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Abstract 
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Institute of Fundamental Technological Research PAS 

ul. Świętokrzyska21, Warsaw, Poland 

In certain problems of loading of elastic-perfectly plastic thin sheets a 
continuous displacement solution may not exist. The evolution of plast ic 
zone is then connected with the evolution of discontinuity lines in both ve-
locity and displacement fields. It was assumed by Mr6z and Kowalczyk 
[2] that in the presence of discontinuity lines the localized plastic zones
start to proceed. This new failure mode was described by an additional 
constitutive relation between displacement discontinuity and interface trac-
tion along the material discontinuity line. In the former paper, following 
the complete elasto-plastic analysis of axisymmetric disks response, a limit 
state was reached after stable or unstable behavior. In the present paper, as 
an example the same problem is solved using FE method and a more real-
istic solution is presented in which it is assumed that the ultimate failure 
is caused by circumferential localization and evolution of radial cracks. In 
the nonlinear incremental analysis a new reliable algorithm of continuation 
method is developed. It is based on rank analysis of the rectangular matrix 
of homogeneous set of incremental equations. Theoretical background of 
this method is presented and numerical examples illustrate its usefulness 
in post-critical analysis. 

1. INTRODUCTION 

The present paper is concerned with analysis of elasto-plastic states in 
thin discs where the localized flow zones may develop simultaneously with 
the diffuse zones. However, the general methodology developed in this pa-
per could be applied to any problem where the localized deformation zones 
develop. The problem of localized flow can be treated within large de-
formation theory with account for hardening and softening effects, see for 
instance, Tvergaa.rd [1]. However, much simplified approach is obtained 
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when the localized zone is treated as an interface between two elasticor 
elasto-plastic materials. The constitutive relations arc then formulated for 
displacement discontinuities and interface tractions. This approach was
used by Mr6z and Kowalczyk [2) in the analysis of decohesion of circu lar 
disc from the inner rigid support. The radial displacement discontinuity 
is then related to radial stress by considering the localization mode con-
stituted by out-of-plane shearing. The initial plastic flow is disturbed by 
presence of the localized zone with subsequent unloading and new plastic 
regimes deyeloping. The next localization zones are expected to develop in 
radial directions, thus producing ultimate disc failure. 

The analysis of this class of problems is associated with continuation 
methods which are described, for instance, by Crisfield et al. [3], Seydel 
[4), Rheinboldt et al. [5). and combined with the finite element method, cf. 
Zienkiewicz [6), and Crisfield [7). In this paper a new variant of continuation 
is presented. It is associated with the rank analysis of a rectangular set of 
governing equations. This method is next applied to study propagation of 
radial localization zones in circular discs subjected to tensile tractions. 

2. LOCALIZATION ZONES TREATED AS DISCONTINUITY 
INTERFACES 

In solving boundary-value problems for elasto-plastic disks of a perfectly 
plastic material, different stress regimes are encountered, namely elliptic, 
hyperbolic or parabolic. For elliptic stress regimes, there are no real charac-
teristics within the disk-plane, whereas for parabolic or hyperbolic regimes 
there exist one or two families of stress and velocity characteristics. Ve-
locity discontinuity may then occur along characteristics as a part of the 
solution. Denoting by ^vnand ^vtthe normal and tangential velocity dis-
continuities and by Vn the normal velocity of propagation of the material 
element across the discontinuity line Sv, the discontinuity in strain com-
ponents referred to a local coordinate system ( n, t) is expressed as follows: 

^ett= 0 (1) 

where the n and t axes are normal and tangential to the line Sv.
From the relations (1) it follows that when the discontinuity line moves 

with the material particles (Vn = 0), the strain discontinuity tends to in-
finity. Such a situation occurs in axisymmetric disks which have stepwise 
thickness or are rigidly constrained at one of the edges. The solution for 
a rigid-plastic model then exhibits normal velocity discontinuity along cir-
cumferential lines or normal displacement discontinuity in an elasto-plastic 
solution. Such a displacement or infinite strain discontinuity may create 
doubt about the physical validity of the solution. 

Physically it can be expected that a localized flow zone occurs in such 
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situations. In the presence of discontinuity liues an additional constitutive 
relation between the rate ofdisplacement. discontinuity and the respective
traction rate along the materialdiscontinuity line was assumed by M róz and 
Kowalczyk [2]. Figure 1 presents the mode of deformation in the localized
plastic zone. Two rigid material blocks are sliding along slip planes towards
middle plane. Within an assumption that the normal stress distribution is 
uniform, from the condition of equilibrium of normal forces it follows 

(2) 

where II dn II describes displacement jump across plastic decohesion zone, H 
denotes thickness and a-*= a-0/~1- v + v2 (a-0 is the yield stress). On the 
other hand, the usual flow rule occurs within domains of regular solution. 

Figure 1: Mode of deformation in the localized zone 
2b 

2a 

Figure2: Zones in the disk of elastic, perfectly plastic material 
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In the case of axisymmetric disk problem and for a perfectly plastic 
material model, the plastic decohcsion process causes structural softening 
with very complicated stable or unstable post-critical response, Figure 2 
presents different zones within loaded structure and typical three consec-
utive stress paths in the stress plane. A limit state was reached after the 
complete ela.sto-plastic analysis for both Tresca and Huber-Mises yield con-
ditions. In the present paper, as an example the same problem is solved 
using FE method and a more realistic solution is presented in which it 
is assumed that the ultimate failure is caused by the evolution of radial 
localization zones which subsequently become the radial cracks. 

3. CONTINUATION METHODS IN NON-LINEAR 
PROBLEMS 

In this section, we shall briefly discuss a new version of the continuation 
method associated with the rank analysis of a rectangular matrix. 

3.1 Control variables in a non-linear problem 
Denote by r the vector of state variables r n ( n = 1, ... , N) in the N-

dimensional Euclidean space £ N' and by r the vector field specified by 
continuous and differentiable functions r m ( r) ( m = 1, ... , M and M 
N - 1 ). Consider the solution of a set of non-linear algebraic equations 

r( r) = o (3) 

Assume a particular solution of (3) specified by the vector r v to be known. 
Moreover, let L = N -I< (I< 2: 1) equations (3) be independent for r = rv. 
Geometrically, the set (3) can be interpreted as representing M surfaces 
with the solution belonging to their I<-dimensional intersection. For [{ = 1, 
the solution of a non-linear problem (3) is represented by a curve SE £N, 
Fig.3. 

Usually, the vector components rn are divided into independent (or 
control) components rik = Pk and dependent (or response) components 
ri1 _ u1, where ikE< 1,N >, k = 1, ... ,K; it E< 1,N >, l = l, ... ,L 
and ik =f. i 1• Denote by p and u the vectors constituted of independent and 
dependent components Pk and Ut. The solution of (3) can now be presented 
in the form 

u = 'li(p) (4) 
The implicit function theorem, cf. Seydel [4), or Sikorski [8) provides the 
conditions for existence and uniqueness of the unknown vector function qi 
in the neighborhood of a point representing the solution r = rv. Also the 
rule of specification of partial derivative aw 1 av follows from this theorem, 
therefore the implicit function theorem provides the analytical background 
for the continuation methods. 
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The incremental approach will provide tlte ordered set 1',,, r,,+ l, ... of 
solutions of (3) by using the relation r,,+ 1 = r,,+6r,,. fn orderto determine 
the secant vector ~'r,,, different. decompositions into 6u and 6p can be
applied. If the respective vector function W exists, then the tangential 
vector or,, follows from the increments 8pll and 8ull, where 8ull are uniquely 
specified in terms of increments 8p11 , i.e. OU 11 = ( 8'1! / ap )8p11 • Further 
corrections from 8r 11 to 6r 11 are based on the analysis of a linear set of 
equations, which is therefore fundamental for continuation methods. 

Figure 3: Geometrical interpretation of continuation procedure 

3.2 Solution of homogeneous set of linear equations 

Consider a set of M linear equations with M unknowns 

Ax =y 

This set can be rewritten in an equivalent form 

Ax- yxN = 0 } 
XN = 1 

(5) 

(6) 

by introducing one additional unknown XN. Denoting by A the rectangular 
matrix [A,-y], and by x the vector [xr,xNJT of N = M + 1 components, 
the first set of eqs. (6) can be written as follows 

(7) 
The homogeneous set of equations can be solved to within a scalar para-
meter. In fact, if a given non-zero vector i* satisfies (7), then any vector 
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(8) 
also satisfies (7). It is seen that the condition :r;N = implies thenormaliz-
ation procedure providing k= 1/:r:'N and the solution x is specified . Thus
the solution of (6) is obtained by generating the solution of the homogen-
eous set of (7) with subsequent scaling according to (8). Let us now discuss
the procedure of generating x* (the star superscript will be omitted in the 
subsequent formulae). 

In the case of a homogeneous set (7) the rank of A is lower than the 
number of unknowns, thus r = rank(A) < N. A non-trivial solution x 
then always exists, cf. [9, 10]. Decompose the vector x into p and u, 
where p and u are vectors with ]( independent (control) and L dependent 
(response) components. The set of equations (7) can be presented as a 
non-homogeneous set in the form 

Uu = -Pp (9) 

where U is a square matrix (L x L), and Pis constituted by the same rows 
as the matrix U and the columns of A which do not occur in U. 

The selection of the regular matrix U is not unique, and the additional 
condition should be set in order to provide optimal selection of U. Starting 
with L = M, we require the matrix U to be non-singular and characterized 
by a maximal value of its determinant among all matrices of the same size, 
thus 

det(U) =max for U E U* (10) 
where U* denotes the set of all square (L x L) matrices generated from the 
rectangular matrix A. When det(U) ---t 0, the size of the matrix is lowered 
until L = r. A more sensitive criterion for rank evaluation is provided by 
the matrix condition number specified as the ratio of maximal and min-
imal eigenvalues. When all eigenvalues are positive, then for vanishing of 
one eigenvalue we have det(U) ---t 0 and cond(U) ---t oo. Thus the large 
value of cond(U) indicates the necessity of transition to the matrix of lower 
size. The condition number can be calculated by following the algorithm 
presented in [9] without necessity of solving eigenvalue problem. 

A non trivial solution x is obtained by solving the set (9) for arbitrary 
selected component values of the control vector p. In particular, when 
r = M, the orientation of the vector x depends on one parameter, say 
p1 = 1, and is unique. When r < M, the orientation of the vector x is 
not unique. We can construct a set of I< independent vectors Pi assuming 
(Pk)i = 5ik (i,k = 1, ... ,K; 5ik = 1 fori= k and 5ik = 0 fori =I k) 
and determine fundamental solutions Xi composed of the vectors Pi and 
the respective vectors ui, obtained from (9). Their linear combination 
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provides a. solution of the homogeneousset (7) and after scaling procedure, 
the solution of the set(5) is generated.

3.3 Control Variable Selection Method 
The incremental solution of non-linear problem is associated with the 

linear set of equations, with proper decomposition of state vector into de-
pendent and independent components. 

Assume that v solution points were obtained. The consecutive point 
Rv+I is obtained through the iterative procedure in two steps 

predictor: 

corrector: 
(11) 

where rk denotes k-th approximation of the vector Tv+I· When the con-
dition |Fmm(rk)l :S c is satisfied (e is a specified solution accuracy), the 
iterative process is stopped, and we assume 

k-1 
k ~ . Tv+l := T =Tv+ 6.rv =Tv+ OTv + L..; OTJ (12) 

j=O 

Otherwise, the consecutive term ork is calculated. The function r m ( rk) is 
represented by the Taylor series near r = rk, thus 

(13) 

It is assumed that Bm( rk) rv 0 and r m( rk+I) ~ 0, so eqs. (13) can be 
written in the form 

(14) 

where G denotes the gradient matrix ar I or. 
In the predictor step, the right hand side vector in the above set of 

equations can be neglected according to the condition if m ( r v) I :S c. It 
means that the increment vector orv is assumed to be parallel to the unit 
tangent vector r lying on the edge of intersection of tangent planes IIm, 
Fig.3. The solution calculated at Rv from the homogeneous set Gr = 0 
provides rv and thus the increment Orv = KTv is obtained to within a 
scaling factor k. This factor can be evaluated from the assumed increment 
step length. 

In the corrector step, we have If m(rk)l > c. and the inhomogeneous 
set (14) with the rectangular matrix should be solved. To obtain a square 
matrix, usually an additional equation 

(15) 
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is added to set (14),where c denotesan auxiliary vector,cf. [4, 11]. Nu-
merous corrector schemes can begenerated in this way and theirefficiency
is manifested by varying positions of the solution point U,/·~ 1, Fig.3. 'l'hc 
full corrector scheme ca n be written in the form (5) with the matrix A and 
the vectors x, y in the form 

( 16) 

It follows from the linear algebra that the corrector scheme may fail when 
rank(A) < N. This may occur when the vector cis linear ly dependent on 
G or the rank of G is reduced at r = rk. 

The set of (14) can also be presented in a homogeneous form (7), where 
A = [G, r(rk)] and XT = [(Jrkf, :rN+d· As previously, the introduction 
of XN+l requires proper scaling after obtaining a solution of the homogen-
eous set. The predictor and corrector schemes now have the same structure 
and the rank analysis of rectangular matrix assures the reliable solution pro-
cedure. The inequality 1' < N implies existence of a non-trivial solution 
vector x which in view of I< 2: 2 is always non-unique. Among the available 
solutions x the actual solution is selected so that XN+l = 1. 

4. APPLICATION TO POST-CRITICAL ANALYSIS IN THIN 
SHEETS 

The control variable selection method can now be applied to a non-
linear analysis of structures. In this paper, the problem of propagation of 
radial localization zones in the circular disk subjected to tensile tractions 
will be numerically treated using finite element discretization. The plane 
stress assumption are used in the analysis. 

4.1 Finite element formulation 
Denoting by w the nodal displacements, the displacements d and strain 

e of any disk point is presented in the form 

d=Nw e=Bw (17) 

Further, considering only one parameter loading f = >..f*, where f denotes 
the external tractions, >.. is the load factor, and f* is the reference loading, 
we have r = [wr, >..]Y. Analogously to the algebraic equations (3), the 
equilibrium equations of a discretizecl structure are 

(18) 

Using the virtual work equation, the following incremental equations are 
obtained for the corrector step 

(19) 
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where 0k denotes the non-equilibrated forceterm and K denotestheglohal 
tangent stiffness matrix obtained from the stiffness matrices ()f particular
elements 

(20) 

where D denotes the tangent material stiffness matrix. Comparing (14) 
with (19), we have G = [I<, - f*] and (}k = -r( rk). 

!Jdnll 
4H= Jldn2JJ ----

JjdnlJJ 
-I 

y 

-I 

Figure 4: Finite element model and material characteristic within 
interface element 

4.2 Diffuse plastic zone 

Assuming the Huber-Mises yield condition and the associated flow rule, 
the stiffness matrix for a perfectly plastic material model is of the form 

( 8J'}r a:F D 
1 v 0 

8tr 8tr 
D= 

E v 1 0 (21) D=D I- a:F D (a :F) T 
1 - v2 

0 
1-v 

8tr 8tr 0 
2 

Here F(s)= J a'f: - a xO" y + a; + 3a'f:Y - a0 , and D denotes elasticity mat-
rix. The simplest 3-node uniform strain elements are used in specifying 
the plastic zones within the disk. 

4.3 Interface elements used in localization zones 

The localization zone is modelled as a thin interface for which the dis-
placement rate discontinuities II dn II, II dt II are related to contact stresses 
at the interface, thus 
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II d. II= a-" -~ iJJi:: 
' ll l, -j '') .JII ( CT !I 

• +n • fJ/•~ II dt II = -( f + A()· 
-'n f/'rn 

(22) 

where FcCTn, T,.) is the interface yield condition, En = e: for rfn .> o, 
En = E;·~ for CTn < 0, and Gn are the elastic moduli of interface, and A > 0 
is the plastic multiplier. However in our analysis, we set Gn -+ oo and F~ = 
Fe( CTn), so the tangential discontinuity is neglected and only opening mode 
is studied. To avoid penetration of the interface element into the adjacent 
material, the compressive interface modulus E;; was assumed much larger 
then the tensi le modulus E-;. The 4-node contact elements were used at the 
interface which was assumed to be material surface. The softening rule (2) 
was assumed between the normal traction and the interface opening 1/ dn 1/, 
Fig.l. When 1/ dn II > t H, the normal stress vanishes and the interface 
openmg occurs. The softening response of contact elements is presented in 
Fig.4. 

5 . NUMERIC AL E XAMPLE S 

The annular disks were considered with free inner edger = a and tensile 
traction p applied at the outer edge r = b. The reference stress is p* = CT0 • 

The localization zones were assumed to follow the radial lines. However, 
their number is not specified from the analysis and must be assumed . The 
following material and geometric parameters were assumed: E = 2.1 x 

5 ' 10 M Pa, CTo = 500M Pa, v = 0.3, a = 0.05m, b = 0.20m, H = 0.001 m. 
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Figure 5: Numbers of selected con-
trol parameters in terms of integ-
ration step number 
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F igure 6: Condition number versus 
integration step number 

Figures 5 and 6 present the results obtained for assumed c = 2 loc-
alization zones propagating along one radial line. In view of symmetry 
condition, only one quarter of disk was analyzed. In Figure 5 the numbers 
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of the control vectorcomponents are shown i11 the course of solution pro-

cess. Figure 6. presents the variation of condition number. It is seen that
when thecontrol vector component is changed, the condition number var-

ies discontinuously. The stress anddisplacement limit points are traversed
easily since in the present proced ure they behave as regular points. 

Figure7 presents the effect. of number c of localization zones on the
responsecurve of load factor versus di splacement of the node ly ing on the
outer disk edge and sy mmetry axis. As it is seen, whe n the numbe r c of 
localization zones increases, the required load level and displacements are 
higher. For c = 2, both snap-through and snap-back effects occ11r and the 
process is no t controllabl e by ex ternal tractions and displacements. The 
complex stress redistribution occurs within t he di sk during propagation of 
the localized zones. 
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Figure 7: Influence of decohesive crack number 

6. CONCLUSIONS 

In the analysis of elasto-plastic behavior in the presence of discontinuity 
lines, an additional constitutive relation between displacement discontinu-
ity and interface traction along the material discontinuity lines is required. 
Both geometric necking and material hardening or softening can be i ncor-
porated into the localized discontinuity mode. As the large displacements 
are confined to plastic decohesion zoue , the whole analysis can be per-
formed within small strain theory and is relat ively inexpe nsive. Ultimate 
failure caused by the evolution of radial cracks leads to total collapse of 
the disk through a complex elasto-plastic deformation process. 

The procedure of solution of linear set of equations based on rank ana-
lysis of a homogeneous set has significant advantages, namely: i) it al-
lows to avoid computational difficulties associated with singularity or ill-
conditioning of the initial square matrix of a non-homogeneous system, ii) it 
provides automatic selection of control variable in the analysis of non-linear 
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problems, iii) the resulting algorithm is the same for both predictor and 
corrector stages. Using the control variable selection method, the turning
points disappear in the numericalprocedure. The bifurcation points could
be treated similarly, a.s it was shown in [II, 12). This method requires
further improvements, especially in normalizing the square matrix in or-
der to remove discontinuous variation of the condition numbe r a.t, switching 
control points. 
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