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Abstract

In certain problems of loading of elastic-perfectly plastic thin sheets a
continuous displacement solution may not exist. The evolution of plastic
zone is then connected with the evolution of discontinuity lines in both ve-
locity and displacement fields. It was assumed by Mréz and Kowalczyk
[2] that in the presence of discontinuity lines the localized plastic zones
start to proceed. This new failure mode was described by an additional
constitutive relation between displacement discontinuity and interface trac-
tion along the material discontinuity line. In the former paper, following
the complete elasto-plastic analysis of axisymmetric disks response, a limit
state was reached after stable or unstable behavior. In the present paper, as
an example the same problem is solved using FE method and a more real-
istic solution is presented in which it is assumed that the ultimate failure
is caused by circumferential localization and evolution of radial cracks. In
the nonlinear incremental analysis a new reliable algorithm of continuation
method is developed. It is based on rank analysis of the rectangular matrix
of homogeneous set of incremental equations. Theoretical background of
this method is presented and numerical examples illustrate its usefulness

in post-critical analysis.
1. INTRODUCTION

The present paper is concerned with analysis of elasto-plastic states in
thin discs where the localized flow zones may develop simultaneously with
the diffuse zones. However, the general methodology developed in this pa-
per could be applied to any problem where the localized deformation zones
develop. The problem of localized flow can be treated within large de-
formation theory with account for hardening and softening effects, see for
instance, Tvergaard [1]. However, much simplified approach is obtained
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when the localized zone is treated as an interface hetween two clastic or
elasto-plastic materials. The constitutive relations are then formulated for
displacement discontinuities and interface tractions. This approach was
used by Mréz and Kowalczyk [2] in the analysis of decohesion of circular
disc from the inner rigid support. The radial displacement discontinuity
is then related to radial stress by considering the localization mode con-
stituted by out-of-plane shearing. The initial plastic flow is disturbed by
presence of the localized zone with subsequent unloading and new plastic
regimes developing. The next localization zones are expected to develop in
radial directions, thus producing ultimate disc failure.

The analysis of this class of problems is associated with continuation
methods which are described, for instance, by Crisfield et al. [3], Seydel
[4], Rheinboldt et al. [5]. and combined with the finite element method, cf.
Zienkiewicz [6], and Crisfield [7]. In this paper a new variant of continuation
is presented. It is associated with the rank analysis of a rectangular set of
governing equations. This method is next applied to study propagation of
radial localization zones in circular discs subjected to tensile tractions.

2. LOCALIZATION ZONES TREATED AS DISCONTINUITY
INTERFACES

In solving boundary-value problems for elasto-plastic disks of a perfectly
plastic material, different stress regimes are encountered, namely elliptic,
hyperbolic or parabolic. For elliptic stress regimes, there are no real charac-
teristics within the disk-plane, whereas for parabolic or hyperbolic regimes
there exist one or two families of stress and velocity characteristics. Ve-
locity discontinuity may then occur along characteristics as a part of the
solution. Denoting by Awv, and Av, the normal and tangential velocity dis-
continuities and by V, the normal velocity of propagation of the material
element across the discontinuity line S,, the discontinuity in strain com-
ponents referred to a local coordinate system (n,t) is expressed as follows:

Av, Avy
%R TS
where the n and ¢ axes are normal and tangential to the line S,.

From the relations (1) it follows that when the discontinuity line moves
with the material particles (V,, = 0), the strain discontinuity tends to in-
finity. Such a situation occurs in axisymmetric disks which have stepwise
thickness or are rigidly constrained at one of the edges. The solution for
a rigid-plastic model then exhibits normal velocity discontinuity along cir-
cumferential lines or normal displacement discontinuity in an elasto-plastic
solution. Such a displacement or infinite strain discontinuity may create
doubt about the physical validity of the solution.

Physically it can be expected that a localized flow zone occurs in such

Ag,,,, =

AEtt =0 (1)
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situations. In the presence of discontinuity lines an additional constitutive
relation between the rate of displacement discontinuity and the respective
traction rate along the material discontinuity line was assumed by Mrdz and
Kowalczyk [2]. Figure 1 presents the mode of deformation in the localized
plastic zone. Two rigid material blocks are sliding along slip planes towards
middle plane. Within an assumption that the normal stress distribution is
uniform, from the condition of equilibrium of normal forces it follows

on=0"(1- %u ) (2)

where || d, || describes displacement jump across plastic decohesion zone, H

denotes thickness and o* = 09/V/1 — v + /2 (09 is the yield stress). On the

other hand, the usual flow rule occurs within domains of regular solution.
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Figure 1: Mode of deformation in the localized zone
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Figure 2: Zones in the disk of elastic, perfectly plastic material
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In the case of axisymmetric disk problem and for a perfectly plastic
material model, the plastic decohesion process canges structural softening
with very complicated stable or unstable post-critical response. Figure 2
presents different zones within loaded structure and typical three congec-
utive stress paths in the stress plane. A limit state was reached after the
complete elasto-plastic analysis for both Tresca and Huber-Mises yield con-
ditions. In the present paper, as an example the same problem is solved
using FE method and a more realistic solution is presented in which it
is assumed that the ultimate failure is caused by the evolution of radial
localization zones which subsequently become the radial cracks.

3. CONTINUATION METHODS IN NON-LINEAR
PROBLEMS

In this section, we shall briefly discuss a new version of the continuation
method associated with the rank analysis of a rectangular matrix.

3.1 Control variables in a non-linear problem

Denote by = the vector of state variables r, (n = 1,..., V) in the V-
dimensional Euclidean space £V, and by I the vector field specified by
continuous and differentiable functions I'p, () (m = 1,...,M and M =
N —1). Consider the solution of a set of non-linear algebraic equations

L(r)=0 (3)

Assume a particular solution of (3) specified by the vector 7, to be known.
Moreover, let L = N— K (K > 1) equations (3) be independent for r = r,,.
Geometrically, the set (3) can be interpreted as representing M surfaces
with the solution belonging to their K-dimensional intersection. For K =1,
the solution of a non-linear problem (3) is represented by a curve & € £V,

Fig.3.
Usually, the vector components r, are divided into independent (or
control) components r;, = p; and dependent (or response) components

ry = w, where ¢4 €< 1,N >, k=1,...,K; ye<1l,N>,1=1,...,L
and 7 # 7;. Denote by p and u the vectors constituted of independent and
dependent components py and w;. The solution of (3) can now be presented

in the form

u = Y(p) (4)

The implicit function theorem, cf. Seydel [4], or Sikorski [8] provides the
conditions for existence and uniqueness of the unknown vector function ¥
in the neighborhood of a point representing the solution » = r,. Also the
rule of specification of partial derivative W /dp follows from this theorem,
therefore the implicit function theorem provides the analytical background
for the continuation methods.
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The incremental approach will provide the ordered set v, 7,44,... of
solutions of (3) by using the relation »,, 4y = »,+Ar,. In order to determine
the secant vector Ar,, different, decompositions into Au and Ap can be
applied. If the respective vector function ¥ exists, then the tangential
vector §r,, follows from the increments ép, and du,,, where du,, are uniquely
specified in terms of increments ép,, i.e. du, = (0¥/0p)ép,. Further
corrections from §7, to Ar, are based on the analysis of a linear set of
equations, which is therefore fundamental for continuation methods.

Figure 3: Geometrical interpretation of continuation procedure

3.2 Solution of homogeneous set of linear equations

Consider a set of M linear equations with M unknowns

Az =y (5)

This set can be rewritten in an equivalent form

Az —yzny =0
T =51 (6)

by introducing one additional unknown 2. Denoting by A the rectangular
matrix [A, —y], and by & the vector [T, 2n]T of N = M + 1 components,
the first set of egs. (6) can be written as follows

Az =0 (7)
The homogeneous set of equations can be solved to within a scalar para-

meter. In fact, if a given non-zero vector &* satisfies (7), then any vector
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@ = ni" (8)

also satisfies (7). It is scen that the condition @y = 1 implies the normaliz-
ation procedure providing x = 1/ajy and the solution & is specified. Thusg
the solution of (6) is obtained by generating the solution of the homogen-
eous set of (7) with subsequent scaling according to (8). Let us now discuss
the procedure of generating &* (the star superscript will be omitted in the
subsequent formulae). )

In the case of a homogeneous set (7) the rank of A is lower than the
number of unknowns, thus r = I‘a,nk(,zl) < N. A non-trivial solution &
then always exists, cf. [9, 10]. Decompose the vector & into p and wu,
where p and u are vectors with K independent (control) and L dependent
(response) components. The set of equations (7) can be presented as a
non-homogeneous set in the form

Uu=—-Pp (9)

where U is a square matrix (L x L), and P is constituted by the same rows
as the matrix U and the columns of A which do not occur in U.

The selection of the regular matrix U is not unique, and the additional
condition should be set in order to provide optimal selection of U. Starting
with L = M, we require the matrix U to be non-singular and characterized
by a maximal value of its determinant among all matrices of the same size,
thus

det(U) = max for U e U” (10)

where U™ denotes the set of all square (L x L) matrices generated from the
rectangular matrix A. When det(U) — 0, the size of the matrix is lowered
until L = r. A more sensitive criterion for rank evaluation is provided by
the matrix condition number specified as the ratio of maximal and min-
imal eigenvalues. When all eigenvalues are positive, then for vanishing of
one eigenvalue we have det(U) — 0 and cond(U) — oco. Thus the large
value of cond(U) indicates the necessity of transition to the matrix of lower
size. The condition number can be calculated by following the algorithm
presented in [9] without necessity of solving eigenvalue problem.

A non trivial solution & is obtained by solving the set (9) for arbitrary
selected component values of the control vector p. In particular, when
r = M, the orientation of the vector & depends on one parameter, say
p1 = 1, and is unique. When r < M, the orientation of the vector & is
not unique. We can construct a set of K independent vectors p; assuming
(pk),' = Oik (Z,k = 1,...,[(; 5ik = ] for ¢« = k and 51‘k = 0 for 1 75 k)
and determine fundamental solutions &; composed of the vectors p; and
the respective vectors u;, obtained from (9). Their linear combination
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provides a solution of the homogencous set, (7) and after scaling procedure,
the solution of the set (5) is generated.

3.3 Control Variable Selection Method

The incremental solution of non-linear problem is associated with the
linear set of equations, with proper decomposition of state vector into de-
pendent and independent components.

Assume that v solution points were obtained. The consecutive point
R, 41 is obtained through the iterative procedure in two steps

11
corrector: rFtl = pk 4 §pk (11)

predictor: "= r,+6r, }

where 7% denotes k-th approximation of the vector r,,;. When the con-
dition |Tp(rF)] < e is satisfied (e is a specified solution accuracy), the
iterative process is stopped, and we assume

k—1
Topi=rF=r,+Ar, =r, +6r, + Z ér’ (12)
=0
Otherwise, the consecutive term §7* is calculated. The function I',,(7*) is
represented by the Taylor series near r = r*, thus

OEnr™) 535 1 0% = Do (1) = () (13)

It is assumed that ©,,(7*F) = 0 and T, (r**') = 0, so eqs. (13) can be
written in the form

GérF = —T'(rF) (14)

where G' denotes the gradient matrix I'/0r.

In the predictor step, the right hand side vector in the above set of
equations can be neglected according to the condition |I',,(r,)] < e. It
means that the increment vector dr, is assumed to be parallel to the unit
tangent vector 7 lying on the edge of intersection of tangent planes IL,,,
Fig.3. The solution calculated at R, from the homogeneous set Gr = 0
provides 7, and thus the increment ér, = k7, is obtained to within a
scaling factor k. This factor can be evaluated from the assumed increment
step length.

In the corrector step, we have |[',(7*)| > €. and the inhomogeneous
set (14) with the rectangular matrix should be solved. To obtain a square
matrix, usually an additional equation

cért =0 (15)
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is added to set (14), where ¢ denotes an anxiliary veetor, ef. [4, 11]. Nu-
merous corrector schemes can be generated in this way and their efficiency
is manifested by varying positions of the solution point 1¢,,,, Fig.3. The
full corrector scheme can be written in the form (5) with the matrix A and

the vectors @, y in the form

|G . [ =I(r%) :
A_lcl o = &r y_[ 0 } (16)
It follows from the linear algebra that the corrector scheme may fail when
rank(A) < N. This may occur when the vector ¢ is linearly dependent on
G or the rank of G is reduced at r = r*,

The set of (14) can also be presented in a homogeneous form (7), where
A =[G, I'(v%)] and &7 = [(§7%)7, zn41]. As previously, the introduction
of xn41 requires proper scaling after obtaining a solution of the homogen-
eous set. The predictor and corrector schemes now have the same structure
and the rank analysis of rectangular matrix assures the reliable solution pro-
cedure. The inequality » < N implies existence of a non-trivial solution
vector & which in view of K" > 2 is always non-unique. Among the available
solutions & the actual solution is selected so that x4 = 1.

4. APPLICATION TO POST-CRITICAL ANALYSIS IN THIN
SHEETS

The control variable selection method can now be applied to a non-
linear analysis of structures. In this paper, the problem of propagation of
radial localization zones in the circular disk subjected to tensile tractions
will be numerically treated using finite element discretization. The plane
stress assumption are used in the analysis.

4.1 Finite element formulation

Denoting by w the nodal displacements, the displacements d and strain
e of any disk point is presented in the form

d= Nuw e = Bw (17)

Further, considering only one parameter loading f = A f”", where f denotes
the external tractions, A is the load factor, and f* is the reference loading,
we have » = [wT,\]T. Analogously to the algebraic equations (3), the
equilibrium equations of a discretized structure are

r(r) =/VBTadV— Af* = P(w) — Af* =0 (18)

Using the virtual work equation, the following incremental equations are
obtained for the corrector step

Kéw® = ) f* + 6F (19)
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where 8% denotes the non-cquilibrated force term and I denotes the global
tangent stiffness matrix obtained from the stiffness matrices of particular
elements

5,y = / BTDBAV, (20)
Ve

where D denotes the tangent material stiffness matrix. Comparing (14)
with (19), we have G = [K , —f*] and 8" = —T'(v*).

Figure 4: Finite element model and material characteristic within
interface element
4.2 Diffuse plastic zone

Assuming the Huber-Mises yield condition and the associated flow rule,
the stiffness matrix for a perfectly plastic material model is of the form

oF\" oF 1 » B
b= B Jo ) OJo . D= 12 v 1 0 (21)
1 — .2
BE 5 i Y j—p
oo oo 0 0 z

Here F(o) = \ﬁg — 0,0y + 0% + 302, — g0, and D denotes elasticity mat-
rix. The simplest 3-node uniform strain elements are used in specifying
the plastic zones within the disk.

4.3 Interface elements used in localization zones

The localization zone is modelled as a thin interface for which the dis-

placement rate discontinuities ||d, |, || d; || are related to contact stresses
at the interface, thus
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o D0,

. o O, , .

d, || = = + A\—= d || = == + A= 22

e & T " ba, .l a, " o, Ve

where F.(o,,7,) is the interface yield condition, E, = I} for o, = il

E, = E7 for 0, < 0, and G, are the elastic moduli of interface, and A > 0
is the plastic multiplier. However in our analysis, we set G, = oo and F, =
F.(0,), so the tangential discontinuity is neglected and only opening mode
is studied. To avoid penetration of the interface element into the adjacent
material, the compressive interface modulus £, was assumed much larger
then the tensile modulus E;}. The 4-node contact elements were used at the
interface which was assumed to be material surface. The softening rule (2)
was assumed between the normal traction and the interface opening || d,, |,
Fig.1. When |/ d, | > }H, the normal stress vanishes and the interface
opening occurs. The softening response of contact elements is presented in

Fig.4.
5. NUMERICAL EXAMPLES

The annular disks were considered with free inner edge » = @ and tensile
traction p applied at the outer edge r = b. The reference stress is p* = oy.
The localization zones were assumed to follow the radial lines. However,
their number is not specified from the analysis and must be assumed . The
following material and geometric parameters were assumed: F = 2.1 X
10°M Pa, oo = 500M Pa, v = 0.3, a = 0.05m, b = 0.20m, H = 0.001m.

400 2.5X10°
350 b
2F
300 F—
—_ -Q.
é 250 1 E1s) 1
5 200} =
= 2
> 1L
3 150} ] S
100
0.5} e
50 |
0 0
0 200 400 600 0 200 400 600
Integration step number Integration step number
Figure 5: Numbers of selected con- Figure 6: Condition number versus
trol parameters in terms of integ- integration step number

ration step number

Figures 5 and 6 present the results obtained for assumed ¢ = 2 loc-
alization zones propagating along one radial line. In view of symmetry
condition, only one quarter of disk was analyzed. In Figure 5 the numbers
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of the control vector components are shown in the conrse of solution pro-
cess. Figure 6 presents the variation of condition number. It ia geen that
when the control vector component is changed, the condition number var
ies discontinuously. The stress and displacement Timit points are Lraversed
casily since in the present procedure they behave as regular points.

l‘;iguro 7 presents the effect of number ¢ of localization zones on the
response curve of load factor versus displacement of the node lying on the
outer disk edge and symmetry axis. As it is seen, when the number ¢ of
localization zones increases, the required load level and displacements are
higher. For ¢ = 2, both snap-through and snap-back cffects ocenr and the
process is not controllable by external tractions and displacements. The
complex stress redistribution occurs within the disk during propagation of
the localized zones.

0.8 . . ~ . . - . - v
c=2 —
c=3 --- |
0.7 + bt
c=5 ...iee |
- 0.6 | c=6 --—
g 0.5} 1
S
S 04t 1
3
5 0.3} ' |
< 5
o .
—+ 0.2t : . E
RN B g A
\ .._.' \_\
o N 2 % < r ‘\ 5 ‘;. - N
(0] 1 2 3 4 5 6 7 8 9 410
Displacement x10

Figure 7: Influence of decohesive crack number

6. CONCLUSIONS

In the analysis of elasto-plastic behavior in the presence of discontinuity
lines, an additional constitutive relation between displacement discontinu-
ity and interface traction along the material discontinuity lines is required.
Both geometric necking and material hardening or softening can be incor-
porated into the localized discontinuity mode. As the large displacements
are confined to plastic decohesion zoune, the whole analysis can be per-
formed within small strain theory and is relatively inexpensive. Ultimate
failure caused by the evolution of radial cracks leads to total collapse of
the disk through a complex elasto-plastic deformation process.

The procedure of solution of linear set of equations based on rank ana-
lysis of a homogeneous set has significant advantages, namely: i) it al-
lows to avoid computational difficulties associated with singularity or ill-
conditioning of the initial square matrix of a non-homogeneous system, ii) it
provides automatic selection of control variable in the analysis of non-linear
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problems, iii) the resulting algorithm is the same for both predictor and
corrector stages. Using the control variable selection method, the turning
points disappear in the numerical procedure. The bifurcation points conld
be treated similarly, as it was shown in [I1, 12]. This method requires
further improvements, especially in normalizing the square matrix in or-
der to remove discontinuous variation of the condition number at switching
control points.
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