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Abstract. This contribution addresses the problem of adaptively tuning the parameters of semi-
active devices to mitigate vibrations in structures subjected to unknown periodic excitation.
Using a specially designed reinforcement learning algorithm, the semi-active devices adjust
their operating parameters to ensure optimal dissipation of vibrational energy. The algorithm
incorporates an efficient gradient-based sequence that ensures rapid convergence of the learn-
ing process and enables real-time implementation under varying excitation characteristics. The
method is experimentally validated on a frame structure equipped with lockable joints, which
can be controlled to adjust their stiffness parameters. Since the developed reinforcement learn-
ing algorithm incorporates partial knowledge of the structural model, the first part of the work
is focused on formulating a simplified numerical model that is easy to identify and scale.
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1 INTRODUCTION

Vibrations of engineering structures result from operational or external excitation. Excessive
vibration levels endanger integrity and jeopardize the operation of structures and machines.
This problem is further exacerbated by the current trend toward cost-effective and lightweight
structural design. Mitigation of vibrations is thus the subject of intensive research and develop-
ment activities [1l]. Typical techniques can be categorized into passive, active, and semi-active
control approaches. Passive techniques usually employ dedicated dissipative elements and/or
rely on structural optimization. A classical passive device is the tuned mass damper (TMD).
Low cost, reliability, and design simplicity are the main advantages of these techniques; how-
ever, their efficiency is limited in many situations. Active control approaches are effective and
widely researched [2]], but they rely on actuators that generate large control forces and require
significant power supply, which may fail during events such as major earthquakes. Moreover, in
the case of a control system malfunction, large control forces can lead to structural instability.
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Semi-active control techniques often combine the advantages of passive and active systems.
Instead of generating large external control forces, semi-active actuators modify structural dy-
namics [3] by affecting local mechanical parameters such as damping, stiffness, or kinematic
constraints [4]. They are typically implemented using magnetorheological fluids (in mid- to
large-scale applications) or piezoelectric materials (for small-scale control) and may take the
form of frictional joints [5] or switched oil dampers [6]. They can be implemented with lim-
ited power supply and in a fail-safe manner, while often similarly efficient as active systems.
However, the control functions are coupled to the local structural response. The corresponding
formulations are thus nonlinear and difficult to solve using classical analytical approaches.

Reinforcement learning (RL) has achieved significant breakthroughs in autonomous control
and decision-making, with demonstrated success across a variety of real-world applications,
from mastering complex games like chess and Go at superhuman levels [7]] to thermal soar-
ing of autonomous gliders [8], robotic swimming via body undulation [9]], and self-driving
vehicles [[10]. Despite RL’s success and algorithmic adaptability, its application to structural
vibration problems remains limited. Most existing studies focus on active control approaches,
often implemented in structures with only a few degrees of freedom. In [11]], a deep determinis-
tic policy gradient RL algorithm (DDPG) was used to control a simulated, partially observable
six degree of freedom (DOF) shear structure equipped with a force actuator on the first floor.
In [12], DDPG was employed to train neural networks for controlling a flexible hinged plate
with piezoelectric actuators. Experimental results confirmed that the RL-based control strat-
egy achieved superior stability performance compared to conventional proportional-derivative
(PD) control. In [13], the Q-learning RL technique was applied to optimize fuzzy-PD controller
parameters for vibration suppression in high-rise buildings. The method was validated under di-
verse seismic conditions and demonstrated robustness against control loop time delays. In [[14],
the authors implemented an actor-critic RL algorithm to stabilize a swinging chain at a tar-
get position. Their active control approach operated with incomplete state information. While
outperformed by model-based analytic solutions, this method presents a viable alternative for
scenarios where accurate system modeling is not possible. The application of RL for shape
control in active tensegrity structures was suggested in [15]. The algorithm integrated case-
based reasoning with error-driven learning, demonstrating both enhanced control precision and
reduced computational burden compared to conventional methods. An RL-based algorithm to
stabilize free vibrations in semi-active, simply supported beams was developed in [[16]. The pro-
posed method optimizes switching controller parameters to adapt to changing excitation force
characteristics. A deep Q-network approach (DQN) was used in [17] to mitigate seismic vi-
brations in a simulated 11-DOF shear structure equipped with an on/off-type semi-active tuned
mass damper (TMD). The RL-based control reduced the RMS of the top floor displacements
to 75% of that achieved with the same TMD optimally tuned but passive. The same structure
was used in [18] to evaluate and confirm the high robustness of the DQN-based semi-active
control to model errors and measurement noise. In [19]], the neural network of the RL agent
was extended to a two-branch configuration with shared features. This architecture enabled
simultaneous identification of stiffness-related damage along with semi-active control.
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This paper develops an actor-only reinforcement learning algorithm for optimizing the pa-
rameters of semi-active actuators installed on a vibrating structure subjected to unknown pe-
riodic excitation. First, the control and learning techniques are presented. Then, their perfor-
mance is verified using a lab-scale frame structure equipped with six semi-active joints that
control the effective stiffness of the structure.

2 RL-DRIVEN ACTUATOR PARAMETER ADJUSTMENT

This work studies a class of semi-passive vibrating structures that can be characterized by
the ordinary bilinear differential equation:

i(t) = Ax(t) + Zui(t) Bix(t)+ F(t),  x(0) = 2°. (1)

In Eq. (1), the state vector at time ¢ is given by x(t) = [z1(t), ..., z,(t)]" € R", with an initial
condition z°. The parameters u;(t), ..., u,(t), where u;(t) € U C R, are assumed to be
piecewise constant and determine the tunable stiffness/damping of the incorporated actuators.
The constant matrices A and By, ..., B,,, each of size n x n, represent the internal subsystem
dynamics and the influence of the ith semi-active device, respectively. The excitation force
F(t), ann x 1 vector, is assumed to be periodic but unknown.

The aim is to develop a Reinforcement Learning algorithm that tunes the control policy P
defined as fixed actuator parameters:

P {ulv"wum} (2)

to unknown characteristics of the excitation force F'(t). The algorithm employs an actor-only
framework (Figure 1), utilizing state measurements x(¢) over a learning time window 7". The
algorithm iteratively reduces the value of the following energy-related performance measure:

to+T
J :/ o (t) Q x(t) dt. (3)
to
Policy parameters Environment
gl 4—{ Unknown excitation (F)
ulu"wum, x:f(l'7U17...7um7F)
: : (z,p)
(Aug, ..., Auy,) Policy gradient
51 8
Suy” " Sup,

Figure 1: Schematic of Reinforcement Learning-driven actuator parameters (policy parameters) adjustment to un-
known excitation forces. The actor’s policy is iteratively optimized through interaction with the dynamical system
environment. The policy gradients used for updating the policy parameters employ the real-time measurements of
system state = and adjoint state p computed by backward integration of the adjoint dynamics (Eq. (6)).
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Here, t, is a time instant that will be incremented during the adjustment process, while the time
window 7' is selected to be sufficiently large to ensure the decay of transient vibrations, given the
assumption of a periodic excitation force F' (consistent reduction of the performance measure
requires steady-state vibration conditions). The n X n matrix () is constant and positive definite.
The adjustment of the policy parameters w1, ..., u,, is based on the gradient descent method:

=u—a;—, t=1,...m, a>0. 4)
(5ui

To compute the derivatives in Eq. (4)), we introduce the Hamiltonian H for objective func-
tional defined by Eq. (3) and the dynamical system Eq. (I)), assuming that v, ..., u,, are constant
fort € [to,to + T:

H (z,p,{ui}iz,., m)ZPT (AI—FZUiBiI—FF) —%xTQI. (5)

=1

The adjoint state p(t) = [pi(t), ..., p.(t)]T € R™ satisfies the following differential equation:
P(t) = ==~ = —ATp( Zul Blp(t) +Qz(t),  plto+T)=0. (6)
From Eq. (1)) and Eq. (5)), the objective functional Eq. (3)) can be represented by:
to+T
J = / (p" & — H(z,p, {ui}iz1,..m)) dt. (7

to

Let the functions dz : [tg,to + 1] — R™ and 0p : [tg,to + 1| — R™ denote perturbations of
the functions = and p with respect to the infinitesimal changes du; : R — R,7 =1, ..., m of u;,
respectively. From Eq. (7)), it follows that the differential 6.J of the objective functional Eq.
with respect to perturbations du;,7 = 1, ..., m is given by:

to+T 6H T to+T T ) aH T
§J = / ( 28% (%> 5:c> dt+/to <p Si + (:c— a_p> 5p | dt. (8)

The last term in Eq. (8] vanishes, since

o OH(@ p{uitizr,m) 9)
dp

From the differentiability of the state vector x with respect to ¢, it follows that:

d
ot = p” (0x) . (10)

4
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Using the assumption given by Eq. (I0), we can perform the integration by parts for Eq. (8),
which results in

to+T ™ S to+T OH T 4ot T
6] = — du; dt — )+ — | dxdt Tox] ™. 11
[ S G [ (b4 5,) e el an

From Eq. (1)) and Eq. (6)), it can be deduced that

OH
— 5
and therefore, the second and the last term in Eq. vanish. As a result, the derivative of the
objective functional J with respect to u; is given by:

to+T
0T _ —/ p! B; zdt. (13)

6ui to

p= plto+T) =0, dz(t) =0, (12)

To compute the derivatives in Eq. (I3), the online algorithm will use the state x, measured
by integrated sensors, and the adjoint state p, obtained through backward integration of Eq. (6).
Note that the adjoint state dynamical equation does not explicitly depend on the external ex-
citation force F'. Instead, the influence of F' is embedded in the measured state . Thus, the
adjustment of the policy parameters w1, ..., u,, is achieved through interaction with the dynam-
ical system, reflecting the core assumption of reinforcement learning techniques.

3 EXPERIMENTAL VERIFICATION

The proposed control approach is verified on a small-scale demonstrator in laboratory con-
ditions. The demonstrator is a cantilever frame structure equipped with 6 semi-active joints,
configured in 3 pairs. These joints allow for modification of the local stiffness of the structure
by locking and unlocking their angular degrees, which enables control of the bending moments
transferred between adjacent components of the structure. The experimental scenario involves
forced excitation of the structure with an unknown, varying input. The bandwidth of the har-
monic excitation includes the resonant frequency. Compared to the passive case, the results
demonstrate that the algorithm efficiently adapts the structural response to the unknown vary-
ing excitation and reduces the energy level of the structural response.

4 EXPERIMENTAL DEMONSTRATOR

The experimental object is a cantilever frame subjected to external excitation by an elec-
trodynamic shaker (see Figure [2)). The frame consists of two parallel longitudinal segments,
each 1.2 m long, connected by transverse beams. It is equipped with six semi-active joints that
connect the longitudinal and transverse segments. The joints ensure a passive transfer of pla-
nar bending moments between the longitudinal components while enabling controlled moment
transfer to the transverse segments. The semi-active elements are organized in 3 pairs, mounted
at equal distances of 0.3 m, starting 0.6 m from the fixed end of the frame. Each pair is activated
simultaneously, which allows for local modification of structural stiffness.

5
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Figure 2: Experimental frame with 3 pairs of semi-actively controlled joints
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4.1 Assumptions

A planar coordinate system is adopted for kinematic analysis of the frame. This choice is
determined by the design of the actuators, which implement structural modifications exclusively

Figure 3: Scheme of the experimental frame setup

within the plane of the structure. The OXY coordinate system is shown in Figure 3]

Another assumption is that the demonstration frame structure can be accurately modeled with
a 1D Timoshenko beam model. The frame design and its semi-active components emphasize the
importance of both bending and shear stress control. The adopted numerical model, based on
the Timoshenko beam, accounts for shear effects and their intentional modification. The validity

of this assumption is experimentally confirmed by spectral analysis and model validation.

The data acquisition and excitation systems are configured in accordance with the above
assumptions. The system is analyzed in-plane, with sensors and the exciter arranged to acquire
data in the OXY plane. Displacements are measured for one longitudinal segment of the frame,

based on the assumption that the response of the other segment is symmetrical.
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4.2 Excitation

The frame is operated under forced vibration conditions. The source of vibrations is a modal
shaker connected in the Driving Point and providing excitation in the OX direction, as depicted
in Figure (3| The excitation signal depends on the particular task being carried out. First, a
downward frequency sweep from 16 Hz down to 6 Hz was utilized for spectral characteriza-
tion of the object across selected operational states. Next, a predefined signal of a fluctuating
frequency was generated to evaluate the self-tuning ability of the proposed control system.

4.3 Data acquisition

The structural response of the frame is acquired using laser sensors divided into two groups.
The first group acquires data characterizing the kinematic response in predefined nodes, which
serves as input for the controller. The second group monitors the quality of the control process.

The first set of sensors comprises six distance laser sensors (Baumer models 20U2460 and
20U2441), configured to measure displacements with a 10 gm resolution within a 20 mm range.
The measuring points are positioned at locations corresponding to all nodes established for
numerical analysis. At each node, measurements are taken at two spots to gather displacements
along the OX axis, as well as ongoing rotation in the OXY plane. For each node, the state vector
includes: displacement along the OX axis, velocity along the OX axis, angle in the OXY plane,
and angular velocity in the OXY plane. Data is acquired periodically into sets of 2 s duration at
a 1 kS/s rate and used as input for the RL tuning module.

The second set of sensors consists of three distance laser sensors (Baumer model 2016460;
20 mm range, 10 pum resolution) that measure the displacement of the semi-active joints along
the OX direction. The acquired data is used for evaluation of the control process performance.

4.4 Control application

Each semi-active joint pair can be used to modify the local stiffness of the frame. The
control system tunes the structure’s vibrational response by recognizing the current operating
conditions and adjusting the settings to minimize the internal energy of the system. Activating
or deactivating the joints affects the spectral response of the structure. Simultaneously, the state
of the joints influences the internal damping across the frame.

The application for experimental testing executes the following algorithm during the control
procedure: 1. Initialization of the system; 2. Calibration and configuration of the laser sensors;
3. Acquisition of a 2 s data sequence; 4. Data processing and conditioning; 5. Determination
and visualization of the quality factor; 6. Formulation of the state vector; 7. Execution of the
tuning procedure; 8. Update of the control parameters; 9. Introduction of a predefined delay;
10. Return to point 3. or exit.

S CHARACTERIZATION OF STRUCTURAL DYNAMICS

In the numerical analysis, the structure is modeled as a 1D Timoshenko beam, with shear
effects explicitly considered. The structure exhibits also semi-active functionality that intro-
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duces a non-linear behavior into the system. To ensure the predictability of the experimental
procedure, precise characterization of the experimental object is necessary. To achieve this, a
spectral analysis of the frame was conducted for the following operational states:

1. Pairs 1+2+3 activated;

2. Pair 1 deactivated, Pairs 2+3 activated;
3. Pairs 1+2 deactivated, Pair 3 activated;
4. Pairs 1+2+3 deactivated.

Activation of a semi-active module is interpreted as the state with the ability to transfer bending
moments. The investigated set of operational states reveals significant differences in the struc-
tural dynamics. These results are necessary for an adequate assessment of the internal energy
in the frequency domain.

5.1 Results

The results of the spectral characterization are depicted in Figure d]as Power Spectral Density
(PSD) plots. The plots illustrate the influence of joint activation on the structural response of the
frame. The experiment has covered the four operational states described above. Consecutive
deactivation of the semi-active pairs decreased the fundamental eigenfrequency. A significant
shift is observed when the first pair is deactivated: the frequency is drops from 9.9 Hz to 8.22 Hz,
which indicates that the 1st pair of joints has the most substantial impact on the structural
dynamics. This can be explained by its proximity to the support, where bending moments are
the highest in comparison to the locations of the other pairs. Furhter changes in operational state
(deactivating subsequent pairs) resulted in further decreases in the eigenfrequency. Deactivation
of both the 1st and 2nd pairs reduced it to 8.08 Hz, while switching all nodes to the low-transfer
mode resulted in a 7.97 Hz eigenfrequency. This sequence of eigenfrequency reductions is
associated with the corresponding decrease in the bending stiffness of the frame.

Moreover, the examined operational configurations affect the structural damping exhibited
by the frame. Similar to stiffness, the damping increases monotonically in the successive op-
erational states. This increase may be the consequence of residual friction present in the semi-
active joints in their deactivated state.

The characteristics shown in Figure ] define the operational range available on the demon-
stration frame. They reveal that the structural dynamic characteristics can be effectively modi-
fied and emphasize the potential for optimal tuning in response to varying excitation.

6 ASSESSMENT OF THE RL CONTROL APPROACH

The developed RL control approach was verified in a series of exemplary trials. To confirm
repeatability, the series consisted of 5 samples. The primary assumption for these trials was to
subject the frame to an unknown excitation of a fluctuating character. The objective of the tuning
algorithm was to adapt the semi-active components of the frame and minimize the amplitude of
the vibrational response.



Grzegorz Mikulowski, Dominik Pisarski, Btazej Poptawski and Lukasz Jankowski

i | == all transfer
T l=——1stoff

| _|=— 1st+2nd off ‘
: 1st+2nd+3rd off |:

gQI Hz
Log (RMS)
o
w

20085

1000e6__ | | 822 | | ool | | i | | | | o
85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 16
Hz

Figure 4: Spectral analysis (PSD functions)

The test demonstrates the self-tuning ability of the system for a stepwise switch of the exci-
tation frequency from 10.5 Hz to 8.3 Hz. Initially, all semi-active joints were deactivated, which
corresponds to a suboptimal state. Therefore, the initial response of the frame is characterized
by an increased amplitude. Figure [5| depicts the time history of the system operation on four
plots. The first plot depicts the excitation frequency as a step function, switching from 10.5 Hz
to the target value of 8.3 Hz. The second plot illustrates the time evolution of control parameters
related to the three semi-active pairs. It can be observed that the algorithm starts to adjust their
values already one iteration after the change in excitation occurs. Since the semi-active pairs
provide a bivalent operation while the control parameters are continuous in the range [0,1],
a discrimination threshold of 0.7 is applied. The third plot shows the actuator states in time,
where a value of 0 indicates low transfer of bending moments (deactivation), and a value of 1
denotes full transfer (activation). The fourth plot presents the RMS of vibration measured in
three points of the frame. The RMS serves in this study as an analogue of structural energy, and
it is used as a performance measure for quantification of control quality.
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Figure 5: Control algorithm

As seen in Figure 5] the stepwise change in excitation frequency triggers an instant reaction
of the algorithm and adjustments to the control parameters. The discrimination threshold is
crossed at the 12th and 13th iterations, which results in changes of the actuator states. Semi-
active unit No. 3 switches its state in the 13th iteration, and a gradual reduction of RMS values

can be observed.

10
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7 CONCLUSIONS

This contribution presented preliminary results on vibration control in a frame structure
equipped with semi-active members using a reinforcement learning approach. The study con-
firms the intended effective operation of the system. The algorithm has a potential for tuning
the structural response under alternating external excitations and efficiently minimizing the am-
plitude of the vibration response.
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