
interference of waves propagating into the porous layer and reflected by the rigid backing.

Finding the resonance or antiresonance frequencies 𝑓 (𝑛,𝐻)
𝑟∕4  requires solving the following non-linear equation 

Re 𝑐𝑛
(

2𝜋𝑓 (𝑛,𝐻)
𝑟∕4

)

𝑓 (𝑛,𝐻)
𝑟∕4

= 4𝐻
𝑟

(19)

with 𝑟 = 1, 3, 5… – for resonances, or 𝑟 = 2, 4, 6… – for antiresonances; note that the expression in parentheses is an argument to the 
function 𝑐𝑛(𝜔) defined by Eq.  (18). Below we show how those frequencies can be estimated using their upper bounds that depend 
only on the network tortuosity and speed of sound in air.

2 Note that 𝜙𝑛 is defined as the volume fraction of pores in the volume of the material, and the change in porosity alone is due to the change in this 
fraction only, while neither the shape nor the size of the pore network is modified. Such a change is possible when the pore network is a periodic assembly of 
subnetworks that are not necessarily identical but are disconnected from each other, so that they can be moved apart or closer together (without overlapping). 
Changing the pore size or creating new pores and connections would of course affect the speed of sound in the material as well as its permeability and porosity.
9 
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The velocity of acoustic waves carried by the air saturating the open pore network is lower than in open air, viz. 𝑐w𝑛(𝑓 ) < 𝑐a. This 
is due to visco-inertial (and thermal) interactions with the solid skeleton, which slow down wave transmission. In the high frequency 
range, visco-thermal (but not inertial) effects can be neglected, and the presence of the solid skeleton influences the wave velocity 
by creating a tortuous path for the oscillating, (almost) inviscid flow through an open pore network. Therefore, the tortuosity of 
the pore network can be defined at the infinite frequency limit as 

𝛼∞𝑛 = lim
𝑓→∞

(

𝑐a
𝑐w𝑛(𝑓 )

)2
⩾ 1 . (20)

Incidentally, ultrasonic methods for tortuosity measurement are based on this formula. The airborne wave velocity in an air-saturated 
porous medium of tortuosity 𝛼∞𝑛 is for that reason bounded from above by the following relation: 

𝑐w𝑛(𝑓 ) = Re 𝑐𝑛(2𝜋𝑓 ) <
𝑐a

√

𝛼∞𝑛
(21)

and 𝑐w𝑛(𝑓 ) approaches this asymptote monotonically with increasing frequency. As a consequence, the associated wavelength 
𝜆𝑛(𝑓 ) < 𝑐a

/(

𝑓
√

𝛼∞𝑛
)

= 𝜆a(𝑓 )
/
√

𝛼∞𝑛 is always shorter than 𝜆a(𝑓 ) = 𝑐a∕𝑓 , i.e. the wavelength in air (in open space). Note that at low 
frequencies 𝜆𝑛(𝑓 ) ≪ 𝜆a(𝑓 ) even in the case of not very tortuous conventional acoustic materials, due to significant visco-thermal 
effects. Basing of these estimations, we can define the upper bound 𝑓 (𝑛,𝐻)

𝑟∕4  for the 𝑟-quarter wavelength resonance and antiresonance 
frequencies, namely 

𝑓 (𝑛,𝐻)
𝑟∕4 =

𝑟 𝑐a
4𝐻

√

𝛼∞𝑛
> 𝑓 (𝑛,𝐻)

𝑟∕4 =
𝑟𝑐w𝑛
4𝐻

. (22)

This bound is very useful, because it can be used to estimate the value of 𝑓 (𝑛,𝐻)
𝑟∕4 , with accuracy increasing with the increase in 

frequency. It is easy to see that for a fixed 𝛼∞𝑛, the 𝑟-quarter wavelength resonances and antiresonances move to higher frequencies 
for thinner layers and larger numbers 𝑟. However, we found that the proposed estimation can be successfully applied even for 𝑟 = 1
(which is most important when designing) and layers of at least medium thickness. In fact, the following relations apply 

𝑓 (𝑛,𝐻)
𝑟∕4 =

(

1 −  (𝑛,𝐻)
𝑟∕4

)

𝑓 (𝑛,𝐻)
𝑟∕4 ≲ 𝑓 (𝑛,𝐻)

𝑟∕4 < 𝑓 (𝑛,𝐻)
(𝑟+1)∕4 =

(

1 −  (𝑛,𝐻)
(𝑟+1)∕4

)

𝑓 (𝑛,𝐻)
(𝑟+1)∕4 , (23)

where the relative errors defined as 

 (𝑛,𝐻)
𝑟∕4 ≡ 1 −

𝑓 (𝑛,𝐻)
𝑟∕4

𝑓 (𝑛,𝐻)
𝑟∕4

>  (𝑛,𝐻)
(𝑟+1)∕4 > 0 (24)

are small in most practical cases, while larger errors can be estimated systematically (see Section 3.3).

3.2. Tortuosity-based multi-resonant design

For the purposes of this study, we first designed two networks with highly contrasted tortuosities. These are networks 1 and 2
in Fig.  5(a) which shows their representative periodic fragments. The periodicity is in the direction of wave propagation, which 
is the vertical direction in Fig.  5. For simplicity, we also assume that – at least at the first stage of design – the period 𝐻c is the 
same for both networks. We set 𝐻c = 8 mm and solved the dedicated Laplace, Poisson, and Stokes flow problems [39,40,49,50] 
for each periodic network to determine macro-parameters required by the JCALP scaling functions. They are listed in Table  1: in 
columns ̂1 and 1 – for network 1, and columns ̂2 and 2 – for network 2. Recall that the static permeabilities can be calculated when 
the porosity 𝜙𝑛 is known. To this end, the size of the periodic unit cell, a.k.a. representative elementary volume (REV), containing 
the pore network needs to be specified first. Fig.  5(b) shows two rectangular unit cells: REV ̂1 and REV ̂2 – one for each of the two 
networks. These REVs have the same size 𝐻c ×𝑊c, where the cell width is 𝑊c = 1.65𝐻c = 13.2 mm. This width is large enough to 
accommodate both networks, still keeping them separated, so that a new combined REV ̂1+2̂ for the dual-tortuosity material can 
be created, see the third unit cell in Fig.  5(b). It represents the actual geometry of the multi-tortuous material, but the appropriate 
multi-pressure modelling requires separate calculations on REV ̂1 and REV ̂2 only. The porosities and static permeabilities calculated 
for these two REVs are given in Table  1, in columns 1̂ and 2̂, respectively. Two complete sets of macro-parameters were used to 
determine the dynamic viscous and thermal permeabilities using the JCALP scaling functions [39,40], see Appendix  B. Then, the 
effective properties of two fluids acoustically equivalent to single-network materials ̂1 and ̂2 were calculated.

Fig.  6(a) shows sound absorption at normal incidence calculated for porous layers backed by a rigid wall, see Appendix  A. The 
results for three porous materials described above are compared, namely two materials with single tortuosity and the dual-tortuosity 
material. In each case, the layer thickness 𝐻 = 5𝐻c = 40 mm is the same, so the direct comparison makes sense. The blue dotted 
curve shows absorption for the single-tortuosity material based on REV ̂1. In the frequency range of interest, i.e. below 2.4 kHz, this 
curve exhibits two peaks at the designed frequencies of one-quarter and three-quarter wavelength resonances. The absorption at the 
first, i.e. low-frequency peak exceeds 0.9. Sound absorption for material ̂2 is shown by a green dash-dotted curve with the maximum 
value greater than 0.8 at a predicted frequency corresponding to the quarter wavelength resonance determined for the layer with 
pore network 2. Finally, the continuous orange curve presents sound absorption at normal incidence by the dual-tortuosity layer 
based on REV ̂1+2̂. This absorption curve combines the performance obtained by the two single-tortuosity materials. In particular, 
it has three peaks at the designed frequencies. This result is validated by the numerical solution of the Navier–Stokes equations 
(see Section 4.2 for more information about such direct numerical simulations). It is worth noting the good absorption between 
10 
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Fig. 5. Two-dimensional pore networks and the construction of representative elementary volumes (REVs) containing them.

the second and third peaks, spanning an almost 300 Hz range, with the lowest absorption value only slightly below 0.6. On the 
other hand, there is a wide frequency range with rather poor absorption between the first and second absorption peaks. In order to 
improve it, a third pore network can be designed and added to create a multi-resonant material with triple tortuosity.

The third pore network was designed in three variants denoted by 3′, 3′′ and 3, see Fig.  5(a) and also the corresponding REVs in 
the middle row of Fig.  5(c). We started with network 3′ which has the form of a gently winding channel of constant width. Therefore, 
we could analytically estimate its tortuosity 𝛼∞3′  as the square ratio of the channel length to its unit cell height 𝐻c [10,51]. This 
analytical assessment of tortuosity is very accurate for constant-width channels (it also worked for network 1) and as intended: 
𝛼∞1 > 𝛼∞3′ > 𝛼∞2. Using formula (22) (with 𝑟 = 1 and 𝑛 = 3′) we estimated the quarter-wavelength resonance frequency for 
a 40 mm layer with network 3′. We found it to be too high, so we slightly modified the channel by making it more tortuous 
(network 3′′) and then we also increased its width in some places (network 3). The goal was to increase the tortuoisty so that the 
11 
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Table 1
Macro-parameters calculated for pore networks and REVs (see Fig.  5).
 Parameter (Unit) 1̂ 1 2̂ 2 3′ 3′′ 3

 𝛼∞𝑛 (–) 9.713 1.692 2.429 2.975 3.326
 𝛼0v𝑛 (–) 11.73 2.054 2.933 3.597 4.031
 𝛼0t𝑛 (–) 1.201 1.520 1.201 1.208 1.507
 𝛬v𝑛 (mm) 0.873 1.097 0.873 0.883 0.922
 𝛬t𝑛 (mm) 0.900 1.859 0.900 0.917 1.035
 0𝑛∕𝜙𝑛 (10−9 m2) 6.803 55.60 27.20 22.80 22.06
 𝛩0𝑛∕𝜙𝑛 (10−9 m2) 67.73 468.3 67.72 70.71 104.6

 𝜙𝑛 (%) 21.42 17.14 17.55 14.04 8.568 9.684 11.43
 0𝑛 (10−9 m2) 1.457 1.166 9.756 7.805 2.331 2.208 2.520
 𝛩0𝑛 (10−9 m2) 14.51 11.61 82.18 65.74 5.803 6.848 11.95

quarter-wavelength resonance frequency associated with this new network is midway between the resonance frequencies associated 
with networks 1 and 2. We achieved that with network 3 (this time 𝛼∞3 = 3.326 was determined by solving the dedicated Laplace 
problem [39,40,49]). This three-variant approach is illustrated by the corresponding results shown in Fig.  6(b) and discussed below.

The shape of the third network was chosen to fit neatly between networks 1 and 2, as depicted in the bottom row of Fig.  5(c). 
However, to make it possible and also 3D printable (see Section 4.1), the cell width had to be enlarged by 25%. The new width 
is therefore 𝑊c = 1.25𝑊c = 16.5 mm. The macro-parameters for all three variants of the third network are listed in the last three 
columns of Table  1. Table  1 also gives new values of porosity and static permeabilities for REV 1 and REV 2 shown in the first row of 
Fig.  5(c). Fig.  6(b) shows sound absorption calculated for 40 mm layers with single pore networks. First, it should be noted that the 
absorption curves obtained for the two materials based on REV 1 and REV 2 are very similar to their counterparts based on REV ̂1
and REV ̂2, respectively. In particular the resonance frequencies are – as expected – exactly the same, cf. blue and green curves, 
respectively, between graphs (a) and (b) in Fig.  6. However, in the case of network 1 the peak values slightly dropped, cf. blue 
curves between graphs (a) and (b) in Fig.  6, while the peak value increased to almost 0.9 in the case of material with network 2, cf. 
green curves between graphs (a) and (b) in Fig.  6. As for the third network material, the results for the three variants shown in the 
middle row of Fig.  5(c) are compared to show that the absorption peak shifts towards lower frequency with increasing tortuosity.

Fig.  6(c) shows sound absorption at normal wave incidence (see Appendix  A) calculated for two triple-tortuosity materials based 
on REV 1+2+3′ and REV 1+2+3, see also the bottom row of Fig.  5(c). For clarity of the graph we have omitted the curve for 
REV 1+2+3′′. As intended, we now have four resonant absorption peaks in the considered frequency range and the precisely 
selected frequency of the absorption peak related to the third network is achieved with excellent accuracy. The semi-analytical 
results are verified by direct Navier–Stokes simulations (see Section 4.2). In addition, to confirm the multi-resonance origin of 
the absorption peaks, we show the absorption curves calculated for the three single-tortuosity materials based on REV 1, REV 2, 
and REV 3, respectively. This time, they were also determined using Navier–Stokes simulations, but they are very similar to their 
counterparts calculated by the semi-analytical method, cf. the corresponding absorption curves between graphs (b) and (c) in Fig.  6. 
Finally, it should be noted that the previously observed weak absorption between the peaks has generally improved. It is therefore 
evident that very good broadband absorption in the desired frequency range can be achieved in this way, i.e. by adding yet another 
precisely tailored network.

3.3. Isotropic scaling for impedance matching

Fig.  7(a) compares the relative size of REV 1+2+3 with its isotropically scaled variants. For the sake of further comparisons, we 
consider the following scaling factors: 𝑠 = 0.5, 0.625, 1.0 (i.e. no scaling), and 1.25. For these scales, the following integers, i.e. 
number of cells 𝑁c = 10, 8, 5, and 4, respectively, ensure the same layer thickness 𝐻 = 𝑁c𝑠𝐻c = 40 mm.

Isotropic scaling does not change the shape of REV, so the porosity and tortuosity of the material remain unchanged. Only 
the characteristic lengths and static permeabilities are modified. Table  2 lists the new values of these parameters recalculated 
numerically for the isotropically scaled versions of REV 1, REV 2, and REV 3. Note the quadratic change of the permeabilities 
with respect to the scaling factor 𝑠, while the characteristic lengths change linearly. The following modifications apply with respect 
to the values listed in Table  1 and determined for unscaled REV (i.e. for 𝑠 = 1): 

𝛬v𝑛(𝑠) ∶= 𝑠𝛬v𝑛(1) , 𝛬t𝑛(𝑠) ∶= 𝑠𝛬t𝑛(1) , 0𝑛(𝑠) ∶= 𝑠20𝑛(1) , 𝛩0𝑛(𝑠) ∶= 𝑠2𝛩0𝑛(1) . (25)

Isotropic scaling affects the wave velocity. For 𝑠 < 1 the pores and channels become smaller and narrower, increasing the 
viscous effects that slow down the wave. The opposite occurs for 𝑠 > 1. Assuming that the layer thickness 𝐻 is intact, the 𝑟-quarter 
wavelength resonances and antiresonances are shifted to lower frequencies for 𝑠 < 1, or to (slightly) higher frequencies for 𝑠 > 1. 
Table  3 compares the frequencies of one-quarter and three-quarter wavelength resonances determined for 40 mm thick layers based 
on single-tortuosity REVs with different isotropic scaling. The 𝑠-independent upper-bound-based estimates are also given along with 
the corresponding errors. As explained above, the resonance and antiresonances frequencies change with 𝑠. We propose the following 
formula to predict these changes: 

𝑓 (𝑛,𝐻)
𝑟∕4 ≈

(

1 −
 (𝑛,𝐻)
𝑟∕4

)

𝑓 (𝑛,𝐻)
𝑟∕4 =

(

1 − ̃ (𝑛,𝐻)
𝑟∕4

)

𝑓 (𝑛,𝐻)
𝑟∕4 . (26)
𝑠
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Fig. 6. Sound absorption predictions for 40 mm-thick porous layers illustrating the design process of multi-tortuous metamaterials based on the 
networks and REVs depicted in Fig.  5.

Table 2
The characteristic lengths and static permeabilities for isotropically scaled REV 1, REV 2, and REV 3.
 Parameter (Unit) 𝑠=0.5 (𝑠𝐻c=4mm) 𝑠=0.625 (𝑠𝐻c=5mm) 𝑠=1.25 (𝑠𝐻c=10mm)

 1 2 3 1 2 3 1 2 3  
 𝛬v𝑛 (mm) 0.437 0.549 0.461 0.546 0.686 0.576 1.092 1.372 1.152 
 𝛬t𝑛 (mm) 0.450 0.930 0.518 0.563 1.162 0.647 1.125 2.324 1.294 
 0𝑛 (10−9 m2) 0.291 1.951 0.630 0.455 3.049 0.985 1.821 12.20 3.938 
 𝛩0𝑛 (10−9 m2) 2.901 16.44 2.989 4.533 25.68 4.670 18.13 102.7 18.68 
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Fig. 7. Representative unit cells with isotropically scaled networks.

Table 3
Frequencies of the one- and three-quarter wavelength resonances (along with the corresponding upper-bound-based estimates and their relative 
errors, as well as relative error predictions) for hard-backed porous layers composed of the specified REV (see Fig.  5) scaled by 𝑠, for the layer 
thickness 𝐻 = 𝑁c𝑠𝐻c = 40mm.
 REV 𝑛 : 1 2 3′ 3′′ 3

 Scale 𝑠 : 0.5 0.625 1.0 1.25 0.5 0.625 1.0 1.25 1.0 1.0 0.5 0.625 1.0 1.25  
 𝑠𝐻c (mm) : 4 5 8 10 4 5 8 10 8 8 4 5 8 10  
 𝑁c : 10 8 5 4 10 8 5 4 5 5 10 8 5 4  
 𝑓 (𝑛,𝐻)

1∕4  (Hz) : 594 616 645 655 1556 1578 1610 1621 1319 1189 1064 1089 1126 1138 
 𝑓 (𝑛,𝐻)

1∕4  (Hz) : 694 1663 1388 1254 1186

  (𝑛,𝐻)
1∕4  (%) : 14.41 11.24 7.06 5.62 6.43 5.11 3.19 2.53 4.97 5.18 10.29 8.18 5.06 4.05  

 ̃ (𝑛,𝐻)
1∕4  (%) : 14.12 11.30 7.06 5.65 6.37 5.10 3.19 2.55 4.97 5.18 10.12 8.09 5.06 4.05  

 𝑓 (𝑛,𝐻)
3∕4  (Hz) : 1914 1947 1997 2014 4805 4842 4898 4916 4044 3650 3350 3392 3455 3476 

 𝑓 (𝑛,𝐻)
3∕4  (Hz) : 2082 4989 4164 3763 3559

  (𝑛,𝐻)
3∕4  (%) : 8.07 6.48 4.08 3.27 3.69 2.95 1.82 1.46 2.88 3.00 5.87 4.69 2.92 2.33  

 ̃ (𝑛,𝐻)
3∕4  (%) : 8.17 6.53 4.08 3.27 3.65 2.92 1.82 1.46 2.88 3.00 5.84 4.68 2.92 2.34  

Here, ̃ (𝑛,𝐻)
𝑟∕4 = 1

𝑠 
(𝑛,𝐻)
𝑟∕4  is the relative error prediction that takes into account isotropic scaling. This correction is very accurate, cf. 

̃ (𝑛,𝐻)
𝑟∕4  with  (𝑛,𝐻)

𝑟∕4  (𝑟 = 1, 3) in Table  3. The formula (26) is extremely useful for controlling changes in target frequencies due to 
isotropic scaling. For example, the exact value of 𝑓 (1,𝐻)

1∕4 = 645 Hz was calculated for REV 1 in its original size (𝑠 = 1) by solving 
equation (19). It is by  (1,𝐻)

1∕4 = 7.06% lower than its estimate 𝑓 (1,𝐻)
1∕4 = 694 Hz, determined using the upper-bound formula (22). After 

isotropic scaling by 𝑠 = 0.5, we expect the error to be twice as large, i.e. the corrected prediction of this error is ̃ (1,𝐻)
1∕4 = 14.12%. We 

can use it to find an approximated value (26) of the modified frequency, namely 𝑓 (1,𝐻)
1∕4 ≈ 596 Hz. All this is done without recalculating 

the static permeabilities and characteristic lengths and solving the non-linear equation (19). Of course, we can eventually do this 
to find that the approximate frequency is only a negligible 2 Hz greater than the exact value of 𝑓 (1,𝐻)

1∕4 = 594 Hz.
Fig.  8(a) compares sound absorption (see Appendix  A) calculated for isotropically scaled REV 1+2+3, in which each network 

was isotropically scaled by the same factor 𝑠 = 0.5, 0.625, 1.0 (no scaling), or 1.25, as illustrated in Fig.  7(a). For 𝑠 < 1 the 
absorption peaks and troughs are shifted towards slightly lower frequencies, whereas for 𝑠 > 1 they are shifted towards slightly 
14 



T.G. Zieliński and M.-A. Galland Journal of Sound and Vibration 621 (2026) 119433 
Fig. 8. Sound absorption predictions for 40 mm-thick layers based on multi-tortuous metamaterial designs shown in Fig.  7.

higher frequencies, compared to the case without scaling (𝑠 = 1.0). In each case, all new frequency values are predictable by the 
proposed formula (26). The impact on the absorption value is less predictable and requires full calculations. One should observe, 
however, that when the considered geometry is scaled by 𝑠 < 1, the low absorption values in the troughs increase significantly, 
while at the same time the peak values decrease, except for the third peak that is related to network 2. It is therefore obvious that 
an optimal improvement can be achieved by different isotropic scaling of each network separately. Various design criteria can be 
applied, e.g. perfect absorption in peaks, improved absorption in troughs. Here we propose scaling the selected network to achieve 
perfect absorption at the first peak related to it by matching the surface impedance at the peak frequency to the characteristic 
impedance of air, namely 

(𝑛)
S

(

2𝜋𝑓 (𝑛,𝐻)
1∕4

)

≈ 𝑍a (27)

where (𝑛)
S (𝜔) = 𝜚𝑛(𝜔)𝑐𝑛(𝜔) coth

(

i𝜔𝐻∕𝑐𝑛(𝜔)
) is computed for the single-tortuosity layer with scaled network 𝑛 (see Eq. (8)), 

because for multi-tortuous materials with evenly distributed resonances: S ≈ (𝑛)
S  at 𝑓 (𝑛,𝐻)

1∕4 . In other words, we isotropically 
scale network 𝑛 by factor 𝑠 so that for the assumed layer thickness 𝐻 : Re(𝑛)

S ≈ 𝑍a and Im(𝑛)
S ≈ 0 at the quarter-wavelength 

resonance frequency 𝑓 (𝑛,𝐻)
1∕4 . This creates a quasi anechoic condition for plane harmonic waves of this frequency propagating in air 

onto the porous layer, which means that the surface of the layer does not reflect such waves perpendicularly incident to it. The 
impedance-matching procedure can be applied for all networks simultaneously. Recall, however, that the scaled networks should 
also be re-arranged without overlapping within the layer space of thickness 𝐻 .

The condition (27) is satisfied for network 2 after isotropic scaling by factor 𝑠 = 0.5. We managed to replace the original network 2
by its scaled counterparts inside the original REV with dimensions 𝑊c × 𝐻c, as illustrated by two variants shown in Fig.  7(b). In 
both cases, the networks are very close to each other to maintain the REV dimensions, but they do not overlap, although in the 
left-hand-side variant this requirement is barely met. The distances between networks are slightly larger in the right-hand-side 
variant, but this network arrangement assumes symmetry on the lateral edges of the unit cell. The differences between the network 
arrangement variants are not grasp by the semi-analytical modelling, so we use the same label REV 1+2+2+3 for both. We have also 
checked that direct numerical simulations based on the Navier–Stokes equations give practically the same sound absorption curves 
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for both variants. Note that the total porosity of REV, as well as its dimensions, also remains unchanged. Therefore, the results 
obtained for the multi-tortuous material constructed from REV 1+2+2+3 can be directly compared with those determined for the 
original designs based on REV 1+2+3. We do it in Fig.  8(b) to conclude that sound absorption in the entire considered frequency 
range is better for the material with scaled network 2. However, below 1.2 kHz the two absorption curves are almost identical, cf. 
two semi-analytic curves in Fig.  8(b). Then, the expected improvement in absorption is achieved over a wide frequency range around 
the third peak related to the scaled network 2. The curves become almost identical again at frequencies above 2 kHz, after the fourth 
peak. The semi-analytical results are confirmed by the aforementioned Navier–Stokes simulations. Finally, we have found that the 
third sound absorption peak reaches an almost perfect value of 0.9996 at a frequency of 1560 Hz (note that 𝑓 (2,𝐻)

1∕4 = 1556 Hz), 
where the real and imaginary parts of the normalised (i.e. divided by 𝑍a) surface acoustic impedance of the multi-tortuous layer 
are: ReS∕𝑍a = 1.036 ≈ 1 and ImS∕𝑍a = −0.019 ≈ 0.

4. Experimental and numerical validation

4.1. 3D printed sample and three case studies

A sample of multi-tortuous material based on REV 1+2+3 was 3D printed using stereolithography technology from a transparent 
photopolymer resin of low viscosity. The material thickness is 𝐻 = 5𝐻c = 40 mm. Fig.  9 shows several pictures of this sample, 
namely: three scans made with a flatbed scanner (on the left) and three photographs (on the right). The sample was printed in the 
form of a 80×80×40 mm cuboid with wide clamping edges for mounting it to a 66 mm square impedance tube, see Fig.  9(a,b,c). 
The clamp mounting ensures no sound leakage around the sample during experimental tests. There are twelve 66 mm-long slits on 

Fig. 9. 3D printed sample of multi-tortuous acoustic metamaterial: (a,b) side views (scan and photo, respectively) showing the sample mounting 
to the square impedance tube with (a) rigid wall or (b) air gap backing; (c,d) front views (scan and photo); (e,f) rear views (scan and photo) 
with network 1 sealed with adhesive tape.
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the front and back surfaces of the sample. These are the entries to the pore networks arranged periodically in four groups of three, 
within a square area with an edge dimension of 4𝑊c = 66 mm, which is the internal size of the square tube. Thus, all pore networks 
are open to plane acoustic waves propagating in the impedance tube at normal incidence to the sample surface. For better visibility, 
the slotted entries to the pore networks are marked with blue (network 1), green (network 2), and red lines (network 3) in Fig.  9(c).

Sound absorption at normal incidence was measured for the 3D printed sample using a 66 mm square impedance tube and 
two-microphone transfer function method [52]. Three cases were studied:

1. Case A: the multi-tortuous material is backed by a rigid wall, see Fig.  9(a);
2. Case B: the multi-tortuous material is backed by an air gap, see Fig.  9(b);
3. Case C: the multi-tortuous material is backed by an air gap as depicted in Fig.  9(b), but the rear entries to pore networks 1
are sealed with adhesive tape, see Fig.  9(e,f).

Note that the first case study is the perfectly-sealed hard-backed layer configuration that was used to design the triple-tortuosity 
material in Section 3.2. Cases B and C include a backing air gap of a thickness 𝐻g = 10 mm, so that the total thickness of such a 
two-layer configuration is 𝐻 +𝐻g = 50 mm.

4.2. Numerical methods used

We applied two numerical approaches to verify semi-analytical analyses of multi-tortuous materials:

1. MPEF – the Multi-Pressure Equivalent Fluid numerical model, introduced in Section 2.2, which contains 𝑁 Helmholtz 
equations coupled by equal-pressure conditions at air interfaces or on Dirichlet boundaries;

2. DNS – Direct Numerical Simulation based on the solution of linearised Navier–Stokes equations.

Both approaches use the Finite Element (FE) method. They are much more versatile than the semi-analytical calculations which can 
only be used to study the propagation of plane waves at normal incidence, investigated in this work. In particular, the linearised 
Navier–Stokes DNS can, under certain conditions, be considered as a numerical equivalent of the experiment. However, such 
fully-coupled Navier–Stokes simulations can be computationally very demanding for three-dimensional and even two-dimensional 
problems. Thanks to the MPEF model, they are not required and are used only for additional verification purposes.

The proposed MPEF method is based on homogenisation and is therefore numerically very efficient. The scheme of this method 
is depicted in Fig.  10 for the triple-tortuosity material in the three configurations considered. In each case there are three parallel 
domains or rather fully overlapping but independent layers of equivalent fluids (thickness 𝐻 = 40 mm), namely: EF 1 representing 
the material with network 1 (based on REV 1), EF 2 for the material with network 2 (REV 2), and EF 3 for the material with 
network 3 (REV 3). At their upper boundaries, they are coupled by conditions (9) with the adjacent air domain. This air domain 

Fig. 10. Case studies for the MPEF model.
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Fig. 11. Case studies for the linearised Navier–Stokes simulations.

thickness (height) is 𝐻a = 8 mm. A pressure of 𝑝̂ = 1 Pa is applied at its upper boundary to simulate the incidence of a plane acoustic 
wave. In Case A, the sound-hard boundary (SHB) condition (11) is applied at the lower boundary of each EF domain to simulate 
the rigid wall support with perfect sealing bond. In Case B, these boundary conditions are replaced by the interface coupling (9) 
with the air-gap domain. Case C is special because the SHB condition is applied on the lower boundary of EF 1 to simulate perfect 
sealing, while EF 2 and EF 3 are coupled with the air gap. The air gap thickness (height) is 𝐻g = 10 mm and the SHB condition 
is applied on its lower, i.e. rigid-wall boundary. Fig.  10 also shows the FE mesh used to analyse Cases B and C. The homogenised 
problem configuration is essentially one-dimensional, but the mesh used for this numerical validation is two-dimensional and has 
a width of 1

10𝐻 = 4 mm that was assumed arbitrarily. Symmetry conditions are applied on all lateral boundaries. A similar mesh, 
but without the air gap domain, was used for Case A. Note that three different Helmholtz problems are solved using the same FE 
mesh of porous material marked in yellow in Fig.  10. The coupling between these problems only occurs at the interfaces with the 
air domains, also modelled by the Helmholtz equation.

Fig.  11 shows three schemes used by Navier–Stokes simulations for the three case studies. In each case, two-dimensional 
geometry of the triple-tortuous material is accurately represented by periodic repetition of its unit cell, i.e. REV 1+2+3, along 
the layer thickness. One instance of this REV is highlighted in Case A. The three separate networks are saturated with air. They 
are in fact connected but only outside the porous layer of thickness 𝐻 = 𝑁c𝐻c = 40 mm, namely: through the adjacent air 
layer (thickness 𝐻a = 8 mm) directly above the porous layer, as well as – additionally in Cases B and C – through the air gap 
(thickness 𝐻g = 10 mm) below the layer. In Case C, the air gap only connects networks 2 and 3, while network 1 is closed at 
this end to simulate sealing with adhesive tape on the back of the porous material, as shown in Fig.  9(e,f) for all four instances 
of network 1. The computational domain width is 𝑊c = 16.5 mm, i.e. equal to the REV width. Symmetry or periodicity conditions 
are applied on its lateral boundaries; we have checked that practically the same results are obtained in terms of sound absorption. 
No-slip and isothermal boundary conditions are applied on all solid boundaries (i.e. rigid skeleton and backing wall), while adiabatic 
pressure condition (with 𝑝̂ = 1 Pa) on the top air boundary. All these conditions are marked on the FE mesh for Case C presented 
in Fig.  11. This and similar FE meshes were used to solve (at each computational frequency) the harmonic Navier–Stokes equations 
of visco-thermal flow, for four coupled, complex-valued, degrees of freedom, viz.: acoustic pressure 𝑝, two velocity components, 𝑣1
and 𝑣2, and temperature 𝑇 .

Sound absorption at normal incidence is determined in a similar manner for FE solutions of the MPEF problem and the Navier–
Stokes DNS. In both cases, it is necessary to first calculate the surface acoustic impedance and then determine the sound reflection 
and absorption coefficients in a standard way [1], see Appendix  A for details.

The sound absorption results calculated using DNS for Case A have already been presented in Section 3 for the triple-tortuosity 
layer, and also for single-tortuosity materials as well as for the triple-tortuosity material with one of the networks isotropically 
scaled. In the following section, we discuss and compare the MPEF and DNS results obtained for all three case studies and confront 
them with experimental results.

4.3. Discussion of sound absorption results

Sound absorption at normal incidence measured on the 3D printed sample backed by a rigid wall (i.e. for Case A configuration) 
is presented in Fig.  12 along with the corresponding predictions by semi-analytical calculations and both FE analyses. The 
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Fig. 12. Sound absorption calculated and measured for the 40 mm-thick sample of multi-tortuous metamaterial.

Fig. 13. Acoustic pressure (real part) distributions at sound absorption peaks (Case A).

pressure distributions calculated by these numerical analyses are shown in Fig.  13. The modelling (by all methods) anticipated the 
experimental results well. In particular, the multi-resonant behaviour, evidenced by the four absorption peaks, is very well predicted. 
Inaccuracies in predicting the frequency of individual absorption peaks should be confronted with the quality of each 3D printed 
network, assessing compliance with the shape used to calculate the corresponding macro-parameters. Noticeable discrepancies 
concern the second absorption peak. This peak is associated with network 3 and occurs at a frequency that is about 80 Hz lower 
than the predicted value, which means that the actual tortuosity of this network is slightly larger than the calculated value.

All in all, the discrepancies between the measurements and predictions are due to 3D printing imperfections and sound 
leakages [53]. To illustrate the latter, we present two experimental results labelled as ‘‘no sealing tape’’ and ‘‘with sealing tape’’ 
in Fig.  12. During the first of these tests, the back of the sample was fixed directly to a thick aluminium plate to realise rigid-wall 
support. The measurement was then repeated ‘‘with sealing tape’’, meaning that before fixing the aluminium plate, the entire back 
side of the sample was carefully sealed with a thin, adhesive aluminium tape. It is evident that the results obtained in the first test 
are less accurate and even greater discrepancies occurred when the aluminium plate was not fastened tightly enough (for clarity of 
the graph, we have omitted these more inaccurate results). This was caused by sound leakages between the pore networks at the 
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back of the sample, possibly leading to some pressure equalisation. Additional securing of the back side of the sample with adhesive 
tape solved this problem.

In the extreme case, when a very thin layer of air forms at the back of the sample which is too loosely attached to the rigid 
wall and not secured with a tape, the network pressures can be completely equalised according to the conditions (12). As a result, 
sound absorption can be dramatically different from the case when the networks are sealed at the back of the sample. The same 
problem can occur when the multiple-network layer is formed, e.g. from two identical but unbounded samples: the networks can be 
connected at the interface and their pressures equalised, leading to unexpected results. Recall that imperfect interfaces in multilayer 
systems of conventional acoustic materials may also have a non-negligible effect on sound absorption [54].

The results obtained using the numerical MPEF model are in a perfect agreement with the semi-analytical calculations: the 
blue dotted curve practically overlaps the continuous orange curve in Fig.  12. This was expected since both methods are closely 
related and based on the same equivalent fluids defined by the same sets of macro-parameters given in Table  1. The DNS results 
are also in almost perfect agreement with these predictions, although in this case the absorption peaks are shifted to slightly lower 
frequencies than predicted by previous methods. The results by the MPEF model and DNS are also compared in Fig.  13 which 
presents the distribution of the real part of the acoustic pressure inside the parallel smeared-network subdomains of equivalent 
fluids (MPEF) and the geometrically accurate pore networks (DNS). The pressure distributions are shown at frequencies close to 
absorption peaks. It is clearly seen that a pressure node (i.e. zero pressure) is formed at the back of the pore network 𝑛 and its 
corresponding equivalent-fluid domain 𝑛, with: 𝑛 = 1 for the 1st and 4th absorption peaks, 𝑛 = 3 for the 2nd absorption peak, and 
𝑛 = 2 for the 3rd peak. Thus, each absorption peak occurs in the quarter-wavelength resonance of the corresponding pore network. 
In the case of the 4th absorption peak it is actually a three-quarter-wavelength resonance of network 1 (note the additional pressure 
node inside the pore network 1 and its equivalent fluid 1, at a distance of about 13𝐻 from the front, i.e. top surface of the layer).

The sound absorption curves determined for Cases B and C are presented in Fig.  14(a) and (b), respectively. As for Case A, the 
absorption results calculated for the configurations with an air gap using the numerical MPEF model or semi-analytical calculations 
match perfectly. These curves completely overlap and differ only slightly from the absorption curve obtained by DNS. More 
importantly, the modelling results, although rather unusual, are fully confirmed by measurements. One should notice the very 

Fig. 14. Sound absorption by the 40 mm-thick sample of multi-tortuous metamaterial backed with a 10 mm air gap, for: (a) all networks fully 
open, or (b) network 1 taped at the back of the sample.
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uncommon change in absorption after adding an air gap. It is well known that adding an air gap behind a porous layer made of 
conventional, i.e. single-tortuosity acoustic material should cause all absorption peaks to shift to lower frequencies [1]. If the air 
gap layer is thick enough, new peaks may appear in the considered frequency range, shifted from frequencies above this range. All 
this does not happen when the triple-tortuosity layer is supported by an air gap! On the contrary, in Case B the first absorption peak 
occurs at about 760 Hz, which is a good 100 Hz higher than the first peak frequency in the gap-less configuration of Case A, cf. the 
absorption curves between Figs.  14(a) and 12. Then, a significant peak in absorption appears at a frequency just below the 2.4 kHz 
range limit. There is also a very small peak in-between, at around 1.4 kHz, which could be mistaken for a measurement artefact if 
it were not predicted by the modelling, see Fig.  14(a). This atypical behaviour is discussed in more detail in Section 4.4.

In Case C, network 1 is sealed at the back of the sample. As a consequence, the contribution of this network tend to be the same 
as in the hard-backed layer case, cf. the absorption curves between Figs.  14(b) and 12. In particular, the absorption peak reappears 
at about 650 Hz, which is the quarter-wavelength resonance for this network. A rough plateau is formed between this and another 
absorption peak that occurs slightly below 800 Hz, see Fig.  14(b). The modelling correctly predicted this phenomenon, as well as the 
disappearance of the small peak (present in Case B at about 1.4 kHz) and the re-appearance of absorption peak near 2 kHz which is 
the three-quarter-wavelength resonance of network 1. The discrepancies between measurements and predictions are slightly larger 
at higher frequencies above 1.9 kHz, but the overall agreement is more than satisfactory. Especially, if we recall that network 1 is 
sealed with a relatively thin aluminium tape that can act as a septum that is not so perfectly rigid as assumed in the modelling.

Fig.  15 presents acoustic pressure distributions determined at 2200 kHz for each case study using the numerical MPEF model 
and DNS. At such a high frequency, the pressure distribution in each pore network is quite complex. When comparing the coloured 
contour maps of the real part of acoustic pressure, one should notice a great similarity in the pressure distribution (along the layer 
thickness) inside each pore network (DNS) and its corresponding EF domain (MPEF): in particular the pressure nodes are at the 
same position within the layer. Now, when the comparison is made between the pressure distribution in different pore networks (or, 

Fig. 15. Acoustic pressure (real part) distributions at 2200 Hz.
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alternatively, in different EF domains), we can see that these distributions are very different and independent in Case A, especially 
between the pore network 1 (with two pressure nodes) and the pore network 2 or 3 (each with a single pressure node). When an air 
gap is added in Case B, the pressure distributions in each network and EF domain change significantly. In particular, there is only 
one pressure node in network 1 (EF 1). In Case C, the back entry to network 1 is sealed and the pressure distribution in this network 
again has two pressure nodes and is almost identical to Case A. This is evident when comparing the pressure distribution curves 
in each EF domain, produced using the MPEF method for each case study, see graphs in the lower row of Fig.  15. The pressure 
curves in EF 1 are almost identical for Cases A and C. Similarly, in Case B the pressure curves in EF 2 and EF 3 are very similar, 
although not identical, to their counterparts determined in Case C. It should also be noted that the pressures are equal between all 
EF domains at each interface with the air (or air gap) domain, and there is pressure continuity at these interfaces. Obviously, the 
pressure gradients are different for each EF, because the flow velocities (fluxes) coming from each network are different.

4.4. Atypical acoustic behaviour of multi-tortuous materials

In this section, we discuss in more detail the unusual acoustic behaviour — already reported above — of multi-tortuous materials, 
observed when a layer of such a multiple-network material is supported by an air gap. For this purpose, we compare in Fig.  16 how 
sound absorption changes when an air gap is introduced between the rear face of a porous layer and the rigid wall. We perform 
this comparison for three types of acoustic materials, namely:

1. a layer of glass wool as an example of a conventional acoustic treatment,
2. a single-network layer with network 1 defined by REV 1 shown in the upper left corner of Fig.  5(c), and
3. a multi-tortuous material layer with three separate networks 1, 2 and 3, as in REV 1+2+3 shown in the lower right corner of 
Fig.  5(c).

To make the comparison more meaningful, all layers have the same thickness of 40 mm. The conventional glass wool is also a single 
open-pore network material and was modelled as an equivalent fluid, see Appendix  C for details and in particular Table  C.1 for 
glass wool macro-parameters.

Fig.  16(a) compares the normal-incidence sound absorption curves calculated for the layer with network 1 with those calculated 
for the glass wool layer. In each case, three configurations were considered: (i) direct support by a rigid wall, and (ii) a 1 mm or 
(iii) a 10 mm air gap between the rigid wall and the back of the layer. For both materials, the well-known effect is observed when 
an air gap is introduced: all absorption peaks are shifted to lower frequencies. This is clearly visible for the layer with network 1, 
see Fig.  16(a): when a 1 mm air gap is introduced behind this layer, the quarter-wavelength resonance absorption peak is moved 
from position A to position B (at a frequency 80 Hz lower than A), and then to position C (located at only 300 Hz) when the air gap 
is increased to 10 mm. The change is very significant even with a gap of only 1 mm. Therefore, we strongly recommend sealing the 
back of a metamaterial sample with adhesive tape during impedance tube testing in a configuration with direct support on a rigid 
wall. Otherwise, measurement results may be distorted by the thin-gap effect, although theoretically, in the case of single-network 
materials, there is no distinction between the boundary perfectly bonded to the wall and the one with an infinitely thin air gap. This 
problem does not occur in the case of conventional acoustic materials, which are characterised by high porosity, low tortuosity, 
and much shorter characteristic lengths (see Table  C.1 for typical glass wool parameters) compared to acoustic metamaterials with 
high tortuosity (see Table  1). All this results in broadband sound absorption: good in the mid-to-high frequency range, but poor at 
lower frequencies. Although the maximum absorption also corresponds to the quarter-wavelength resonance, absorption peaks are 
often not clearly visible, as in the case of the glass wool layer, see Fig.  16(a). As for all single-network materials, adding an air gap 
behind the fibrous layer shifts the resonance and absorption maximum to a lower frequency, e.g. from 2.7 kHz to 2.1 kHz when a 
40 mm layer of glass wool is backed by a 10 mm air gap. However, for thinner air gaps (e.g. 1 mm thick) the effect is barely visible, 
see Fig.  16(a).

To understand how unusual the acoustic behaviour of the multi-tortuous material can be, the results shown in graph (a) of 
Fig.  16 should be confronted with those presented in graph (b). The latter were determined for the multi-tortuous layer in four 
configurations, because when such a layer is supported by a rigid wall, we can distinguish two cases, namely: (i) a perfectly sealing 
hard boundary (the SHB conditions), and (ii) a hard boundary with an infinitely thin air gap (the NCHB conditions). The remaining 
two configurations of the multi-tortuous layer backed by a finite-thickness air gap (1 mm or 10 mm thick) are the same as for 
single-network layers. The most dramatic change is observed between the first two cases, although both configurations are almost 
identical. However, when even an infinitely thin air gap appears at the back of the multi-tortuous layer, the first absorption peak is 
shifted to a much higher frequency: from position A′ at 650 Hz to position A′′ at 1060 Hz, see Fig.  16(b). Moreover, the number of 
absorption peaks in the considered frequency range is reduced. This is because of the substantial difference between both boundary 
conditions. The perfect sealing conditions keep the networks separated (uncoupled) at the boundary, while the NCHB conditions 
equalise the pressure of all pore networks at the boundary, coupling them in this way. In this case, the networks are coupled on both 
sides of the porous layer. As a result, the multi-tortuous nature of the material is weakened, and consequently its multi-resonant 
behaviour. The NCHB condition is a direct predecessor of the interface conditions that couple the multi-tortuous material to an air 
domain, in particular to a finite-thickness air gap. Therefore, the two-layer configuration consisting of a multi-tortuous material 
backed by an air gap behaves in a more conventional manner as the air gap thickness is increased. Now, the absorption peaks are 
shifted to lower frequencies, e.g. the first peak from position A′′ to B for a 1 mm air gap, and then to position C for a 10 mm air 
gap, see Fig.  16(b). However, the overall acoustic behaviour can still be considered anomalous since individual absorption peaks 
may be reduced due to the interaction of resonances and antiresonances associated with different networks.
22 



T.G. Zieliński and M.-A. Galland Journal of Sound and Vibration 621 (2026) 119433 
Fig. 16. Change in sound absorption due to the addition of an air gap at the back of the porous layer: (a) standard behaviour for a single-network 
material and a conventional acoustic material (glass wool), (b) atypical behaviour for a multi-tortuous material with separated pore networks. 
All porous layers have the same thickness of 40 mm.

5. Conclusions

We have proposed an original technique for designing multi-resonant acoustic materials with broadband efficiency. The technique 
is based on the informed design of tortuosity, which leads to the development of tailored multi-tortuous materials. These materials 
– especially when carefully designed – should exhibit extraordinary acoustic properties compared to conventional porous materials 
used in acoustic treatment. In particular, due to several separated networks with contrasting, high tortuosities, they allow for multiple 
quarter-wavelength resonances resulting in absorption peaks in the lower frequency range. On the other hand, they also exhibit 
atypical acoustic behaviour when backed by an air gap. This unusual behaviour distinguishes them significantly not only from 
conventional acoustic layers, but also from single-network materials (or even from materials with multiple pore networks of very 
similar tortuosities). This has been demonstrated using examples based on relatively simple two-dimensional designs.

Results obtained by semi-analytical modelling have been validated with two independent numerical methods, i.e. the numerical 
MPEF model and Navier–Stokes DNS, as well as with measurements from several experimental tests conducted on a 3D printed 
sample of the designed material. The experiments fully confirmed the occurrence of the multi-resonance phenomenon, as well as 
the unusual behaviour for configurations where the multi-tortuous layer is backed by an air gap.

The numerical MPEF model proposed in Section 2.2 is much more efficient than the computationally intensive Navier–Stokes 
DNS. It is also versatile compared to related semi-analytical calculations that are specified for one-dimensional problems of plane 
wave propagation at normal incidence. On the other hand, the procedure proposed in Section 3 is extremely effective because it 
is based on the semi-analytical calculations. It can be even fully analytical for specific pore network designs, such as constant-
width tortuous channels, for which all necessary macro-parameters can be estimated analytically. We have demonstrated that 
this procedure allows for the very efficient and informed design of multi-tortuous acoustic materials. However, since the MPEF 
method is suitable for FE implementation, a homogenised multi-pressure model of the designed multi-tortuous material can be 
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easily implemented to analyse its effect in complex configurations that require FE calculations. Note that it is possible to implement 
design criteria other than impedance matching or desired sound absorption.

Regardless of the simple network shapes used in the 3D printed sample, MPEF modelling and the entire procedure for tortuosity-
based design can be applied to materials with open porosity consisting of disconnected networks of almost any shape. Their 
micro-geometries can be very complex, combining different narrow or wider channels with variable and irregular cross-sections 
that connect cavities (pores) of different shapes and sizes, leading to significant visco-thermal dissipation of acoustic wave energy 
over a wider frequency range. Moreover, other dissipative phenomena in porous media modelled using equivalent fluids, such as 
pressure diffusion and sorption due to multi-scale porosity [55–57], local inner resonators [58], permeo-elastic effects [59], etc., 
can be taken into account provided that the viscous flows in different main pore networks are separated (e.g. not affected by the 
microporous skeleton), thereby preserving the multi-tortuous nature of the material.

To obtain the desired multi-resonant and possibly broadband behaviour, the pore networks in multi-tortuous materials must 
be tailored to have contrasting but also ‘tuned’ tortuosities. They must be kept apart but at the same time well fitted inside 
the material space so that the total porosity is as large as possible. Ways to achieve this goal are well illustrated through the 
two-dimensional benchmark examples presented in this work. Nevertheless, thin-layer designs of multi-tortuous materials that are 
particularly efficient in a wideband low-frequency range should rather be three-dimensional, such as systems of spatially twisted 
channels, nested networks and multi-periodic materials [60], etc.
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Appendix A. Sound absorption coefficient

In all analyses of sound wave propagation, the sound absorption coefficient  was calculated at normal incidence from the 
reflection coefficient  as follows [1] 

(𝜔) = 1 − |

|

|

(𝜔)||
|

2
, (𝜔) =

S(𝜔) −𝑍a
S(𝜔) +𝑍a

. (A.1)

Here, S(𝜔) is the surface acoustic impedance of the sound-absorbing configuration, while 𝑍a is the characteristic impedance of the 
air in front of it. The sound absorption configurations considered in this work are: a porous layer set directly on a rigid wall, and 
a two-layer arrangement of a porous layer backed by an air gap. In all semi-analytical analyses, S was determined analytically 
as described in Section 2.1.2 for the single-network layers, and in Section 2.2.3 for the multiple-network layers. In all FE analyses, 
S was calculated as the ratio of the sound pressure to the particle velocity averaged over the boundary at a distance 𝐻a above 
the porous layer, where waves become plane in Navier–Stokes simulations. This configuration has an additional air layer in front, 
and the surface acoustic impedance calculated here is different than that determined directly at the front of the porous layer (we 
determined them both in the case of Helmholtz-based MPEF analyses). However, the sound absorption coefficient is the same in 
both cases, since the propagation of sound in the air in front of the porous layer is lossless. 

Appendix B. JCALP model

The frequency-dependent dynamic permeabilities for viscous and thermal effects, 𝑛 and 𝛩𝑛, can be determined using the 
well-established JCALP model [41,46–48]. The essence of this model is the following scaling function 

𝛱𝜔(𝛱0,, , 𝜔c) = 𝛱0

(

i𝜔
𝜔c

+ 1 −  +

√

2 + 
2
i𝜔
𝜔c

)−1

(B.1)

that depends on the static permeability 𝛱0 (i.e. the value of 𝛱𝜔 at 𝜔 = 0), two shape factors,  and  , and a characteristic 
frequency 𝜔c. Those are calculated for visco-inertial and thermal effects as specified below, using eight macro-parameters given in 
Table  1. Therefore, 

 (𝜔) = 𝛱 ( , , , 𝜔 ) , 𝛩 (𝜔) = 𝛱 (𝛩 , , , 𝜔 ) , (B.2)
𝑛 𝜔 0𝑛 v𝑛 v𝑛 v𝑛 𝑛 𝜔 0 t𝑛 t𝑛 t𝑛
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Table C.1
JCAL parameters for glass wool [61].
 𝜙w 𝛼∞w 𝛬vw 𝛬tw 0w 𝛩0w  
 % – mm mm 10−9m2 10−9m2 
 98.6 1.01 0.225 0.388 4.64 6.30  

where the viscous and thermal shape factors are 

v𝑛 =
80𝑛𝛼∞𝑛

𝜙𝑛𝛬2
v𝑛

, v𝑛 =
v𝑛

4(𝛼0v𝑛∕𝛼∞𝑛 − 1)
, t𝑛 =

8𝛩0𝑛

𝜙𝑛𝛬2
t𝑛

, t𝑛 =
t𝑛

4(𝛼0t − 1)
. (B.3)

The corresponding viscous and thermal characteristic frequencies, i.e. 

𝜔v𝑛 =
𝜙𝑛𝜈a

0𝑛𝛼∞𝑛
, 𝜔t𝑛 =

𝜙𝑛𝜏a
𝛩0𝑛

, (B.4)

additionally depend on the kinematic viscosity 𝜈a and thermal diffusivity 𝜏a of the air saturating the pore network.

Appendix C. Glass wool macro-parameters and JCAL model

The Johnson–Champoux–Allard–Lafarge (JCAL) model [41,46,47] was used to calculate the dynamic viscous and thermal 
permeabilities, w and 𝛩w, for glass wool. The JCAL model is a reduced version of the JCALP model (B.1) with  = 1. Therefore, 

w(𝜔) = 𝛱𝜔(0w,vw, 1, 𝜔vw) , 𝛩w(𝜔) = 𝛱𝜔(𝛩0w,tw, 1, 𝜔tw) , (C.1)

where the required viscous and thermal shape factors and characteristic frequencies, i.e. 

vw =
80w𝛼∞w
𝜙w𝛬2

vw
, tw =

8𝛩0w

𝜙w𝛬2
tw

, 𝜔vw =
𝜙w𝜈a

0w𝛼∞w
, 𝜔tw =

𝜙w𝜏a
𝛩0w

, (C.2)

depend on six macro-parameters: the glass wool porosity 𝜙w, tortuosity 𝛼∞w, characteristic lengths, 𝛬vw and 𝛬tw, and static 
permeabilities, 0w and 𝛩0w. Their values are given in Table  C.1. The dynamic permeabilities (C.1) calculated for glass wool, 
as well as its porosity 𝜙w, were used to determine the effective properties of the corresponding EF, using formulas (2) and (5), after 
formally replacing ‘𝑛’ with ‘w’.
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