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(HW) solid-shell elements, several formulations of these 
elements are tested and compared.

Solid-shell elements play an important role in structural 
analysis of multi-layer composites because nodes located at 
bounding surfaces allow for straightforward aggregation of 
layers. They form the basis of more advanced and numeri-
cally effective shell models of composites, see, e.g., [13–17, 
45].

Although inelasticity remains beyond the scope of pres-
ent work we would like to mention several papers including 
elasto-plasticity for solid-shells, see, e.g., [11, 19, 20, 37, 
38]. Solid-shells not only require the adaptation of the 3D 
or plane stress constitutive algorithms but also the inclusion 
of additional methods, such as the Assumed Natural Strain 
(ANS) method.

Mesh hourglassing of solid elements In Simo and 
Armero [39], the hourglass patterns of the mesh for the ele-
ment Q1/P0, which is based on the mean dilatation approach 
of Nagtegaal et al. [29], are attributed to a failure of the 

1  Introduction

The 8-node hexahedron solid-shell elements have already 
achieved a considerable level of maturity and are applied to 
analyze shell structures at finite strains. For shell structures, 
especially in bending dominated problems, they outperform 
the 8-node 3D solid elements, partly due to adaptation of 
techniques developed for shell elements that eliminate vari-
ous types of locking. In our recent paper Wisniewski and 
Turska [52] on the reduced representation Hu–Washizu 
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Abstract
The focus of a current paper is on eliminating hourglassing at the bifurcation point, particularly in simulations involv-
ing incompressible materials. Three eight-node (hexahedron) solid-shell elements that are free from the hourglassing in 
their tangent plane are developed for this purpose. To eliminate hourglassing, a transposition of the enhancement matrix 
G of the Enhanced Assumed Deformation Gradient (EADG) method is used, see Korelc and Wriggers (Eng Comput 
13(1):103–123, 1996) and Glaser and Armero (Eng Comput 14(7):759–791, 1997). Several modifications are proposed 
to convert three existing (parent) solid-shell elements into the new ones: 1. A two-parameter enhancement (EADG2) of 
the deformation gradient F is proposed to suppress hourglassing of our Hu–Washizu element HW19 and the Enhanced 
Assumed Strain element EAS10. Originally neither of them uses the EADG method, so they are reformulated to embed 
it. 2. A new transformation rule (designated T4) is proposed for the EADG enhancement, and it involves the inverse of 
the current Jacobian for large deformations. T4 is an alternative to the other three transformations used in the literature. 
We check that T4 is objective and subject it to numerical tests in the current paper. 3. For the third parent element, which 
uses the standard EADG4 enhancement, we propose 3 additional modes, which are necessary to eliminate one of the 
large spurious eigenvalues for the nearly incompressible material and to improve its bending behavior. The improved 
performance of the obtained elements is demonstrated using several linear and non-linear examples for the linear elastic 
material and the neo-Hookean hyperelastic material. They are also compared to the best existing solid-shell elements.
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LBB condition. The presence of undesirable modes at high 
strains for the enhanced 2D plane strain 4-node element Q1/
E4 is noted in that paper, but not analyzed.

A simple 2D example that can be solved analytically 
and also exhibits hourglassing was first proposed by Wrig-
gers and Reese [56]. They analyzed a single enhanced 2D 
plane strain 4-node element, which resulted in analytical 
expressions and plots of the eigenvalues as functions of the 
stretch. For compressible neo-Hookean material with Lamé 
constants Λ = 105 and µ = 20 (for which ν = 0.499975), 
the critical stretch λ2 = 0.6116 and the hourglassing mode 
were obtained. It was observed that for the standard (non-
enhanced) element, no singularity appears for physically 
meaningful values of Lamé constants (Λ ≥ 0, µ > 0) thus 
a singular point is a result of the enhancement.

This problem subsequently was analyzed further in 
Korelc and Wriggers [25], Wriggers and Korelc [55], Gla-
ser and Armero [12] and Armero [3]. It was found for the 
Ogden material that hourglassing is also possible under ten-
sion [12]. Several other very good papers were published, 
e.g., [3, 8, 9, 30, 31, 35], to mention the early ones. A com-
prehensive overview is provided in Wriggers [54, Sect. 10].

Several methods of controlling the spurious modes were 
devised, and the simplest one is the method of transposi-
tion of the matrix G of the Enhanced Assumed Deformation 
Gradient (EADG) enhancement proposed in Korelc and 
Wriggers [25] and Glaser and Armero [12]. Other methods 
use hourglass stabilization with user-defined parameters, 
see [2, 12], or hourglass stabilization based on mixed meth-
ods, see [36, 46]. In the current paper, we use the method of 
transposition of G.

In passing we note that to remove mild spurious deforma-
tion modes, the governing functional can be supplemented 
by the penalty term 

´
B

1
2 β [det(I + F̃) − 1]2 dV. This 

term constrains the volume changes due to the enhance-
ment of deformation gradient F̃, see [12, Eq. (29)] and [24, 
p. 656]. The penalty number β can be used as the stabiliza-
tion parameter. An additional constraint on the enhancement 
was earlier used in [30], and it required the variation of the 
enhancing field to be orthogonal to a piece-wise constant 
pressure field. In consequence, the instantaneous rate of 
change of the volume due to solely the enhancing field is 
zero when the nodal positions are held fixed.

Recently, Pfefferkorn and Betsch [33] developed a 3D 
solid element based on the Petrov-Galerkin method with 
the enhancement of the spatial displacement gradient 
∂u(X)/∂x = I − F−1 instead of the deformation gradient 
F, where X and x are the initial and current position vectors, 
respectively. This element eliminates the spurious hourglass 
instabilities but uses an unsymmetric stiffness matrix.

Mesh hourglassing of solid-shell elements The currently 
used 8-node solid-shell elements stem from the earlier 
developed 3D solid elements; we elaborated on this rela-
tion in [52]. They use the same interpolation functions and 
constitutive modules, but the solid-shell elements also use 
additional specialized methods to pass the bending patch 
test and to improve their behavior in thin shell applications 
involving bending/twisting dominated problems. 

1.	 The 0th order thickness strain is improperly approxi-
mated for curved or trapezoidal through-thickness 
shape of elements (deformed or undeformed) causing 
the so-called curvature thickness locking. The Assumed 
Natural Strain (ANS) method proposed in Betsch and 
Stein [5] is used to circumvent this issue.

2.	 The out-of-plane bending is impaired by the zero value 
of the 1st order thickness strain, which causes the volu-
metric (or dilatational or Poisson’s ratio or Poisson’s 
thickness) locking. To remedy this problem, this strain 
is enhanced using the EAS method, see Büchter et al. 
[6], Vu-Quoc and Tan [44] and our [52]. Also a specific 
representation of the assumed thickness strain in the 
HW elements can be used, see Klinkel et al. [23].

3.	 To reduce the transverse shear locking, the ANS method 
proposed by Dvorkin and Bathe [10] is applied to the 
0th order transverse shear strains.

These methods significantly improve behavior of the 8-node 
solid-shell elements, and for this reason are indispensable in 
this class of elements.

We note that hourglassing at the bifurcation point is 
not recognized as a problem in the existing literature on 
the solid-shell elements, and our recent paper [52] on the 
reduced representation HW solid-shell elements seems to 
be an exception.

For shell structures modeled by solid-shell elements, the 
loss of stability can be caused by the element’s formula-
tion and also by structural design. To check the solid-shell 
element’s formulation, the test should exclude the latter 
cause, as, e.g., the “Compression of a nearly-incompress-
ible block” test of Sect. 5.3.4. We performed this test in our 
recent paper [52], and all of the tested and reference solid-
shell elements exhibited mesh hourglassing, see Table  12 
therein. This provides a strong motivation to develop the 
solid-shell elements that are free of hourglassing under tan-
gent compression.
Objectives of the current paper The focus of a current 
paper is on eliminating hourglassing at the bifurcation 
point, particularly in simulations involving solid-shell 
elements and the nearly incompressible hyperelastic mate-
rial. (We stress that this paper is not on suppressing the 
hourglassing caused by reduced integration.) The applied 
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method to suppress mesh hourglassing utilizes a transposi-
tion of the matrix G of the Enhanced Assumed Deforma-
tion Gradient (EADG) enhancement as proposed in Korelc 
and Wriggers [25] and Glaser and Armero [12]. 

1.	 To obtain new hourglassing-free elements we will mod-
ify two existing solid-shell elements, our Hu–Washizu 
element HW19 [52] and the Enhanced Assumed Strain 
element EAS10 (see Sect. 4.2.1), which are both based 
on Green strain/2nd Piola-Kirchhoff stress, and treated 
as the parent elements.

	 These two elements are stable and pass the membrane/
bending patch tests. They have one large eigenvalue for 
nearly-incompressible material (ν = 0.4999999999), 
and yield quite accurate results in benchmark tests. How-
ever, they produce hourglassing of the mesh at the bifur-
cation strain for the nearly-incompressible material. In 
the current paper, we will improve these elements to 
make them resilient to this type of hourglassing.

2.	 Elements HW19 and EAS10 do not use the EADG 
enhancement so we propose to extend their govern-
ing functionals and incorporate an enhancement of the 
deformation gradient F. The basic ideas pertaining to 
the EADG enhancement are as follows: 

(A)	Regarding the assumed representation, it was 
noticed in [25] and [12] for 2D plane strain ele-
ments and the standard 4-parameter representation 
EADG4 defined as 

G(qi, ξ, η) .=
[

q1ξ q3η
q4ξ q2η

]
, i = 1, . . . , 4,� (1)

	  that a transposition of this G suppresses the mesh hour-
glassing. Here ξ, η ∈ [−1, +1] are natural coordinates. 
Since the transposition affects only the off-diagonal 
terms of EADG4, we propose to use a simpler 2-param-
eter representation EADG2, 

G(qi, ξ, η) .=
[

0 q1η
q2ξ 0

]
, i = 1, 2,� (2)

	  in the new solid-shell elements. For the version of 
EADG2 used in our solid-shell elements, see Eq. (47).

(B)	Regarding the transformation rules for the EADG 
enhancement, three such rules can be found in the 
literature: T1 by Simo et al. [40], T2 by Glaser and 
Armero [12], and T3 by Pfefferkorn and Betsch 
[32], where the designations T1, T2 and T3 are 
introduced here for brevity. In the current paper, we 
propose a new transformation rule, designated T4, 

which for large deformations involves (Jcurr
0 )−T , 

where Jcurr
0  is the current Jacobian at the element’s 

center. T4 is tested with the 2-parameter G and its 
transpose.

3.	 We will also modify the third existing solid-shell ele-
ment, designated EADG4, in which the EADG4 
enhancement of the membrane strains suffices to sup-
press the mesh hourglassing. Unfortunately, this element 
has two large eigenvalues for the nearly incompressible 
hyperelastic material. Therefore, we have introduced 3 
additional modes, to obtain the EADG7 representation, 
which eliminates one of these large eigenvalues and 
improves the element’s bending behavior.

4.	 The three new solid-shell elements are tested against the 
two reference solid-shell elements, which are currently 
considered as the best in this class: the HSEE element 
of Klinkel et al. [23] and the EAS10 element, which is 
characterized in Sect. 4.2.1. Several other elements are 
also used for comparison, including a 3D solid element 
and the Reissner-Mindlin’s shell elements with 6 dofs/
node. Comparison to the reduced representation HW 
solid-shell elements of our recent paper [52] can also be 
made.

	 The performance of the developed solid-shell elements 
is demonstrated using several linear and non-linear 
examples for the linear elastic material and the incom-
pressible hyper-elastic material. The accuracy of solu-
tions, the convergence properties of the Newton method 
and the mesh hourglassing in the large strain compres-
sion are examined.

Outline of the paper The outline of the paper is as fol-
lows: the general characteristics of the solid-shell elements 
are provided in Sect. 2, which includes the ANS methods 
for the thickness and transverse shear strains in Sect. 2.1. 
The enhancement of the deformation gradient is described 
and analyzed in Sect. 3; the transformation rules for the 
EADG enhancement are in Sect. 3.1 and the assumed rep-
resentation EADG2 in Sect. 3.2.

New solid-shell elements are presented in Sect. 4, which 
includes the HW element with EADG2 enhancement in 
Sect.  4.1, the EAS element with EADG2 enhancement 
in Sect. 4.2 and, finally, the EADG7 element in Sect. 4.3. 
Numerical tests in Sect. 5 demonstrate the performance of 
the developed hourglassing-free solid-shell elements. The 
paper concludes with final remarks in Sect. 6.
Notation: “parameter” is abbreviated to “p”. As for the 
components, “COV” stands for “covariant”, “CTV” for 
“contravariant” and “CART” for “Cartesian”. The elemen-
tal parameters are denoted as qi, i = 1, . . . , Nq, and the 
vector of these parameters as q.
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as h .= ∥h∥, i.e. differently than the thickness for the Reiss-
ner-Mindlin’s shells.
Jacobian matrix Let us denote the components of the 
initial position vector X in the global reference Cartesian 
basis {ek} as Xk (k = 1, 2, 3). The Jacobian matrix is 
defined as

J .=
[

∂Xk

∂ξl

]
=

[ g1 · i1 g2 · i1 g3 · i1
g1 · i2 g2 · i2 g3 · i2
g1 · i3 g2 · i3 g3 · i3

]
,� (5)

where ξl .= {ξ, η, ζ}l (l = 1, 2, 3). The vectors of the nat-
ural basis {gl} in the initial configuration are defined as 
gl

.= ∂X/∂ξl. The vectors ik of the elemental Cartesian 
basis at the element’s center {ik} are constructed in the stan-
dard way, see e.g. [52, Eqs. (6)–(9)].

The matrix in Eq.  (5) is obtained from the equation 
(Xk − X0k) ik = ξl gl, where X0k are components of the 
position vector of the element’s center X0. Differentiating 
both sides of this equation w.r.t. ξl and taking a scalar prod-
uct with ik, we obtain ∂Xk/∂ξl = gl · ik.

Note that if X is replaced by X∗ = RT (X − X0), where 
R ∈ SO(3) is a rotation, then g∗

l
.= ∂X∗/∂ξl = RT gl and 

i∗
k = RT ik on use of g∗

α in place of gα (α = 1, 2) in Eqs. (6)–
(9) of [52]. Then g∗

l · i∗
k = gl · ik, and ∂X∗

k/∂ξl = ∂Xk/∂ξl 
follows. Hence J is invariant to the RT (X − X0) transfor-
mation, which can be used in the element’s formulation.
Kinematics of solid-shells. The configuration space of 
the Cauchy continuum is defined as: C .= {χ : B → R3}, 
where B is the reference configuration of the body. The 
deformation function χ : x = χ(X) maps the reference 
(non-deformed) configuration onto the current (deformed) 
one. The deformation gradient is defined as

F .= ∂x
∂X ,� (6)

where X is the position vector in the initial (non-deformed) 
configuration and x is the position vector in the cur-
rent (deformed) one. Using the convective coordinates 
ξ

.= {ξ, η, ζ}, we can parameterize the position vectors as 
X(ξ) and x(ξ). For the components in the Cartesian refer-
ence basis {ik}, we obtain

F .= ∂x
∂X = ∂x

∂ξ

∂ξ

∂X = Jcurr J−1,� (7)

where Jcurr .= ∂x/∂ξ and J .= ∂X/∂ξ are the current and 
initial Jacobians, respectively. Note that Jcurr is related to J 
by the gradient of displacements, i.e.

2  General characteristics of solid-shell 
elements

This section first provides the general characteristics of 
the solid-shell 8-node elements. Next, their kinematics is 
described.
Basic definitions for solid-shell element. Consider a 
8-node isoparametric solid-shell element with the nodes 
numbered as shown in Fig. 1. The nodal “directors” are 
defined as the vectors linking the corresponding nodes at 
the bottom and top surfaces, i.e. 1–5, 2–6, 3–7 and 4–8. 
They can by non-parallel and not perpendicular to the ele-
ment’s middle surface, which can be either flat or warped, 
similarly to the middle surface of the Reissner-Mindlin’s 
4-node shell elements, see e.g. [48]. The reference elemen-
tal basis is designated as {ik}, (k = 1, 2, 3).

The following vectors are associated with the solid-shell 
element: the initial position X, the displacement u and the 
current position x. The first two vectors are interpolated as 
follows:

X(ξ, η, ζ) =
8∑

I=1
NI(ξ, η, ζ) XI ,

u(ξ, η, ζ) =
8∑

I=1
NI(ξ, η, ζ) uI ,

� (3)

where the standard tri-linear shape functions are

NI(ξ, η, ζ) .=
8∑

I=1

1
8

(1 + ξIξ)(1 + ηIη)(1 + ζIζ),� (4)

ξ, η, ζ ∈ [−1, +1] are the natural coordinates and 
{ξI , ηI , ζI} = {±1, ±1, ±1} are the natural coordinates of 
nodes I = 1, . . . , 8. The current position x is obtained as 
x(ξ, η, ζ) .= X(ξ, η, ζ) + u(ξ, η, ζ).

The thickness vector is defined as 
h(ξ, η) .= X(ξ, η, ζ = 1) − X(ξ, η, ζ = −1) and the ζ

-coordinate is associated with it. The reference (middle) sur-
face is at ζ = 0 while the bounding top/bottom surfaces at 
ζ = ±1. Note that for solid-shells the “thickness” is defined 

Fig. 1  Numbering of nodes and the reference elemental basis {ik} of 
8-node solid-shell element. ζ is the thickness coordinate
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	 Let us denote the covariant components of the trans-
verse shear strains at the reference surface ζ = 0 by 
γα3

.= 2E0 COV
α3  (α = 1, 2), and proceed as follows. 

First, values of γα3 are computed (sampled) at the mid-
dle points of element sides, and denoted by γ7

13, γ5
13 for 

(ξ = 0, η = ±1) and γ6
23, γ8

23 for (ξ = ±1, η = 0), 
see Fig.  2. Next, γα3 are interpolated linearly in one 
direction using the sampled values as follows:

γ̃13(ξ, η) = 1
2

[
(1 − η) γ5

13 + (1 + η) γ7
13

]
,

γ̃23(ξ, η) = 1
2

[
(1 − ξ) γ6

23 + (1 + ξ) γ8
23

]
.
� (13)

	    
2.	 The ANS method in the form proposed by in Betsch 

and Stein [5] is applied to the thickness strain E0
33 to 

circumvent the thickness straining appearing in bending 
for trapezoidal through-thickness shapes of the element, 
i.e. when the nodal “directors” are non-parallel.

We denote the covariant thickness strain at the reference 
surface ζ = 0 by ε33

.= E0 COV
33 , and proceed as fol-

lows. First, ε33 is computed (sampled) at 4 corner points 
(ξ = ±1, η = ±1), see Fig.  2, and denoted as (ε33)I , 
I = 1, 2, 3, 4. Next, ε33 is interpolated within an element 
using the bi-linear shape functions NI(ξ, η),

ε̃33(ξ, η) = Σ4
I=1 NI(ξ, η) (ε33)I .� (14)

Finally, the ANS modified strains of Eqs. (14) and (13) are 
transformed to the Cartesian components

E0 CART
v = (T0

S)−T [0, 0, ε̃33, 0, γ̃13, γ̃23]T ,� (15)

where T0
S is computed at the element’s center. The strain 

vector Ev and the operator TS are defined in Appendix 1. 
Alternatively,

E0 CART = J−T
0 E0 COV J−1

0 , where

E0 COV .=

[ 0 0 γ̃13/2
0 γ̃23/2

sym. ε̃33

]
.

� (16)

Jcurr = ∂x
∂ξ

= ∂(X + u)
∂ξ

= J + ∂u
∂ξ

.� (8)

The Green strain is defined as

E .= 1
2

(
FT F − I

)
or E .= J−T ECOV J−1,� (9)

where the covariant (COV) components are computed as 
either

ECOV = 1
2

[
(Jcurr)T Jcurr − JT J

]

or ECOV
ij = 1

2
(ḡi · ḡj − gi · gj) ,

� (10)

where ḡ1
.= ∂x/∂ξ, ḡ2

.= ∂x/∂η and ḡ3
.= ∂x/∂ζ are vec-

tors of the natural basis {ḡi} in the deformed (current) con-
figuration. Besides i, j = 1, 2, 3.

For the solid-shell elements, we linearly expand the 
strain E in the thickness coordinate ζ at the reference sur-
face ζ = 0 as follows:

E(ζ) ≈ E0 + ζ E1, ζ ∈ [−1, +1],� (11)

where the 0th and the 1st order strains are defined as

E0 .= E(ζ)|ζ=0 , E1 .= ∂E(ζ)
∂ζ

∣∣∣∣
ζ=0

.� (12)

The 0th and 1st order parts of strain are designated by the 
superscript “0” and “1”, respectively.

2.1  Treatment of transverse shear and thickness 
strains

In this section we discuss specialized methods used to 
improve the transverse shear strain and the thickness strain. 
A full description of our implementation of these methods is 
given in [52, Sect. 4].

1.	 The ANS method in the form proposed in Dvorkin and 
Bathe [10] is applied to transverse shear strains E0

3α to 
reduce the transverse shear locking.

Fig. 2  ANS method. Location of 
sampling points for   γ13,γ23   and   
ε33   at ζ = 0
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where u is the vector of compatible displacements, q is 
the vector of additional (elemental) parameter, H is the 
matrix of enhancement and G(q, ξ) is a matrix of assumed 
representations.

3.1  Transformations for enhancement H

Below we discuss four transformation rules, designated T1, 
T2, T3 and T4, which are used to define the enhancement H. 
The dependence of H on u and ξ is not indicated.

Transformation T1 For large deformations, the enhance-
ment H is defined in Simo et al. [40] by Eqs. (3.4) and (3.6), 
which, in the current notation, is

H(q) = F0 F̃1(q),� (21)

where the enhancement for small deformations is

F̃1(q) = J0 G(q) J−1
0

j0

j
.� (22)

Besides j
.= det J, and at the element’s center 

j0
.= j(ξ0). The above formula contains the “MIX1 → 

CART”transformation of Table  1. Inserting Eq.  (22) into 
Eq. (21), we obtain

H(q) = F0 J0 G(q) J−1
0

j0

j
= Jcurr

0 G(q) J−1
0

j0

j
,� (23)

where from Eq. (7), we obtain F0 J0 = Jcurr
0 , i.e. the cur-

rent Jacobian at the element’s center. From Eq.  (8), Jcurr
0  

is related to J0 by the gradient of displacements at the ele-
ment’s center, i.e.

Jcurr
0 = J0 +

(
∂u
∂ξ

)

0
.� (24)

Hence, for small deformations, when (∂u/∂ξ)0 ≈ 0, we 
have Jcurr

0 ≈ J0.

Transformation T2 Another form of H is proposed in 
Korelc and Wriggers [25, Eq. (13)] and Glaser and Armero 
[12, Eq. (4)]. For large deformations, H of Eq. (21) is still 
used but the enhancement for small deformations is defined 
as

3. The 1st order thickness strain E1
33 is equal to zero, and 

it is introduced using the Enhanced Assumed Strain (EAS) 
method

E1 EAS
v = (T0

S)−T [0, 0, G1 COV
33 , 0, 0, 0]T j0

j
,� (17)

where G1 COV
33

.= (q1 + q2ξ + q3η) ζ and it depends on the 
thickness coordinate ζ. Alternatively,

E1 EAS(u, q) = J−T
0 G1(q) J−1

0
j0

j
,� (18)

where

G1(qi, ξ, η, ζ) .=

[ 0 0 0
0 0 0
0 0 G1 COV

33

]
, i = 1, . . . , 3.� (19)

The transverse shear strain and the thickness strain are 
treated as described above in all the solid-shell elements 
described in Sect. 4.

3  Enhancement of the deformation gradient

In this section, we consider different forms of the enhance-
ment of deformation gradient for finite deformations. A new 
transformation rule, designated T4, which is different than 
those existing in the literature, is proposed.

The Enhanced Assumed Displacement Gradient (EADG) 
method was proposed for 2D plane strain elements in Simo 
and Armero [39]. It is a generalization of the Incompatible 
Displacement (ID) method of Wilson et al. [47] and Tay-
lor et al. [42]. However, the enhancement is not the gra-
dient of an incompatible displacement field and continuity 
across element boundaries is not required. This has the con-
sequences discussed, e.g., in Nagtegaal and Fox [30]. The 
EADG method is based on the additive enhancement of the 
deformation gradient F(u),

Fenh(u, q) = F(u)︸ ︷︷ ︸
for compatible u

+ H(u, G(q, ξ))︸ ︷︷ ︸
enhancement

,
� (20)

Table 1  Summary of transformations of components of the 2nd rank tensor A
Transformation Formula
CTV → CART ACART = J ACTV JT   
COV → CART ACART = (J−1)T ACOV J−1

MIX1 → CART ACART = J AMIX1 J−1  
MIX2 → CART ACART = (J−1)T AMIX2 JT   
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(T1) H(q) = F0 F̃1(q) = F0J0 A = Jcurr
0 A,

(T2) H(q) = F0 F̃2(q) = F0J−T
0 A = Jcurr

0
(
J−1

0 J−T
0

)
A,

(T3) H(q) = F−T
0 F̃1(q) = F−T

0 J0 A = (Jcurr
0 )−T

(
JT

0 J0
)

A,

(T4) H(q) = F−T
0 F̃2(q) = F−T

0 J−T
0 A = (Jcurr

0 )−T A,

� (31)

where A .= G(q) J−1
0 (j0/j) is the common part of all 

transformations. Note that the term 
(
JT

0 J0
)−1 of T2 does not 

appear in T4, so it can cause differences between the solu-
tions for these transformations. Also the term 

(
JT

0 J0
)
 in T3 

is not present in T1, which can have similar consequences.

Below we shortly address the selected properties of the 
above transformations.

1. Objectivity under superposed rigid-body motion for T4 
Let x = φ(X) be the current position of a particle X. Con-
sider a motion superimposed on the current position x, i.e. 
x+ = φ+(x) = Qx + c, where Q ∈ SO(3) is the rotation 
tensor and c is the translation vector. Then the deformation 
gradient transforms as follows:

F(x+) = ∂x+

∂X = ∂(Qx + c)
∂X = Q ∂x

∂X = Q F(x).� (32)

For objectivity of the enhanced deformation gradient, 
Fenh(x, q) , we require an analogous formula to be satis-
fied, i.e.

Fenh(x+, q) = Q Fenh(x, q),� (33)

Using Eq. (20), rewritten as Fenh(x, q) = F(x) + H(x, q), 
we obtain

Fenh(x+, q) = Q F(x) + Q H(x, q).� (34)

Because the first term Q F(x) = F(x+), hence the require-
ment of Eq. (33) reduces to

H(x+, q) = Q H(x, q).� (35)

Considering the four transformations of Eq. (31), we note 
that they depend on the current position x through F0 as 
also Jcurr

0 = F0J0 by Eq. (7). Hence we obtain

F0(x+) = F(x+)
∣∣
0 = ∂x+

∂X

∣∣∣∣
0

= ∂(Qx + c)
∂X

∣∣∣∣
0

= Q ∂x
∂X

∣∣∣∣
0

= Q F(x)|0 = Q F0(x),
� (36)

where “0” is the element’s center. Using the definition of H 
of Eq. (31), the l.h.s. of Eq. (35) for T4 is

H(x+, q) = F−T
0 (x+) F̃2(q).� (37)

F̃2(q) = J−T
0 G(q) J−1

0
j0

j
.� (25)

The above formula contains the “COV → 
CART”transformation of Table 1. Combining Eqs. (21) and 
(25) together, we have

H(q) = F0 J−T
0 G(q) J−1

0
j0

j

= Jcurr
0

(
JT

0 J0
)−1 G(q) J−1

0
j0

j
,
� (26)

where F0 = Jcurr
0 J−1

0  by Eq.  (7) and (
J−1

0 J−T
0

)
=

(
JT

0 J0
)−1

. For small deformations 
Jcurr

0 ≈ J0, and then Jcurr
0

(
J−1

0 J−T
0

)
≈ J−T

0 .

Transformation T3 Another form of H is proposed in 
Pfefferkorn and Betsch [32, Eq. (35)], and F0 in transfor-
mation T1 is replaced by F−T

0 , i.e.

H(q) = F−T
0 F̃1(q).� (27)

Using F̃1 of Eq. (22), we obtain

H(q) = F−T
0 J0 G(q) J−1

0
j0

j

= (Jcurr
0 )−T

(
JT

0 J0
)

G(q) J−1
0

j0

j
,
� (28)

where F−T
0 = (Jcurr

0 )−T JT
0  by Eq. (7). Note that 

(
JT

0 J0
)
 

appears in the above formula while its inverse in Eq. (26). 
For small deformations Jcurr

0 ≈ J0, and we obtain 
(Jcurr

0 )−T
(
JT

0 J0
)

≈ J0.

Transformation T4 In the current paper, we propose 
another transformation rule for large deformations, i.e.

H(q) = F−T
0 F̃2(q),� (29)

where F−T
0  is used instead of F0, when compared to 

Eq.  (21). Using F̃2(q) of Eq.  (25) in the above formula, 
we obtain

H(q) = F−T
0 J−T

0 G(q) J−1
0

j0

j

= (Jcurr
0 )−T G(q) J−1

0
j0

j
,
� (30)

where F−T
0 J−T

0 = (F0 J0)−T = (Jcurr
0 )−T . For small 

deformations (Jcurr
0 )−T ≈ J−T

0 .

In summary, the above described four transformation 
rules are as follows:
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When comparing T2 to T4 for large deformations, their 
solutions are generally different, no matter whether GT (q) 
or G(q) is used. The use of GT (q) is beneficial, as it sup-
presses hourglassing at the critical strain for nearly-incom-
pressible hyperelastic material, see Sect. 5.3.4.

4. Variation ofH The variation of H(q) for the transfor-
mation rule T4 of Eq. (31)4 is

δH(q) =
[
δ(Jcurr

0 )−T G(q) + (Jcurr
0 )−T δG(q)

]
J−1

0
j0

j
.� (43)

The variation δ(Jcurr
0 )−1 is obtained by taking the variation 

of (Jcurr
0 )−1Jcurr

0 = I, which yields

δ(Jcurr
0 )−1 = −(Jcurr

0 )−1 δJcurr
0 (Jcurr

0 )−1,� (44)

where δJcurr
0  can be computed in a standard manner.

3.2  Representation EADG2 for enhancement H

The 0th order part of the enhanced deformation gradient can 
be defined analogously to this part of strain in Eq.  (12)1. 
Using Eq. (20), we obtain

F0 enh(u, q) = F0(u) + H0(u, G(q, ξ))︸ ︷︷ ︸
EADG

,
� (45)

where H0 is the 0th order enhancement matrix. For the 
transformation rule T4 of Eq. (31), we have

H0(u, G(q)) = (Jcurr
0 )−T G(qi, ξ, η) J−1

0
j0

j
,� (46)

where Jcurr is the current Jacobian matrix and j .= det J. 
The subscript “0” indicates the element’s center. Analogous 
formulas for T1, T2 and T3 can be obtained from Eq. (31).

Using the idea explained in Eqs. (1) and (2), we employ 
a simple 2-parameter representation, designated EADG2, to 
define the matrix of representations

G(qi, ξ, η) .=

[ 0 q1ηS 0
q2ξS 0 0

0 0 0

]
, i = 1, 2.� (47)

The skew coordinates ξS , ηS  are defined as

ξS = ξ + A11 ξη, ηS = η + A21 ξη,� (48)

where A11 = (j,η)0/j0, A21 = (j,ξ)0/j0 and j = det J. 
For parallelogram-shaped elements, A11 = A21 = 0, so the 
difference between the natural and skew coordinates van-
ishes, see [52, Sect.  3.2]. The so-defined G depends 

On the other hand, the r.h.s. of Eq. (35) for T4 is

Q H(x, q) = Q F−T
0 F̃2(q) = F−T

0 (x+) F̃2(q),� (38)

where Q F0(x) = F0(x+) of Eq.  (36) was used. The 
last form was obtained on use of Q = Q−T , as then 
Q F−T

0 = Q−T F−T
0 = (Q F0)−T = F−T

0 (x+). As both 
sides are equal, the requirement of Eq. (35) is satisfied and 
the enhancement H is objective for T4. The numerical test 
of objectivity is described in Sect. 5.2.2.
Remark The enhanced right Cauchy-Green deformation 
tensor Cenh .= (Fenh)T Fenh of arguments (x+, q), on use 
of Eq. (33) becomes

Cenh =
(
QFenh)

T
(
QFenh)

= (Fenh)T QT Q Fenh = (Fenh)T Fenh,� (39)

where Fenh = Fenh(x, q), and QT Q = I was used. As 
Cenh is not affected by Q, it is objective, but, obviously, it 
depends on the form of the enhancement.

2. Rigid-body rotation When F0 = Q0, where 
Q0 ∈ SO(3), then both the transformations T2 and 
T4 become equal to H(q) = Q0 F̃2(q) on use of 
F−T

0 = Q−T
0 = Q0. 

3. Effect of transposition of G on linear strain The 
enhanced linear strain is

Eenh = Fenh + (Fenh)T − 2I
= (F + FT − 2I) + (H + HT ),

� (40)

where, for small deformations, the enhancement matrix 
H = F̃1(q) for T1 and T3, and H = F̃2(q) for T2 and T4. 
For the above defined four transformations, the underlined 
term becomes:

For T1 and T3, 

(H + HT ) =
[
J0 G(q) J−1

0 + J−T
0 GT (q) JT

0
] j0

j
,� (41)

For T2 and T4, 

(H + HT ) = J−T
0

[
G(q) + GT (q)

]
J−1

0
j0

j
.� (42)

We see that (H + HT ) does not change under the transposi-
tion of G(q) for transformations T2 and T4, but it does for 
T1 and T3. In consequence, the linear solutions obtained 
using GT (q) or G(q) are identical for T2 and T4, but are 
different for T1 and T3. Hence T1 and T3 are not suitable 
for the method of stabilization based on the transposition of 
G(q).
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Assumed stress/strain representations In the element 
HW19, all the assumed stress/strain representations are ζ
-independent, and are defined as follows: 

1.	 The assumed CTV stress representation is defined as 

Av = [q1, q2, 0, q3, 0, 0]T ,

Cv
.= [C11, C22, 0, 0, 0, 0]T ,

� (51)

	 where C11 = q4 ηS  and C22 = q5 ξS . This is the 
5-parameter stress representation of Pian and Sumihara 
[34] but expressed in skew coordinates ξS , ηS  defined 
in Eq.  (48). The CTV → CART transformation of 
components of stress is 

Sa
v = T0

S Av + Tζ=0
S Cv,� (52)

	  where T0
S is computed at the element’s center (super-

script “0”) and at the reference surface (superscript 
“ζ = 0”). Components S0 ∗

αβ  are extracted from the vec-
tor Sa

v.

2.	 The assumed CTV strain representation is defined as 
follows: 

Av = [q1, q2, 0, q3, 0, 0]T ,

Cv
.= [C11, C22, 0, C12, 0, 0]T ,

� (53)

	 where C11 = q4 ξS + q5 ηS  +q6 ξSηS , 
C22 = q7 ξS + q8 ηS  +q9 ξSηS  and 
C12 = q10 ξS + q11 ηS . In total 11 parameters. The 
CTV → CART transformation of components of strain 
is 

Ea
v = T0

E Av + Tζ=0
E Cv,� (54)

	 where T0
E is computed at the element’s center (super-

script “0”) and at the reference surface (superscript 
“ζ = 0”). Components E0 ∗

αβ  are extracted from the vec-
tor Ea

v. The CTV → CART transformation is used for 
the assumed strains because then the results are more 
accurate than for the COV → CART transformation, 
when the reduced representations are assumed, see [53].

The above transformation operators TS and TE as well as 
the stress/strain vectors are defined in Appendix 1. In total, 
the element HW19 involves 19 additional parameters qi: 5 
for the assumed stress, 11 for the assumed strain and 3 to 
enhance the thickness strain.

Remark If the underlined terms of C11 and C22 in 
Eq.  (53) are omitted then for the nearly-incompressible 
material, 2 large eigenvalues appear. The eigenvector asso-
ciated with the second large eigenvalue is shown in Fig. 3. 

on ξ, η ∈ [−1, 1], but not on the thickness coordinate 
ζ ∈ [−1, 1].

Finally, we note that the 0th order enhanced Green strain 
is defined as

2E0 enh = (F0 enh)T F0 enh − I,� (49)

where F0 enh is given by Eqs. (45–48).

4  New solid-shell elements free from 
hourglassing

In this section we describe three new solid-shell elements 
which are free from hourglassing. In all of these elements 
the transverse shear strain and thickness strain are treated as 
described in Sect. 2.1, while the 1st order bending/twisting 
strain remains standard.

The 0th and the 1st order parts of the stress, strain and 
deformation gradient w.r.t. the thickness coordinate ζ are 
designated respectively by the superscript “0” and “1”.

4.1  HW element with EADG enhancement

In this section we use the Hu–Washizu solid-shell element 
HW19 of [52] as the parent element, and describe its modi-
fications to create the new element HW18/EADG2, which 
is free from mesh hourglassing.

4.1.1  Parent element HW19

The 8-node solid-shell element HW19 is based on the par-
tial/enhanced Hu–Washizu functional,

F̃HW19
.=
ˆ

B

{
W(E0 ∗

αβ + ζE1
αβ + ζE1 EAS

αβ , E0 ANS
33

+ ζE1 EAS
33 , E0 ANS

α3 )

+ S0 ∗
αβ ·

[
E0

αβ − E0 ∗
αβ

]
}

dV − Fext,

� (50)

where W  is the strain energy density, Fext is the potential of 
the external loads and the body force, and V is the volume 
of the 3D body in the initial configuration B.

The Lagrange multiplier method is applied only to the 
in-plane strain components, see the underlined term, where 
S0 ∗

αβ  is the assumed Lagrange multiplier, E0 ∗
αβ  is the assumed 

strain and E0
αβ  is the compatible strain. Note that ζE1 EAS

αβ  
and ζE1 EAS

33  result from the enhancement of thickness 
strain of Eq. (17), while the terms E0 ANS

33  and E0 ANS
α3  from 

the ANS method of Eq. (15), see Sect. 2.1.
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The assumed strain E0 ∗
αβ  is unmodified, compared to the 

element HW19. The remaining terms in F̃HW18/EADG2 are 
treated identically as in F̃HW19.

In total, the element HW18/EADG2 involves 23 addi-
tional parameters qi: 7 for the assumed stress, 11 for the 
assumed strain, 3 for the EAS3 representation of the 1st 
order enhanced thickness strain and 2 for the EADG2 
enhancement to prevent hourglassing.

4.2  EAS element with EADG enhancement

In this section we use the solid-shell element EAS10 as the 
parent element, and modify it to obtain the new element 
EAS5/EADG2, which is free from mesh hourglassing.

4.2.1  Parent element EAS10

The 8-node solid-shell element EAS10 is based on the 
Enhanced Assumed Strain (EAS) method of Simo and Rifai 
[41], and involves 10 parameters. The first version of this 
element in Klinkel et al. [22] used one parameter in the EAS 
enhancement of the 1st order thickness strain. Two addi-
tional parameters were added in Vu-Quoc and Tan [44] to 
pass the out-of-plane bending patch test.

The EAS10 element is based on the enhanced potential 
energy functional,

F enh
PE (u, q) .=

ˆ

B

W

(
(E0(u) + E0 EAS(u, q))

+ ζ (E1(u) + E1 EAS(u, q))

)
dV − Fext,

� (57)

where W  is the strain energy density. The 0th order enhanced 
strain consists of two components

E0(u) = J−T
ζ=0 E0 COV(u) J−1

ζ=0,

E0 EAS(u, q) = J−T
0 G(q) J−1

0
j0

j
,

� (58)

where E0(u) is the compatible strain computed as outlined 
in Eq.  (10)2 and E0 COV is the matrix of covariant com-
ponents. The second component E0 EAS(u, q) is the EAS 
enhancement of the in-plane strains, which includes the fol-
lowing 7-parameter (symmetric) representation EAS7,

G(qi, ξ, η) .=

[
q1ξ + q2 ξη q5ξ + q6η + q7 ξη 0
sym. q3η + q4 ξη 0
0 0 0

]
,

i = 1, . . . , 7.

� (59)

The transformations used in Eq.  (58) are obtained from 
Eq. (9)2 and J−1 is computed at the reference surface (sub-
script “ζ = 0”) and at the element’s center (subscript “0”).

It is the scaled vector of nodal vertical displacements 
[−1, 1, −1, 1, 1, −1, 1, −1], for which the element’s vol-
ume remains unchanged. It resembles the h4I  mode for the 
8-node solid 3D element of [4, Fig. 4]. The underlined terms 
in C11 and C22 eliminate the second large eigenvalue and 
this eigenvector.

4.1.2  New element HW18/EADG2

This element is obtained from the parent element HW19 by 
adding the 2-parameter EADG enhancement to the in-plane 
compatible strain E0

αβ  in the Lagrange multiplier term. The 
governing partial/enhanced Hu–Washizu functional is as 
follows:

F̃HW18/EADG2
.=
ˆ

B

{
W(E0 ∗

αβ + ζE1
αβ + ζE1 EAS

αβ , E0 ANS
33

+ ζE1 EAS
33 , E0 ANS

α3 )

+S0 ∗
αβ ·

[
E0 enh

αβ − E0 ∗
αβ

]}
dV − Fext.

� (55)

Two important changes have been introduced into F̃HW19 of 
Eq. (50) to obtain the above functional: 
1.	 The 0th order enhanced strain E0 enh

αβ  (underlined 
in Eq.  (55)) has replaced the standard E0

αβ , which is 
used in Eq.  (50). E0 enh

αβ  is obtained using the EADG 
enhancement of the deformation gradient described in 
Sect. 3.2, see Eqs.  (45–48). It uses the transformation 
rule T4 and the 2-parameter EADG2 representation.

2.	 The assumed representation of stress S0 ∗
αβ  is modified by 

adding the non-zero component C12 = q6 ξS + q7 ηS . 
Then the assumed CTV stress representation is defined 
by two vectors: 

Av = [q1, q2, 0, q3, 0, 0]T ,

Cv
.= [C11, C22, 0, C12, 0, 0]T ,

� (56)

	 where C11 and C22 remain unmodified. Hence, in total, 
7 parameters qi are used for the assumed stress, and the 
CTV → CART transformation of the stress compo-
nents of Eq. (52).

Fig. 3  Eigenvector associated with the second large eigenvalue (thick 
line) superimposed on the solid-shell element (thin line)
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4.3  New EADG7 element

In this section the solid-shell element with the 0th order 
in-plane part enhanced by the EADG method is described. 
The standard EADG4 representation is sufficient to sup-
press the mesh hourglassing by transposition of G but addi-
tional 3 parameters are added to eliminate one of the two 
large eigenvalues for the nearly incompressible hyperelastic 
material and to improve the bending behavior.

The 8-node solid-shell element EADG7 is based on the 
enhanced potential energy functional,

F enh
EADG7(u, q)

.=
ˆ

B

W
(
(E0(u) + E0 enh(F0 enh(u, q))

+ ζ (E1(u) + E1 EAS(u, q))
)

dV − Fext,

� (62)

where W  is the strain energy density. Note that 0th order 
term E0 enh(F0 enh(u, q)) is defined in Eq.  (49) using the 
enhanced deformation gradient F0 enh with the transfor-
mation rule T4 and the EADG7 representation, which is 
defined below.

The 1st order compatible strain E1(u) is defined as in 
Eq.  (12)2, while E1 EAS(u, q) is the enhancement of the 
thickness strain, which is computed as in Eqs. (18) and (19).

EADG7 representation of the enhancement of deforma-
tion gradient Recall that the standard 4-parameter represen-
tation EADG4 is

G(qi, ξ, η) .=

[
q1ξ q3η 0
q4ξ q2η 0
0 0 0

]
, i = 1, . . . , 4.� (63)

and it does suppress the mesh hourglassing when trans-
posed. However, the solid-shell element based on the 
EADG4 yields two very large eigenvalues instead of one, 
in the eigenvalue test for nearly incompressible hyperelastic 
material (ν = 0.499999999), see Sect. 5.1. As a remedy, the 
following 7-parameter representation EADG7 is proposed,

G(qi, ξ, η) .=

[
q1ξ + q5 ξη q3η + q6 ξη 0

q4ξ q2η + q7 ξη 0
0 0 0

]
,

i = 1, . . . , 7,

� (64)

where three bi-linear (underlined) terms are added to the 
EADG4 representation. The diagonal terms with q5 and 
q7 remove one large eigenvalue for nearly incompress-
ible hyperelastic material. The off-diagonal term with q6 
improves the bending behavior, see the “Twisted beam” test 
of Sect. 5.3.3.

The 1st order compatible strain E1(u) is defined in 
Eq. (12)2, while E1 EAS(u, q) is the enhancement of thick-
ness strain, and is computed as outlined in Eq. (18).

The EAS10 element suffers from the mesh hourglassing 
at the critical strain for nearly-incompressible materials, see 
the test of Sect. 5.3.4.

4.2.2  New element EAS5/EADG2

This element is obtained from the parent element EAS10 by 
implementing two modifications of the 0th order strains: (1) 
the 2-parameter EADG enhancement is added to eliminate 
hourglassing, and (2) the EAS7 representation is reduced 
to the EAS5 representation. The resulting element EAS5/
EADG2 is free from mesh hourglassing.

The 8-node solid-shell element EAS5/EADG2 is based 
on the enhanced potential energy functional,

F enh
EAS5/EADG2(u, q)

.=
ˆ

B

W

(
(E0(u) + E0 EAS(u, q)

+ E0 enh(F0 enh(u, q))) + ζ(E1(u) + E1 EAS(u, q))

)

dV − Fext,

� (60)

where the underlined term is added. Regarding the 0th order 
terms, E0 enh(F0 enh(u, q)) is defined in Eq. (49) using the 
enhanced deformation gradient F0 enh with the transforma-
tion rule T4 and the EADG2 representation, see Eqs. (45–
48). Besides, E0 EAS(u, q) is defined as for the parent 
element EAS10, i.e. using Eq. (58), but with the EAS5 rep-
resentation defined below.

EAS5 representation Due to the presence of q1ηS  and 
q2ξS  in the EADG2 representation of Eq.  (47), the terms 
ξq5 and ηq6 must be omitted in the EAS7 representation of 
Eq. (59). This yields the (symmetric) EAS5 representation,

G(qi, ξ, η) .=

[
q1ξ + q2 ξη q5 ξη 0

q3η + q4 ξη 0
sym. 0

]
,

i = 1, . . . , 5.

� (61)

The 1st order terms, i.e. the compatible strain E1(u) and 
the enhancement of the thickness strain E1 EAS(u, q) are 
treated as in the element EAS10.

In total the element EAS5/EADG2 involves 10 additional 
parameters qi: 5 for the EAS5 representation and 2 for the 
EADG2 representation, both in the enhancements to the 0th 
order membrane strain, and 3 for the EAS3 representation 
of the 1st order enhanced thickness strain.
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and is a counterpart of the patch test. For the EADG7 repre-
sentation, we obtain
[

δq1 ξ + δq2 ξη δq5 η + δq6 ξη
δq7 ξ δq3 η + δq4 ξη

]
dη dξ =

[
0 0
0 0

]
.� (66)

On use of F0 enh, the enhanced linear strain is

E0 enh =
[

u1 + η u3
1
2 [(u2 + v1) + ξ u3 + η v3]

sym. v2 + ξ v3

]

+
[

q1ξ + q2 ξη 1
2 [q7ξ + q5η + q6 ξη]

sym. q3η + q4 ξη

]
,

and after summing up these two matrices, all components 
are bi-linear polynomials. For the standard EADG4 repre-
sentation, the bi-linear (underlined) terms are omitted.

5  Numerical tests

This section describes numerical tests of the three new 
8-node solid-shell elements proposed in the current paper, 
see Table 2. In all of the elements the mesh hourglassing at 
the critical point is effectively suppressed by transposition 
of the representation matrix G in the EADG enhancement 
H. The EADG enhancement is characterized by a pair of 
features (transformation rule, original/transposed form of 
G), see Sect. 3. The EADG (T4,GT ) enhancement is of par-
ticular interest.

These elements are based on the Green strain and devel-
oped from either the partial/enhanced Hu–Washizu func-
tional (HW18/EADG2) or the enhanced potential energy 
functional (EAS5/ EADG2 and EADG7). The element’ 
name characterizes only its in-plane part, which is a con-
vention different to that used in [52].

All new solid-shell elements are identical in the fol-
lowing aspects: (a) the 3-parameter EAS enhancement to 
the 1st-order thickness strain E1

33 is applied, (b) the ANS 
methods are applied to the 0th order strains: the transverse 
shear strains E0

α3 and the thickness strain E0
33, and (c) the 

1st order bending/twisting part remains standard (unmodi-
fied), (d) the 2 × 2 × 2 Gauss rule is used to integrate the 
elements.

The last column in Table  2 shows the total number of 
additional elemental parameters qi. They are eliminated at 
the element’s level and updated by the scheme U2, see [48].

The 0th and 1st order parts of stress/strain (w.r.t. the 
thickness coordinate ζ) are respectively designated by the 
superscripts “0” and “1”. In the sequel, “parameter” is 
abbreviated to “p”.

Three solid-shell elements are used for reference: 

In total, the element EADG7 involves 10 additional 
parameters qi : 7 for the EADG7 enhancement of the 0th 
order membrane strain and 3 for the EAS3 enhancement of 
the 1st order thickness strain.

Remark Note that both, the 1st order thickness strain E1
33 

of Eq.  (18) and the EADG enhancement for the transfor-
mation T4 of Eq. (46), utilize the “COV → CART” trans-
formation, the latter through F̃2(q). Hence, the EADG 
method and transformation T4 can be tested as a replace-
ment for the EAS method for the thickness strain E1

33. Then 
in the enhanced potential energy functional of Eq.  (62), 
E1 EAS(u, q) is replaced by

E1 enh(u, q) = (Jcurr
0 )−T G1(q) J−1

0
j0

j
,� (65)

where G1(q) is given by Eq. (19). In the tests of Sect. 5, the 
modified element yielded the solutions which are similar to 
those for the element EADG7, but not always identical.

2D check of EADG7 representation Let us consider for 
simplicity a bi-unit (2 × 2) square element, for which the 
initial position vector components are X1 = ξ and X2 = η. 
Then J is the identity matrix and the EADG enhancement of 
Eq. (46) is reduced to H0(q) = G(qi, ξ, η). Only the upper 
2 × 2 sub-matrices of H0(q) and G are considered below. 
For bi-linear shape functions, the compatible displacements 
are

u(ξ, η) = u0 + ξ u1 + η u2 + ξη u3,

v(ξ, η) = v0 + ξ v1 + η v2 + ξη v3,

where ui and vi   (i = 0, 1, 2, 3) are functions of the nodal 
displacements. Then the deformation gradient and the 
enhancement using the EADG7 representation of Eq. (64) 
are

F0 =
[

1 + u1 + η u3 u2 + ξ u3
v1 + η v3 1 + v2 + ξ v3

]
,

H0 =
[

q1ξ + q2 ξη q5η + q6 ξη
q7ξ q3η + q4 ξη

]
,

and the enhanced deformation gradient is F0 enh = F0 + H0. 
The enhancement H0 cannot be arbitrary; the restrictions are 
discussed in Simo and Armero [39] and Simo et al. [40, see 
(i) and (ii) on p. 365 and Eq. (3.3)]. For the above F0 enh, we 
can check that: (i) The components of H0 are not present in 
F0, when considered component by component. This pre-
cludes the rank deficiency of the tangent matrix and ensures 
stability of the method. (ii) The integral of a variation of the 
enhancement matrix H0 over the element’s domain must 
vanish, 

´
V

δH0 dV = 0. This condition results from the L2

-orthogonality of δH0 to the (assumed) constant stress field 
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the global reference basis is used for the TSCG12 ele-
ment, the inward and outward displacements at the 
forces applied to the pinched hemisphere of Sect. 5.3.2 
are not equal, even though they should be so in a linear 
test. This is caused by the reduced matrices Hu and HT

b  
which are used in the original TSCG12 element, and 
this issue is partly alleviated by using a local (elemen-
tal) reference basis.

2.	 The 2 × 2 × 2-point Gauss integration is used as being 
more suitable for bending of elastic shells than the spe-
cial 9-point rule, which serves as a replacement of the 
3 × 3 × 3-point Gauss integration in [40], and is rather 
intended for plasticity, which remains beyond the scope 
of the current paper.

In effect, the solutions yielded by the modified element 3D 
TSCG12 are closer to the solid-shell solutions than those 
yielded by the original element.

All our elements are derived using the symbolic sys-
tem for automatic code generation, code optimization and 
automatic differentiation AceGen developed by J. Korelc 
[26] and are tested within the finite element program FEAP 
developed by R. L. Taylor [43, 57]. We gratefully acknowl-
edge the use of these programs. Our parallel multithreaded 
(OMP) version of FEAP is described in [21].

We tacitly assume that any consistent set of units is used 
for the data defined in numerical examples.

5.1  Eigenvalues of a single element

The eigenvalues of the tangent matrix are computed for a 
single unsupported element, and for the Young’s modulus 
E = 1 and the Poisson’s ratio ν = 0.3. Several element’s 
shapes described in our recent paper [52, Sect. 5.1] are 
tested, and for all of them, the new solid-shell elements have 
the correct number of zero eigenvalues (6).

For all new solid-shell elements, one large eigenvalue 
and 6 zero eigenvalues is obtained for ν = 0.499999999 
and the truncated pyramid shape of Fig.  4. This shape is 
obtained from a hexahedron of size 2 × 2 × 0.1 by shifting 

1.	 The element HW19 is based on the partial/enhanced 
Hu–Washizu functional, in which the Lagrange mul-
tiplier method is applied only to the membrane strain 
components. It includes the 3-parameter EAS enhance-
ment of the 1st order thickness strain of Eq. (17), but 
does not use the EADG enhancement.

2.	 The element EAS10 uses the 7-parameter EAS enhance-
ment of the in-plane strains of Wilson et al. [47], 

ẼCOV
11 = q1ξ + q2ξη, ẼCOV

22 = q3η + q4ξη,

ẼCOV
12 = q5ξ + q6η + q7ξη,

� (67)

	 and the 3-parameter EAS enhancement of the 1st order 
thickness strain of Eq. (17). The initial version of this 
element of [22] used only q1 in G1 COV

33  in Eq. (17). The 
linear terms q2ξ and q3η were added later to pass the 
bending patch test in [44]. In total, this element involves 
10p, and does not use the EADG enhancement.

3.	 The HSEE element with 43 parameters of Klinkel et al. 
[23] is a Hu–Washizu type element; it is also described 
and compared to our HW35 element in [52, Sect. 3.4.2].

All these elements show mesh hourglassing at the critical 
point for the incompressible hyperelastic material. Also sev-
eral other elements are used for comparison, including a 3D 
solid element and the Reissner-Mindlin shell elements with 
6 dofs/node.

Modifications of 3D TSCG12 element for shell appli-
cations The 3D solid element TSCG12 is the 8-node hexa-
hedron of Korelc et al. [24], and we use it for reference. To 
improve its accuracy in shell applications, we have intro-
duced the following modifications: 

1.	 The local (elemental) reference basis is constructed in 
the same way as for solid-shell elements, see Sect. 2, 
and transformations of the tangent stiffness matrix and 
the residual vector between the local and the global ref-
erence bases are performed. Note that for 3D elements 
the local basis is usually constructed differently. When 

Table 2  Characteristics of the tested/reference solid-shell 8-node elements
Element Enhancement of membrane part Assumed membrane stress/strain Total number of parameters
Tested new solid-shell
HW18/EADG2 EADG 2p, Eq. (47) 7p/11p, Eqs. (56/53) 23p
EAS5/EADG2 EAS 5p, Eq. (61) and – 10p

EADG 2p, Eq. (47)
EADG7 EADG 7p, Eq. (64) – 10p
Ref. solid-shell
HW19* [52] – 5p/11p, Eqs. (51/53) 19p
EAS10* EAS 7p, Eq. 59) – 10p
HSEE* [23] EAS 4p 18p/18p 43p
(  )* our implementation
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For each rotation increment, the beam-type axial force N 
and transverse shear force Q, and the bending moment M 
are calculated using the reaction forces at the left end nodes. 
For the solid-shell element EADG7 with the enhancement 
(T4,GT ) the beam-type forces and moment are shown in 
Fig.  5b. Two orientations of the solid-shell element are 
tested, with the nodal “directors” parallel to either the 
0Z-axis or the 0Y-axis, which we designate “dir 0Z” and 
“dir 0Y”, respectively. We see in this figure that the lines for 
both orientations of this element coincide. Similar solutions 
are obtained also for the other tested solid-shell elements.

The 2D reference results obtained using two 4-node 
plane strain elements are designated as follows: (a) “2D 
EADG4”—our EADG4 element and the hyperelastic mate-
rial of Eq. (68), (b) “feap enha”—the enhanced element of 
FEAP [43] and the hyperelastic material, and (c) “2D Q1/
ET4 Ogden”—the Q1/ET4 element and the Ogden’s mate-
rial taken from Glaser and Armero [12, Fig. 13].

In conclusion, the obtained N, Q and M are constant w.r.t. 
the rotation angle, which means that the strained enhanced 
solid-shell elements are invariant to the rigid-body rota-
tion. Hence, the transformation used in the enhancement 
(T4,GT ) is correct.

5.2.3  Two-element distortion test

The cantilever is modeled by two solid-shell elements, and 
a tilt of their common side is defined by the parameter d, see 
Fig. 6. The data is as follows: E = 1500, ν = 0, h = 1, and 
P = 10. The nodes shown in Fig. 6 are doubled to create a 
mesh for the 8-node solid-shell elements. The pair of forces 
±P  is replaced by four forces ±P/2. The applied boundary 
conditions are as described in [23].

This test is used to separately verify the in-plane part and 
the through-thickness part of solid-shell elements. Bend-
ing takes place in the X0Y plane, and two orientations of 
the elements are tested, i.e. the nodal “directors” are either 
parallel to the 0Z-axis (in-plane bending) or belong to the 
X0Y-plane (out-of-plane bending). Displacement uy at the 
tip for a changing d is shown in Figs. 7 and 8. The EADG 
enhancement used with (T4,G{}^T T ) and (T4,G) gave 
identical results. The reference solutions are indicated by 
broken lines. 

its nodes by the vectors [±0.1, ±0.1, 0]. We note that for 
the element EADG7, one of two large eigenvalues is elimi-
nated due to 2 additional modes added to the diagonal of G, 
see Sect. 4.3.

5.2  Linear tests

5.2.1  Patch tests

The shell-type patch tests (membrane and bending) are 
adapted and performed as described in [52, Sect. 5.2.1]. The 
tested solid-shell elements yield the correct displacements 
at the internal nodes and compatible strains at Gauss Points.

The standard 3D patch test is failed by the solid-shell ele-
ments, which is caused by the ANS method for the trans-
verse shear strains. (The ANS method for the 1st order 
thickness strain has no such consequence.) In contrast, the 
3D 8-node hexahedron solid elements fail the shell-type 
bending patch test. Hence, for the bending dominated shell-
type applications, the solid-shell elements are preferable to 
the 3D elements.

5.2.2  Objectivity test

This test was proposed to check objectivity of the enhanced 
4-node 2D plane strain elements and the Ogden’s material in 
Glaser and Armero [12, Example 4.3]. We adapt it here for 
the solid-shell elements and use the hyperelastic material.

The beam is strained and rotated in the X0Z plane, see 
Fig. 5a. Both ends of the beam are clamped. Strains are gen-
erated by the transversal shift of the right end by d = 2 h, 
where h is the beam’s height. Next the strained beam is rig-
idly rotated up to 90◦, which is controlled by the displace-
ments applied to boundary nodes at the left and right ends. 
The boundary conditions are specified as in [12, Eqs. (30) 
and (31)], and the Newton method is used to solve the equi-
librium equations.

The data is as follows: the beam length L = 1.0, height 
h = 0.1. The size in the 0Y direction b = 1.0, and to 
enable comparison with the plane strain results the 0Y-dis-
placements are constrained. The neo-Hookean hyperelas-
tic material of Eq.  (68) with µ = 100, the bulk modulus 
K = 116.666666(6) and β = −2 is used. These values of µ 
and K correspond to the material constants, which are used 
in [12] for the Ogden’s material.

Fig. 4  Truncated pyramid (not to 
scale)
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grows with the distortion d, which is also characteristic 
for the HW51 element of [52].

5.2.4  Straight cantilever of trapezoidal elements

This classical 2D test by MacNeal and Harder [28] can also 
be applied to transverse deformation of solid-shell elements, 
as in Harnau et al. [18]. The accuracy of displacements for a 
trapezoidal through-thickness shape of solid-shell elements 
is assessed. This test is run with the EADG enhancement 
(T4,G T ).

The directors of the trapezoidal mesh are in the X0Z-
plane and the load P is parallel to the 0Z-axis. The data is as 

1.	 The solutions for the in-plane bending are shown in 
Fig. 7. For d ≤ 2, the most accurate is the tested ele-
ment HW18/EADG2, next the reference HSEE and 
then the tested EAS5/EADG2 and EADG7, and the ref-
erence EAS10. The latter three elements yield identical 
results. When d > 2, i.e. beyond the range of practical 
use, most of the curves ascend for increasing d, and the 
smaller the ascension the better in this range. Refer to 
the discussion of this issue in [52, Sec. 5.2.4].

2.	 The solutions for the out-of-plane bending are shown 
in Fig.  8. All the tested elements yield an analytical 
solution uy = 1 in the whole range of d. The reference 
solid-shells HW19 and EAS10 of [52] have similar 
accuracy. For the reference solid-shell HSEE, the error 

Fig. 6  Two-element distortion test. 
Initial geometry and load
 

Fig. 5  Objectivity. a Scheme of 
the test, b N, Q and M for two 
orientations of the solid-shell 
element EADG7 (T4,GT ) and the 
hyperelastic material
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follows: E = 107, ν = 0.3, the length L = 6, the thickness 
h = 0.2 and the width in the 0Y direction w = 0.1 (Fig. 9).

The vertical displacement uz  at node A is presented in 
Table  3. For the rectangular mesh, all the tested and ref-
erence solid-shell elements perform well and the relative 
errors are below 0.78%. For the trapezoidal mesh, the tested 
elements perform similarly as for the rectangular mesh. The 
elements EAS5/EADG2 and EADG7 are very accurate, 
with an error of just 0.08% for both meshes. The reference 
modified 3D TSCG12 performs well with the rectangular 
mesh but is locked for the trapezoidal mesh.

5.2.5  Curved 3D cantilever

Skew nodal “directors” of solid-shell elements do affect the 
accuracy of the solution, especially when the thickness h 
diminishes.

The curved 3D cantilever is fixed at one end and loaded 
by a moment Mz  at the other, see Fig. 10. The data is as 
follows: E = 2 · 105, ν = 0, width b = 0.025 and radius of 
curvature R = 0.1, thickness h = 10−2 (R/h = 10). The 
nodes shown in Fig. 10 are doubled in the through-thickness 
direction to created a mesh for the 8-node elements. Six-
element mesh is used.

The regular mesh of Fig. 10 is used in the circumferential 
direction. Note that the distorted mesh in this direction is 
tested in Koschnick et al. [27] and subsequently in [52]. In 
the through-thickness direction, two meshes are tested; one 
with the radial and the other with skew nodal “directors”, 
where the angle φ ≈ 35o, see Fig. 11.

The displacements uy at point A (node 1) obtained in the 
linear analysis are shown in Table 4, where also the relative 
errors [in %] are given. The EADG (T4,G T ) enhancement 
is used. The results for (T4,G) are identical.  

The reference analytical displacement for a curved beam 
is uana

y = MzR2/EI, where I = bh3/12 is the moment of 
inertia. The external moment Mz = (R/h)−3 is applied to 
the 8-node solid-shell element as two pairs of opposite tan-
gent forces P = Mz/h/2. For the given data, the reference 
value is uana

y = 12/(bER) = 0.024.

Fig. 9  Straight cantilever by trapezoidal 
elements. Geometry and meshes
 

Fig. 8  Two-element distortion test. Out-of-plane bending. EADG 
(T4,G/GT )

 

Fig. 7  Two-element distortion test. In-plane bending. EADG 
(T4,G/GT )
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distributed vertical load P is applied at the other end, see 
Fig. 12a. The nodes shown in this figure are doubled in the 
0Z direction to obtain the mesh for the 8-node solid-shell 
elements and the reference 3D solid element. The nodal 
“directors” are in the 0Z direction.
A. Linear tests. SVK material The purpose of this test is 
twofold: (1) to compare the accuracy of the tested solid-
shell elements, and (2) to check the element EADG7 for 
various combinations of transformations T1/T2/T3/T4 of 
Sect. 3 and the form of the matrix G/GT .

The data for the SVK material is as follows: E = 1, 
ν = 1/3, and the thickness h = 1. Two meshes are used; 
a coarse 2 × 2-element mesh and a fine 32 × 32-element 
mesh in the X0Y plane. One element is used in the 0Z direc-
tion in both cases. The uniformly distributed vertical load 
P = +1 is applied.

The vertical displacements uy at point A obtained in the 
linear analysis are presented in Table 5, alongside the rela-
tive errors [in %]. For the enhancement (T4,GT ), HW18/
EADG2 is the most accurate with an error for the coarse 
mesh smaller than of the reference HW19. For the fine 

For the radial nodal “directors”, all the tested solid-shell 
elements are equally accurate, with an error of 1.81%. For 
the skew “directors”, the errors approximately double this, 
and the differences between the tested elements are small.

5.3  Non-linear tests

5.3.1  Cook’s membrane

In the Cook’s membrane test [7], the elements are skewed 
and tapered and the in-plane shear deformation dominates. 
The membrane is clamped at one end, while a uniformly 

Table 3  Straight cantilever of trapezoidal elements
Element Vertical displacement uy × 10 and its relative error [in %]

Rectangular mesh Trapezoidal mesh
Tested new solid-shell
HW18/EADG2 1.0726 (− 0.78%) 1.0719 (− 0.84%)
EAS5/EADG2 1.0801 (− 0.08%) 1.0801 (− 0.08%)
EADG7 1.0801 (− 0.08%) 1.0801 (− 0.08%)
Ref. solid-shell
HW19 1.0726 (− 0.78%) 1.0719 (− 0.84%)
EAS10 1.0726 (− 0.78%) 1.0719 (− 0.84%)
HSEE 1.0728 (− 0.76%) 1.1312  (4.64%)
Ref. 8-node 3D solid
3D TSCG12* with HT

b
1.0719 (− 0.84%) 0.2413 (− 77.68%)

Reference [28] 1.081
Linear results. EADG (T4,GT )
*Modified (local reference basis as for solid-shells and 2 × 2 × 2 Gauss Points)

Fig. 11  Curved 3D cantilever. 
a Radial and b skew nodal 
“directors”

 

Fig. 10  Curved 3D cantilever. Initial geometry and load. Regular mesh 
in circumferential direction
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deformations. Either (T2,GT ) or (T4,GT ) variant of the 
EADG enhancement is used. Two load cases, –P and +P, 
are studied.

The nodal “directors” are positioned along the 0Z axis 
(see Fig.  12a) and the displacements uz  are constrained 
to zero for nodes located at z = 0 to prevent out-of-plane 
buckling. Three n × n-element meshes for n = 2, 4, 16 are 
used, and one element is used through thickness. The stan-
dard Newton method and the load increments ∆P = ±0.01 
are applied. The deformed meshes for loads –P and +P after 
320 steps are shown in Fig. 13.

The modified neo-Hookean hyper-elastic material of 
Eq. (68) is used with the shear modulus µ = 0.333355557 
and the bulk modulus K = 0.166666667 · 104; these val-
ues are obtained from E = 1 and ν = 0.4999. Additionally, 
β = −2 is used.

mesh, all of the tested elements are equally accurate with 
an error of 0.31%.

Next, for the element EADG7, all combinations of trans-
formations T1/T2/T3/T4 and the matrix G/GT  were tested. 
In linear tests, T2 and T4 are identical because then Jcurr

0  is 
reduced to J0, see Eq. (31). For G and GT , the results are 
identical because the enhanced linear strain is insensitive to 
the transposition of G, see Eq. (42). The idea of using GT  
to suppress mesh hourglassing must be discarded for T1 and 
T3. However it is admissible for T2 and T4; see the results 
for the element EADG7 in Table 5. Therefore, only the com-
binations (T2,GT ) and (T4,GT ) are tested in the sequel.

Finally, two different numberings of nodes are used on 
the master block, from which mesh A and B are generated, 
see Fig. 12b. The same results for both meshes are obtained 
as required.

B. Nonlinear tests. Hyperelastic material The solid-
shell element EADG7 is tested in the range of large 

Table 4  Curved 3D cantilever
Element Displacement uy × 100 and relative error [in %]

Radial “directors” Skew “directors”
Tested new solid-shell
HW18/EADG2 2.4434 (1.81%) 2.4898 (3.74%)
EAS5/EADG2 2.4434 (1.81%) 2.4884 (3.68%)
EADG7 2.4434 (1.81%) 2.4887 (3.70%)
Ref. solid-shell
HW19 2.4434 (1.81%) 2.4980 (4.08%)
EAS10 2.4434 (1.81%) 2.4979 (4.08%)
HSEE 2.4618 (2.58%) 2.7033 (12.64%)
Ref. 2D 4-node Plane Stress
HW14-S, HR5-S [49] 2.3610 (− 1.63%) 2.3832 (− 0.70%)
Ref. 8-node 3D solid
3D TSCG12* with HT

b  [24] 2.3495 (− 2.10%) 2.2434 (6.53%)

Ref. beam solution [28] 2.4000
Displacement uy  at node A and its relative error [in %] for radial and skew nodal “directors”. EADG (T4,G/GT)
*Modified (local reference basis as for solid-shells and 2 × 2 × 2 Gauss Points)

Fig. 12  Cook’s membrane. a Initial geometry and load. b Two meshes with different orders of nodes (g1 and g2 are natural vectors at the master 
block’s center.)
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displacement component and the load case, and are treated 
as the reference solution.

This example is then run for coarse meshes (n = 2 and 4) 
and the solid-shell element EADG7 either with (T2,GT ) or 
(T4,GT ). The results are shown in Fig. 14, where the order 
of the curves, from most to least accurate, is as follows: 

(a)	 For the load −P (Fig. 14a), 

ux : (n = 4, T2) = (n = 4, T4), (n = 2, T2),
(n = 2, T4),

uy : (n = 4, T2), (n = 4, T4), (n = 2, T2),
(n = 2, T4).

	  For ux and n = 4, the curves for T2 and T4 coincide, 
while for uy, the curve for T2 is slightly more accurate 
than the one for T4.

(b)	 For the load +P (Fig. 14b), 

ux : (n = 2, T4) = Ref., (n = 4, T4),
(n = 4, T2), (n = 2, T2),

uy : (n = 4, T4) = (n = 2, T4)
= Ref., (n = 4, T2), (n = 2, T2).

	  For ux, the curve (n = 2, T4) coincides with the ref-
erence curve (Ref.). For uy, both curves for T4 coin-
cide with the reference one, while those for T2 are less 
accurate.

The displacements ux and uy at node A are shown in 
Fig. 14. (Node A is positioned as shown in Fig. 12a.) The 
reference solutions (Ref.) are obtained using the mesh for 
n = 16 and three finite elements: (1) solid-shell element 
EADG7 with the enhancement (T2,GT ), (2) solid-shell 
element EADG7 with the enhancement (T4,GT ), (3) solid 
element 3D TSCG12 with HT

b  of [24] modified for shell 
applications as described in the introduction to Sect. 5. For 
all these elements, the solutions coincide for the selected 

Table 5  Cook’s membrane
Element Form of EADG Vertical displacement uy  (error in %)

Mesh 2 × 2 Mesh 32 × 32
Tested new solid-shell
HW18/EADG2 (T4,GT )   21.294 (− 10.57%)   23.884 (0.31%)
EAS5/EADG2 (T4,GT )   21.076 (− 11.49%)   23.884 (0.31%)
EADG7 (T1/T3,G) 21.076 (− 11.49%) 23.884 (0.31%)

(T1/T3,GT ) 13.600 (− 42.88%)  23.802 (− 0.03%)

(T2/T4,G/GT ) 21.076 (− 11.49%)    23.884 (0.31%)
Ref. solid-shell
HW19 – 21.126 (− 11.27%) 23.884 (0.31%)
EAS10 – 21.076 (− 11.49%) 23.884 (0.31%)
HSEE – 21.073 (− 11.49%) 23.884 (0.31%)
Ref. 2D Plane Stress [own]
2D TSCG6∗∗ Hb/HT

b
21.136 (− 11.23%) 23.940 (0.55%)

2D EAS7 – 21.129 (− 11.26%) 23.940 (0.55%)
Ref. 8-node 3D solid
3D TSCG12* [24] HT

b
21.021 (− 11.71%) 23.884 ( 0.31%)

Ref 23.81 23.81
Linear analysis. Accuracy of elements and effects of various combinations of T1/T2/T3/T4 and G/GT

*Modified (local reference basis as for solid-shells and 2 × 2 × 2 Gauss Points) ∗∗2D TSCG6 for Plane Stress is analogous to 3D TSCG12 of 
[24]

Fig. 13  Cook’s membrane. Deformed mesh after 320 steps for load: 
a−P,b+P
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Using the shell’s and load’s double symmetry, a quar-
ter of the shell is modeled. One element is used through 
the thickness and three meshes with 8 × 8, 16 × 16 and 
64 × 64 elements over the surface. The nodes shown in 
Fig.  15 are doubled in the through-thickness direction to 
obtain the mesh for 8-node solid-shell elements. The thick-
ness h = 0.04 is used, as in [28].

This test is run for two materials. For the SVK mate-
rial, E = 6.825 × 107 and ν = 0.3. For these values the 
bulk modulus is K = 5.6875 × 107 and the shear modu-
lus is µ = 2.625 × 107. The latter constants are used for 
the hyperelastic material of Eq. (68). All new elements, i.e. 
HW18/EADG2, EAS5/EADG2 and EADG7, are run with 
the EADG (T4,GT ) enhancement.

The results of the linear analyses are given in Table 6, 
where the inward displacement uy under the force P = 1 at 
the inner node is reported. The conclusions are as follows: 

1.	 For all new solid-shell elements, the obtained displace-
ments are identical to those yielded by the reference 
solid-shell elements HW19 and EAS10, but slightly dif-
fer from those yielded by the reference HSEE.

2.	 The results for reference 8-node 3D solid elements are 
less accurate for the 8 × 8 and 16 × 16-element meshes 
than the ones for the solid-shell elements. For the dense 
64 × 64-element mesh, the results have the same rela-
tive error.

The non-linear analyses are performed using the 16 × 16
-element mesh and the Newton method. The solution curves 
are shown in Fig. 16. For all new solid-shell elements and 
both materials, linear elastic (SVK) and hyperelastic, the 
curves fully coincide over the whole load range, and are 
very close to that for the reference 4-node shell element 
HW47 with 6 dofs/node and the RBF correction of [50].

The solutions obtained by two versions of the 3D 
TSCG12 element of Korelc et al. [24] are also shown in 
Fig. 16. The standard version uses the special 9-point inte-
gration rule (2 × 2×2 + center) of [40], while the modified 
version uses the 2 × 2×2 Gauss integration and the local 
reference basis, see the introduction to Sect. 5. The modified 

In summary, the transformation T4 performs very well in 
this non-linear example. For the load +P, it performs even 
better than T2, which is used in [25] and [12].

5.3.2  Pinched hemispherical shell with hole

The hemispherical shell with an 18o hole is loaded by two 
pairs of equal but opposite external forces, see Fig. 15. The 
shell undergoes an almost in-extensional deformation, so a 
membrane locking of solid-shell elements can be detected 
by this test.

Fig. 15  Pinched hemispheri-
cal shell with hole. a Geometry 
and boundary conditions.    b 
Deformed shape

 

Fig. 14  Cook’s membrane. Non-linear solutions for load: a−P,    b+P. 
Element EADG7. Enhancement matrix GT  and transformations T2 
and T4 are tested
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In this test only one step is performed and the maximum 
load for which the Newton method converges is found by 
successively increasing the initial ∆P  by 0.1. The shell and 
load of Fig.  15a are analyzed using the 16 × 16-element 
mesh and the thickness h = 0.01 for the SVK material. 
The results obtained using the EADG enhancement with 
(T4,GT ) are presented in Table 7.

The tested new solid-shell elements inherit the radius of 
convergence (Max ∆P ) and the number of iterations from 
their parent elements, i.e. HW18/EADG2 from the refer-
ence HW19, and EAS5/EADG2 from the reference EAS10. 
The reference solid-shell elements HSEE and HW35 of [52] 
converge for a larger Max ∆P  and in fewer iterations, but 
involve more additional parameters.

5.3.3  Twisted beam

The initial geometry of the beam is twisted so all the ele-
ments are warped (non-flat) but the initial strains are equal 
to zero. The beam is clamped at one end and loaded by a 
force Py at the other end, see Fig. 17a. The SVK (linear, 
elastic) material is used with E = 2.9 × 107 and ν = 0.22. 
The other data is as follows: the length L = 12, the width 
w = 1.1 and the twist angle is 90◦, as in [28].

In the computations, a 4 × 24-element mesh of the 8-node 
solid-shell elements and a small thickness h = 0.0032 are 
used. One element is used through the thickness. Regard-
ing the reference shell elements (Reissner-Mindlin with 6 
dofs/node), the 4 × 24-element mesh is used for the 4-node 
HW47 and the 2 × 12-element mesh for the 9-node MITC9i. 
All new solid-shell elements use the EADG (T4,GT ) 
enhancement.

The results of a linear analysis for Py = 10−6 are pre-
sented in Table 8, where the uy × 103 displacement at point 
A and its relative error are shown. The tested new solid-shell 
elements, i.e. HW18/EADG2, EAS5/EADG2 and EADG7, 

version is more accurate than the standard one, with the 8% 
error of the inward displacement at P = 800.

One-step non-linear test. The non-linear finite elements 
can differ in the radius and rate of convergence of the New-
ton method. These can be characterized by the maximum 
∆P  for which the method converges and by the number of 
iterations performed.

Table 6  Pinched hemispherical shell with hole
Element Displacement −uy × 100 and relative error [in %]

8 × 8 16 × 16 64 × 64
Tested new solid-shell
All new elmts 9.4306 (0.33%) 9.3446 (− 0.59%) 9.3548 (− 0.48%)
Ref. solid-shell
HW19, EAS10 9.4306 (0.33%) 9.3446 (− 0.59%) 9.3548 (− 0.48%)
HSEE 9.4505 (0.54%) 9.3511 (− 0.52%) 9.3555 (− 0.43%)
Ref. 8-node 3D solid
3D.HW51 6.9776 (6.14%) 9.2594 (− 1.49%) 9.3545 (− 0.48%)
3D.EAS-30 [1] 6.9776 (6.14%) 9.2594 (− 1.49%) 9.3545 (− 0.48%)
3D TSCG12* with HT

b
4.5510 (− 51.6%) 8.8978 (− 5.34%) 9.3546 (− 0.48%)

Reference [28] 9.4000
Linear solutions for 3 meshes. SVK material. h = 0.04. EADG (T4,GT )
*Modified (local reference basis as for solid-shells and 2 × 2 × 2 Gauss Points)

Table 7  Pinched hemispherical shell with hole
Element Max ∆P No. of iterations
Tested new solid-shell
HW18/EADG2 0.5 24
EAS5/EADG2 0.4 28
EADG7 0.4 28
Ref. solid-shell
HW19 0.5 24
EAS10 0.4 28
HSEE 4.4 14
HW35 [52] 3.5 11
One-step non-linear test. h = 0.01

Fig. 16  Pinched hemispherical shell with hole. Non-linear solutions 
for SVK and hyperelastic material. Mesh 16 × 16 elements. h = 0.04
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the assumed stress S0 ∗
12  and the assumed strain E0 ∗

12  from 
Eq. (55), and using the compatible strain E0

12 in the strain 
energy W  instead. The element EADG4 is formulated as the 
element EADG7 but is based on the EADG4 representation 
of Eq. (63).

5.3.4  Compression of a nearly-incompressible block

The purpose of this test is to find the critical compressive 
strain for the tested new solid-shell elements and to check 
whether mesh hourglassing occurs at this strain. To remove 
hourglassing, the EADG (T4,GT ) enhancement is used.

The 1 × 1 × 1 block is supported at the bottom in the 
vertical direction and compressed by a sequence of vertical 
displacement increments ∆v = 0.001 applied at the top, see 
Fig. 19. The mesh of 10 × 10 × 1 elements is used, with one 

have the accuracy similar to the reference elements HW19, 
EAS10 and HSEE.

The non-linear load-deflection curves are obtained for 
∆Py = 10−4 using the arc-length method and are shown 
in Fig.  18. The displacement uy at point A is monitored. 
The tested new solid-shell elements yield the solutions that 
coincide with those for the reference solid-shell elements. 
They are only minimally stiffer than the solution for the ref-
erence 4-node shell HW47 with 6 dofs/node run with the 
RBF correction.

In summary, the analyzed shell is very slender 
(L/h = 3750) but all the new solid-shell elements provide 
results of very good accuracy.

Remark. Three curves in Fig. 18 are inaccurate; for the 
reference solid element 3D TSCG12 (modified) and for two 
reference solid-shell elements HW12/EADG2 and EADG4, 
which have not been characterized yet. The element HW12/
EADG2 is obtained from HW18/EADG2 by removing 

Table 8  Twisted beam
Element Form of EADG uy × 103 Relative error

Tested new solid-shell
HW18/EADG2 (T4, GT ) 1.2934 − 0.05%
EAS5/EADG2 (T4, GT ) 1.2916 − 0.19%
EADG7 (T4, GT ) 1.2924 − 0.12%

(T4, G) 1.2927 − 0.10%
Ref. solid-shell
HW19 – 1.2900 − 0.31%
EAS10 – 1.2918 − 0.17%
HSEE – 1.2915 − 0.19%
Ref. 8-node 3D solid
3D TSCG12* HT

b
0.5339 − 58.74%

Ref. shell 6 dofs/node
4-node HW47 [50] – 1.2877 − 0.49%
9-node MITC9i [51] – 1.2948  0.06%
Reference [28] 1.2940
Linear results for out-of-plane load Py = 10−6

*Modified (local reference basis as for solid-shells and 2 × 2 × 2 
Gauss Points) Fig. 18  Twisted beam. Out-of-plane load. Non-linear solutions. The 

elements yielding inaccurate solutions (dotted lines) are described in 
the text. EADG (T4,GT )

 

Fig. 17  Twisted beam. a Initial 
mesh and load. b Deformed mesh 
at Py = 0.1
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The computed eigenvectors at the first zero eigenvalue are 
re-scaled and superimposed on the deformed mesh. Exam-
ples of a mesh with and without hourglassing are shown in 
Fig. 21.

Remark For the normal compression of the tested new 
solid-shell elements, i.e. when the nodal “directors” are 
within the plane of Fig.  19, the obtained critical strain is 
0.115 and the mesh hourglassing appears for all elements. 
Similar values are obtained for the reference (parent) solid-
shell elements HW19, EAS10 and HSEE, see Table 12 in 
[52].

element in the direction normal to the plane of the figure. 
The displacements in this direction are set to zero.

The modified neo-Hookean hyper-elastic material model 
is used, with the strain energy function W  for the volumet-
ric/isochoric split of the deformation gradient F,

W = µ

2

(
J−2/3tr C − 3

)
+ K

β2

(
J−β − 1 + β ln J

)
,� (68)

where C = FT F is the right Cauchy-Green deformation 
tensor and J = det F. The material data is as follows: the 
shear modulus µ = 20, the bulk modulus K = 4 · 105 and 
the dimensionless parameter β = −2. For these µ and K, we 
obtain E = 59.999 and ν = 0.499975. For these values, K 
plays the role of a penalty multiplier for the second term in 
Eq. (68). The transverse shear correction factor k = 1.

The procedure is as follows: The Newton method is used 
to solve the equilibrium equations for each increment ∆v 
and the 5 lowest eigenvalues of the tangent stiffness matrix 
are computed at converged configurations using ARPACK .1 
For the lowest eigenvalue equal to zero, the corresponding 
scaled eigenvector is then plotted on the current mesh.

For the compression in the tangent plane of the solid-shell 
elements, i.e. when the nodal “directors” are perpendicular 
to the plane of Fig. 19, the obtained critical strains (first zero 
eigenvalue) are given in Table 9. The EADG enhancement 
is used with the transformation rule T4 and either GT or G. 
The last column indicates whether hourglassing appears at 
the critical strain. We note that: 

1.	 For GT, the same critical strain 0.526 is obtained for all 
the tested new solid-shell elements, and the mesh hour-
glassing at this strain is suppressed.

2.	 For G, the critical strain is smaller, equal to 0.417, 
and the hourglassing is present at the critical strain 
for all elements. The same value and hourglassing are 
obtained for the reference solid-shell elements HW19 
and EAS10.

The lowest eigenvalues of the stiffness tangent matrix are 
shown vs. the vertical displacement v in Fig.  20. For the 
tested new solid-shell elements: 

1.	 All the solutions for GT coincide and all the solutions 
for G coincide, so only two curves are depicted for 
these two cases.

2.	 The curves for solid-shell elements correspond to the 
curves for the reference 3D TSCG12 element in the 
standard or modified form, using either HT

b  or Hb.

1  ARPACK is a numerical software library for solving large scale 
eigenvalue problems (www.arpack.org).

Table 9  Compression of a nearly-incompressible block
Element Form of EADG In-plane compression

Critical strain Hourglassing
Tested new solid-shell
HW18/EADG2 (T4,GT ) 0.526 No

(T4,G) 0.417 Yes
EAS5/EADG2 (T4,GT ) 0.526 No

(T4,G) 0.417 Yes
EADG7 (T4,GT ) 0.526 No

(T4,G) 0.417 Yes
Ref. solid-shell (no EADG)
HW19 – 0.416 Yes
EAS10 – 0.416 Yes
HSEE – 0.373 Yes
HW51 – 0.297/0.309 No
Ref. 8-node 3D solid
3D TSCG12* HT

b
0.513 No

Hb 0.372 Yes
Critical strains and hourglassing
*Modified (local reference basis as for solid-shells and 2 × 2 × 2 
Gauss Points)

Fig. 19  Compression of nearly-incompressible block. Problem 
definition
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modifications are also required to obtain a correct 
form of these elements from their parent elements, 
see Sects. 4.1.2 and 4.2.2 for details.

(b)	The element EADG7 inherits the feature of sup-
pressing the mesh hourglassing by transposing 
matrix G from its parent element EADG4. Three ξη

-modes are incorporated into the EADG7 element, 
see Eq. (64), to eliminate one of the spurious large 
eigenvalues for the incompressible material and to 
improve bending behavior.

2.	 With regard to the transformation rules for the EADG 
enhancement, we propose and test the rule designated 
T4 in Sect.  3. T4 involves (Jcurr

0 )−T , where Jcurr
0  is 

the current Jacobian at the element’s center, and it is 
an alternative to the three other transformations, des-
ignated T1, T2 and T3, that exist in the literature. It is 
found that the transposition of matrix G works well 
with T2 and the proposed T4, but not with T1 and T3. 
Regarding the performance of the transformation T4, 

(a)	 In linear tests, the results for G and GT  are equal 
because the enhanced linear strain is insensitive to 
the transposition of G, see Eq. (42) and Table 5.

(b)	In non-linear tests, distinct solutions are obtained 
when using G and GT . For the Cook’s membrane 
(Sect. 5.3.1), T4 performs very well and for the load 
+P even better than T2. For the compression of a 
nearly-incompressible block (Sect.  5.3.4), there is 
no mesh hourglassing under tangent compression at 
the critical strain for the EADG enhancement with 
(T4,GT ).

 Furthermore, in terms of the accuracy of the solutions in 
the tests unrelated to hourglassing, the three proposed ele-
ments perform very well, i.e. they perform either similarly 
to or better than their parent elements. This validates the 
proposed changes and provides an argument for using these 
elements in analyses of elastic single- and multi-layer shells. 
Further research is planned to verify their performance also 
for elasto-plastic materials.

6  Final remarks

Three eight-node (hexahedron) solid-shell elements have 
been proposed and tested in the current paper. Their for-
mulation eliminates mesh hourglassing at the bifurcation 
point for a nearly incompressible hyperelastic material 
under compression. The elements have correct rank, pass 
the membrane and bending patch tests and are free from 
the curvature thickness, transverse shear and volumetric 
locking. 

1.	 Mesh hourglassing is suppressed by transposing the 
matrix G in the enhancement of the deformation gradi-
ent F, as for a 4-node 2D plane strain element in [25] 
and [12]. 

(a)	 The 2-parameter representation EADG2 is proposed 
as a means to suppress hourglassing in the elements 
HW18/EADG2 and EAS5/EADG2. Note that other 

Fig. 21  Compression of a nearly-
incompressible block. Eigenvec-
tors for the lowest zero eigenvalue 
are superimposed on the mesh and 
show: a hourglassing for G, b no 
hourglassing for GT

 

Fig. 20  Compression of a nearly-incompressible block in the tangent 
plane of elements. Lowest eigenvalue of the tested new elements using 
EADG (T4, G/GT )
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Appendix 1: Transformation operators for 
strain and stress vectors

Because of the symmetry of strain and stress tensors, instead 
of matrices we can use the vectors of their components

Ev
.= [E11, E22, E33, 2E12, 2E13, 2E23]T ,

Sv
.= [S11, S22, S33, S12, S13, S23]T ,

� (A1)

and define the transformation matrices to obtain the com-
ponents in another basis. Let us define the transformation 
matrix

where Jik = gi · i0
k (i, k = 1, 2, 3) are the components of 

the Jacobian J and a, b are scalars. To perform the trans-
formations between the contravariant (CTV) components 
and the Cartesian (CART) components of vectors (69), we 
define two operators

TE
.= T(a = 1, b = 2) and TS

.= T(a = 2, b = 1).� (A3)

The use of these operators is equivalent to the matrix opera-
tions, as specified below.

The CTV → CART transformation of components of 
strain can be written either as

ECART = J ECTVJT or ECART
v = TE ECTV

v .� (A4)

We can check their equivalence, i.e. 
(
ECART

)
v = ECART

v , 
where (·)v designates the operation of taking the compo-
nents of a matrix in a proper order to obtain the strain vector 
of Eq. (69). Analogous equivalent relations for components 
of stress are,

SCART = J SCTVJT or SCART
v = TS SCTV

v .� (A5)

The modified versions of the above transformations are used 
in solid-shell elements in [23] and [52], different in each of 
these papers. Various rules for the assumed strains are tested 
and compared for 4-node 2D Hu–Washizu elements in [53].
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