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Abstract

The focus of a current paper is on eliminating hourglassing at the bifurcation point, particularly in simulations involv-
ing incompressible materials. Three eight-node (hexahedron) solid-shell elements that are free from the hourglassing in
their tangent plane are developed for this purpose. To eliminate hourglassing, a transposition of the enhancement matrix
G of the Enhanced Assumed Deformation Gradient (EADG) method is used, see Korelc and Wriggers (Eng Comput
13(1):103-123, 1996) and Glaser and Armero (Eng Comput 14(7):759-791, 1997). Several modifications are proposed
to convert three existing (parent) solid-shell elements into the new ones: 1. A two-parameter enhancement (EADG2) of
the deformation gradient F is proposed to suppress hourglassing of our Hu—Washizu element HW19 and the Enhanced
Assumed Strain element EAS10. Originally neither of them uses the EADG method, so they are reformulated to embed
it. 2. A new transformation rule (designated T4) is proposed for the EADG enhancement, and it involves the inverse of
the current Jacobian for large deformations. T4 is an alternative to the other three transformations used in the literature.
We check that T4 is objective and subject it to numerical tests in the current paper. 3. For the third parent element, which
uses the standard EADG4 enhancement, we propose 3 additional modes, which are necessary to eliminate one of the
large spurious eigenvalues for the nearly incompressible material and to improve its bending behavior. The improved
performance of the obtained elements is demonstrated using several linear and non-linear examples for the linear elastic
material and the neo-Hookean hyperelastic material. They are also compared to the best existing solid-shell elements.

Keywords Shell - Finite element - Instability - Finite deformation - Bifurcation

1 Introduction

The 8-node hexahedron solid-shell elements have already
achieved a considerable level of maturity and are applied to
analyze shell structures at finite strains. For shell structures,
especially in bending dominated problems, they outperform
the 8-node 3D solid elements, partly due to adaptation of
techniques developed for shell elements that eliminate vari-
ous types of locking. In our recent paper Wisniewski and
Turska [52] on the reduced representation Hu—Washizu
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(HW) solid-shell elements, several formulations of these
elements are tested and compared.

Solid-shell elements play an important role in structural
analysis of multi-layer composites because nodes located at
bounding surfaces allow for straightforward aggregation of
layers. They form the basis of more advanced and numeri-
cally effective shell models of composites, see, e.g., [13—17,
45].

Although inelasticity remains beyond the scope of pres-
ent work we would like to mention several papers including
elasto-plasticity for solid-shells, see, e.g., [11, 19, 20, 37,
38]. Solid-shells not only require the adaptation of the 3D
or plane stress constitutive algorithms but also the inclusion
of additional methods, such as the Assumed Natural Strain
(ANS) method.

Mesh hourglassing of solid elements In Simo and
Armero [39], the hourglass patterns of the mesh for the ele-
ment Q1/P0, which is based on the mean dilatation approach
of Nagtegaal et al. [29], are attributed to a failure of the
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LBB condition. The presence of undesirable modes at high
strains for the enhanced 2D plane strain 4-node element Q1/
E4 is noted in that paper, but not analyzed.

A simple 2D example that can be solved analytically
and also exhibits hourglassing was first proposed by Wrig-
gers and Reese [56]. They analyzed a single enhanced 2D
plane strain 4-node element, which resulted in analytical
expressions and plots of the eigenvalues as functions of the
stretch. For compressible neo-Hookean material with Lamé
constants A = 10° and p = 20 (for which v = 0.499975),
the critical stretch Ao = 0.6116 and the hourglassing mode
were obtained. It was observed that for the standard (non-
enhanced) element, no singularity appears for physically
meaningful values of Lamé constants (A > 0, p > 0) thus
a singular point is a result of the enhancement.

This problem subsequently was analyzed further in
Korelc and Wriggers [25], Wriggers and Korelc [55], Gla-
ser and Armero [12] and Armero [3]. It was found for the
Ogden material that hourglassing is also possible under ten-
sion [12]. Several other very good papers were published,
e.g.,[3,8,9, 30,31, 35], to mention the early ones. A com-
prehensive overview is provided in Wriggers [54, Sect. 10].

Several methods of controlling the spurious modes were
devised, and the simplest one is the method of transposi-
tion of the matrix G of the Enhanced Assumed Deformation
Gradient (EADG) enhancement proposed in Korelc and
Wriggers [25] and Glaser and Armero [12]. Other methods
use hourglass stabilization with user-defined parameters,
see [2, 12], or hourglass stabilization based on mixed meth-
ods, see [36, 46]. In the current paper, we use the method of
transposition of G.

In passing we note that to remove mild spurious deforma-
tion modes, the governing functional can be supplemented
by the penalty term [, 13 [det(I+F) —1]> dV. This
term constrains the volume changes due to the enhance-
ment of deformation gradient F, see [12, Eq. (29)] and [24,
p. 656]. The penalty number 3 can be used as the stabiliza-
tion parameter. An additional constraint on the enhancement
was earlier used in [30], and it required the variation of the
enhancing field to be orthogonal to a piece-wise constant
pressure field. In consequence, the instantaneous rate of
change of the volume due to solely the enhancing field is
zero when the nodal positions are held fixed.

Recently, Pfefferkorn and Betsch [33] developed a 3D
solid element based on the Petrov-Galerkin method with
the enhancement of the spatial displacement gradient
Ou(X)/0x = I — F~! instead of the deformation gradient
F, where X and x are the initial and current position vectors,
respectively. This element eliminates the spurious hourglass
instabilities but uses an unsymmetric stiffness matrix.

@ Springer

Mesh hourglassing of solid-shell elements The currently
used 8-node solid-shell elements stem from the earlier
developed 3D solid elements; we elaborated on this rela-
tion in [52]. They use the same interpolation functions and
constitutive modules, but the solid-shell elements also use
additional specialized methods to pass the bending patch
test and to improve their behavior in thin shell applications
involving bending/twisting dominated problems.

1. The 0th order thickness strain is improperly approxi-
mated for curved or trapezoidal through-thickness
shape of elements (deformed or undeformed) causing
the so-called curvature thickness locking. The Assumed
Natural Strain (ANS) method proposed in Betsch and
Stein [5] is used to circumvent this issue.

2. The out-of-plane bending is impaired by the zero value
of the Ist order thickness strain, which causes the volu-
metric (or dilatational or Poisson’s ratio or Poisson’s
thickness) locking. To remedy this problem, this strain
is enhanced using the EAS method, see Biichter et al.
[6], Vu-Quoc and Tan [44] and our [52]. Also a specific
representation of the assumed thickness strain in the
HW elements can be used, see Klinkel et al. [23].

3. To reduce the transverse shear locking, the ANS method
proposed by Dvorkin and Bathe [10] is applied to the
Oth order transverse shear strains.

These methods significantly improve behavior of the 8-node
solid-shell elements, and for this reason are indispensable in
this class of elements.

We note that hourglassing at the bifurcation point is
not recognized as a problem in the existing literature on
the solid-shell elements, and our recent paper [52] on the
reduced representation HW solid-shell elements seems to
be an exception.

For shell structures modeled by solid-shell elements, the
loss of stability can be caused by the element’s formula-
tion and also by structural design. To check the solid-shell
element’s formulation, the test should exclude the latter
cause, as, e.g., the “Compression of a nearly-incompress-
ible block” test of Sect. 5.3.4. We performed this test in our
recent paper [52], and all of the tested and reference solid-
shell elements exhibited mesh hourglassing, see Table 12
therein. This provides a strong motivation to develop the
solid-shell elements that are free of hourglassing under tan-
gent compression.

Objectives of the current paper The focus of a current
paper is on eliminating hourglassing at the bifurcation
point, particularly in simulations involving solid-shell
elements and the nearly incompressible hyperelastic mate-
rial. (We stress that this paper is not on suppressing the
hourglassing caused by reduced integration.) The applied



Computational Mechanics

method to suppress mesh hourglassing utilizes a transposi-
tion of the matrix G of the Enhanced Assumed Deforma-
tion Gradient (EADG) enhancement as proposed in Korelc
and Wriggers [25] and Glaser and Armero [12].

1. To obtain new hourglassing-free elements we will mod-

ify two existing solid-shell elements, our Hu—Washizu
element HW19 [52] and the Enhanced Assumed Strain
element EAS10 (see Sect. 4.2.1), which are both based
on Green strain/2nd Piola-Kirchhoff stress, and treated
as the parent elements.
These two elements are stable and pass the membrane/
bending patch tests. They have one large eigenvalue for
nearly-incompressible material (v = 0.4999999999),
and yield quite accurate results in benchmark tests. How-
ever, they produce hourglassing of the mesh at the bifur-
cation strain for the nearly-incompressible material. In
the current paper, we will improve these elements to
make them resilient to this type of hourglassing.

2. Elements HW19 and EAS10 do not use the EADG
enhancement so we propose to extend their govern-
ing functionals and incorporate an enhancement of the
deformation gradient F. The basic ideas pertaining to
the EADG enhancement are as follows:

(A)Regarding the assumed representation, it was
noticed in [25] and [12] for 2D plane strain ele-
ments and the standard 4-parameter representation

EADG4 defined as

that a transposition of this G suppresses the mesh hour-

glassing. Here &, n € [—1, +1] are natural coordinates.
Since the transposition affects only the off-diagonal
terms of EADG4, we propose to use a simpler 2-param-
eter representation EADG2,

in the new solid-shell elements. For the version of
EADG? used in our solid-shell elements, see Eq. (47).

(B) Regarding the transformation rules for the EADG
enhancement, three such rules can be found in the
literature: T1 by Simo et al. [40], T2 by Glaser and
Armero [12], and T3 by Pfefferkorn and Betsch
[32], where the designations T1, T2 and T3 are
introduced here for brevity. In the current paper, we
propose a new transformation rule, designated T4,

which for large deformations involves (J§)~71,
where JG"™ is the current Jacobian at the element’s
center. T4 is tested with the 2-parameter G and its
transpose.

3. We will also modify the third existing solid-shell ele-
ment, designated EADG4, in which the EADG4
enhancement of the membrane strains suffices to sup-
press the mesh hourglassing. Unfortunately, this element
has two large eigenvalues for the nearly incompressible
hyperelastic material. Therefore, we have introduced 3
additional modes, to obtain the EADG7 representation,
which eliminates one of these large eigenvalues and
improves the element’s bending behavior.

4. The three new solid-shell elements are tested against the

two reference solid-shell elements, which are currently
considered as the best in this class: the HSEE element
of Klinkel et al. [23] and the EAS10 element, which is
characterized in Sect. 4.2.1. Several other elements are
also used for comparison, including a 3D solid element
and the Reissner-Mindlin’s shell elements with 6 dofs/
node. Comparison to the reduced representation HW
solid-shell elements of our recent paper [52] can also be
made.
The performance of the developed solid-shell elements
is demonstrated using several linear and non-linear
examples for the linear elastic material and the incom-
pressible hyper-elastic material. The accuracy of solu-
tions, the convergence properties of the Newton method
and the mesh hourglassing in the large strain compres-
sion are examined.

Outline of the paper The outline of the paper is as fol-
lows: the general characteristics of the solid-shell elements
are provided in Sect. 2, which includes the ANS methods
for the thickness and transverse shear strains in Sect. 2.1.
The enhancement of the deformation gradient is described
and analyzed in Sect. 3; the transformation rules for the
EADG enhancement are in Sect. 3.1 and the assumed rep-
resentation EADG?2 in Sect. 3.2.

New solid-shell elements are presented in Sect. 4, which
includes the HW element with EADG2 enhancement in
Sect. 4.1, the EAS element with EADG2 enhancement
in Sect. 4.2 and, finally, the EADG7 element in Sect. 4.3.
Numerical tests in Sect. 5 demonstrate the performance of
the developed hourglassing-free solid-shell elements. The
paper concludes with final remarks in Sect. 6.

Notation: “parameter” is abbreviated to “p”. As for the
components, “COV” stands for “covariant”, “CTV” for
“contravariant” and “CART” for “Cartesian”. The elemen-
tal parameters are denoted as ¢;, 1 = 1,..., Ny, and the
vector of these parameters as q.
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2 General characteristics of solid-shell
elements

This section first provides the general characteristics of
the solid-shell 8-node elements. Next, their kinematics is
described.

Basic definitions for solid-shell element. Consider a
8-node isoparametric solid-shell element with the nodes
numbered as shown in Fig. 1. The nodal “directors” are
defined as the vectors linking the corresponding nodes at
the bottom and top surfaces, i.e. 1-5, 2—6, 3—7 and 4-8.
They can by non-parallel and not perpendicular to the ele-
ment’s middle surface, which can be either flat or warped,
similarly to the middle surface of the Reissner-Mindlin’s
4-node shell elements, see e.g. [48]. The reference elemen-
tal basis is designated as {i.}, (k = 1,2, 3).

The following vectors are associated with the solid-shell
element: the initial position X, the displacement u and the
current position x. The first two vectors are interpolated as
follows:

53777 ZNI 5 777 XI»
(3)

53777 ZNI 5 7’7 ula

where the standard tri-linear shape functions are

[o)
;_n

Ni(€,n.¢) :Zg L+ &8) (1 +nm) (1 + ¢r6), “4)
=1

&n,¢ €[—1,41] are the natural coordinates and
{&r,m1,Cr} = {£1,£1,£1} are the natural coordinates of

nodes I =1,...,8. The current position x is obtained as
x(&,1,¢) = X(&,1,¢) +u(&,n, ).

The thickness vector is defined as
h(fﬂ?) = X(ga"%C = 1) - X(Sﬂ%c = _1) and the C

-coordinate is associated with it. The reference (middle) sur-
face is at ¢ = 0 while the bounding top/bottom surfaces at
¢ = %1. Note that for solid-shells the “thickness” is defined

Fig. 1 Numbering of nodes and the reference elemental basis {ix} of
8-node solid-shell element. ¢ is the thickness coordinate

@ Springer

as h = ||h||, i.e. differently than the thickness for the Reiss-
ner-Mindlin’s shells.

Jacobian matrix Let us denote the components of the
initial position vector X in the global reference Cartesian
basis {ex } as X, (k = 1,2, 3). The Jacobian matrix is
defined as

_Tox,, gi-i1 g-ii g3 iy
J= [81} =| 8-l gl g3-i2 |, Q)
3 8113 8213 83-13

where &' = {¢,1,¢} (I =1,2,3). The vectors of the nat-
ural basis {g;} in the initial configuration are defined as

1 = 0X/9¢. The vectors iy of the elemental Cartesian
basis at the element’s center {i } are constructed in the stan-
dard way, see e.g. [52, Egs. (6)—(9)].

The matrix in Eq. (5) is obtained from the equation
(X — Xon) i, = & g;, where X are components of the
position vector of the element’s center X,. Differentiating
both sides of this equation w.r.t. £ and taking a scalar prod-
uct with iz, we obtain 0X}, /¢! = g; - iy

Note that if X is replaced by X* = RT (X — X)), where
R € SO(3) is a rotation, then gf = 9X*/9¢! = RTg; and
it = RTi, onuseofg} inplace of g, (o = 1, 2)in Egs. (6)—
(9)of [52]. Theng; - i = g; - ix,and 90X} /9! = 0 X}/ OE!
follows. Hence J is invariant to the R (X — X) transfor-
mation, which can be used in the element’s formulation.
Kinematics of solid-shells. The configuration space of
the Cauchy continuum is defined as: C = {x: B — R%},
where B is the reference configuration of the body. The
deformation function x : x = x(X) maps the reference
(non-deformed) configuration onto the current (deformed)
one. The deformation gradient is defined as

. 0x
F=5x ©

where X is the position vector in the initial (non-deformed)
configuration and x is the position vector in the cur-
rent (deformed) one. Using the convective coordinates
& ={¢,n,(}, we can parameterize the position vectors as
X (&) and x(&). For the components in the Cartesian refer-
ence basis {iy }, we obtain

20X O0X 08 qeur g1
“ox —oeox 7 T 2

where J°"" = 0x/0€ and J = 0X /€ are the current and
initial Jacobians, respectively. Note that J°™" is related to J
by the gradient of displacements, i.e.
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curr_aj_a(x+u)_ @
J %~ o =J +8£' 8)

The Green strain is defined as

1
E=_(F'F-1) o E=JTEVJ' 9
where the covariant (COV) components are computed as
either

ECOV _ [(qurr)T Jewr _ JT J]

A

(10)

or Eg_ov =

(88 —8i-8g),

NV}

where g1 = 0x/0€, go = 0x/0n and g5 = 9x/0( are vec-
tors of the natural basis {g;} in the deformed (current) con-
figuration. Besides 7, j = 1,2, 3.

For the solid-shell elements, we linearly expand the
strain E in the thickness coordinate  at the reference sur-
face ¢ = 0 as follows:

E()~E’+(E', (e[-1,+1], (11)

where the 0th and the st order strains are defined as

0 - 1 - aE(C)
BBl BT (12)

The Oth and st order parts of strain are designated by the
superscript “0” and “1”, respectively.

2.1 Treatment of transverse shear and thickness
strains

In this section we discuss specialized methods used to
improve the transverse shear strain and the thickness strain.
A full description of our implementation of these methods is
given in [52, Sect. 4].

1. The ANS method in the form proposed in Dvorkin and
Bathe [10] is applied to transverse shear strains ES,, to
reduce the transverse shear locking.

Fig.2 ANS method. Location of + 1

sampling points for 713,723 and 4 7 3

€33 at C =0
8 MEE 6 ¢
1 5 2

Let us denote the covariant components of the trans-
verse shear strains at the reference surface ¢ = 0 by
Yaz = 2E9.C0V (o = 1,2), and proceed as follows.
First, values of 7,3 are computed (sampled) at the mid-
dle points of element sides, and denoted by 775, 75 for
(€ =0, n==1) and 753, 753 for (£ =1, n=0),
see Fig. 2. Next, 743 are interpolated linearly in one
direction using the sampled values as follows:

[(1 =) 75+ (1+n) 7],

[(1—8) 735+ (14&) 733] -

513(5777) =
(13)

N~ N~

%723(57 77) =

2. The ANS method in the form proposed by in Betsch
and Stein [5] is applied to the thickness strain E9; to
circumvent the thickness straining appearing in bending
for trapezoidal through-thickness shapes of the element,
i.e. when the nodal “directors” are non-parallel.

We denote the covariant thickness strain at the reference
surface ( =0 by e33 = E.CCOV, and proceed as fol-
lows. First, €33 is computed (sampled) at 4 corner points
(§ =+1, n==1), see Fig. 2, and denoted as (e33)r,
I =1,23,4. Next, €33 is interpolated within an element
using the bi-linear shape functions N;(&,7),

g33(&m) = X711 Ni(&m) (e33)1- (14)

Finally, the ANS modified strains of Egs. (14) and (13) are
transformed to the Cartesian components

E\O/ CART _ (Tg)iT [07 Oa g333 Oa 513; 523],11 ’ (15)

where T2 is computed at the element’s center. The strain
vector E, and the operator Tg are defined in Appendix 1.
Alternatively,

EO CART — JO—T EO COV Jal, where
0 0 Ts/2 (16)
E0 OOV = 0 Y23/2 | .
Sym. £33
A N AM
4 7 3 4 3
4
8 Y23 6 33 &
°
1 5 2 1 2

@ Springer
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3. The Ist order thickness strain E3, is equal to zero, and
it is introduced using the Enhanced Assumed Strain (EAS)
method

ELEAS — (T2)7 [0,0,G150Y, 0,0,0)7 ]70 a7

where G5V = (q1 + ¢2€ + ¢3n) ¢ and it depends on the

thickness coordinate (. Alternatively,

E'FS(u,q) = J;7 Gl(q) Jp' L2, (18)
J
where
0 0 0
0 0 Ggg

The transverse shear strain and the thickness strain are
treated as described above in all the solid-shell elements
described in Sect. 4.

3 Enhancement of the deformation gradient

In this section, we consider different forms of the enhance-
ment of deformation gradient for finite deformations. A new
transformation rule, designated T4, which is different than
those existing in the literature, is proposed.

The Enhanced Assumed Displacement Gradient (EADG)
method was proposed for 2D plane strain elements in Simo
and Armero [39]. It is a generalization of the Incompatible
Displacement (ID) method of Wilson et al. [47] and Tay-
lor et al. [42]. However, the enhancement is not the gra-
dient of an incompatible displacement field and continuity
across element boundaries is not required. This has the con-
sequences discussed, e.g., in Nagtegaal and Fox [30]. The
EADG method is based on the additive enhancement of the
deformation gradient F'(u),

Fenh(u7 q) =

Fw  + H(uG(q,f)),
SN~ S————

enhancement

(20)

for compatible u

where u is the vector of compatible displacements, q is
the vector of additional (elemental) parameter, H is the
matrix of enhancement and G(q, £) is a matrix of assumed
representations.

3.1 Transformations for enhancement H

Below we discuss four transformation rules, designated T1,
T2, T3 and T4, which are used to define the enhancement H.
The dependence of H on u and £ is not indicated.

Transformation T1 For large deformations, the enhance-
ment H is defined in Simo et al. [40] by Egs. (3.4) and (3.6),
which, in the current notation, is

H(q) = F, Fl(q), 1)

where the enhancement for small deformations is

Fi(q) = Jo G(q) Jaljf- 22)

Besides j=detJ, and at the -eclement’s center
jo = j(&o). The above formula contains the “MIX1 —
CART”’transformation of Table 1. Inserting Eq. (22) into
Eq. (21), we obtain

H(q) = FoJo G(q) Ja”;f’ = J§"™ G(aq) Ja”;f’, 23)

where from Eq. (7), we obtain Fo Jo = J§"7, i.e. the cur-
rent Jacobian at the element’s center. From Eq. (8), J§"*
is related to Jg by the gradient of displacements at the ele-
ment’s center, i.e.

curr __ 871’1
5T = Jo +(a§>0' (24)

Hence, for small deformations, when (du/0€), ~ 0, we
have J§"* ~ Jo.

Transformation T2 Another form of H is proposed in
Korelc and Wriggers [25, Eq. (13)] and Glaser and Armero
[12, Eq. (4)]. For large deformations, H of Eq. (21) is still
used but the enhancement for small deformations is defined
as

Table 1 Summary of transformations of components of the 2nd rank tensor A

Transformation Formula

CTV — CART ACART _ § ACTV jT

COV — CART ACART — (71T Aoy I
MIX1 — CART ACART _ 3 AMIX1 -1
MIX2 — CART

ACART _ (Jfl)T AI\/[IX2 JT

@ Springer
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F2(q) = J;© G(a) Ja”f- (25)

The above formula contains the “COV —
CART”’transformation of Table 1. Combining Egs. (21) and
(25) together, we have

H(q) =FoJy” G(a) J5'2
T (26)

=I5 (35 30) " Gla) 351
where  Fo=J§"J;' by Eq (7)) and
(351357) = (3TTo) ", For

§ur a2 Jo, and then J§u (J5'J57) =~ J5 7.

Transformation T3 Another form of H is proposed in
Pfefferkorn and Betsch [32, Eq. (35)], and F in transfor-
mation T1 is replaced by F; 7, i.e.

small  deformations

H(q) = F;" Fl(q). 27)
Using F1 of Eq. (22), we obtain

H(q) = F;” J, G(q) Jal‘f]—.o

curry\ — — .7
= (J§")~" (3§ Jo) G(a) Jolf,

(28)

where Fy " = (J§%)~7JT by Eq. (7). Note that (JT Jo)
appears in the above formula while its inverse in Eq. (26).
For small deformations J§"* ~ Jg, and we obtain
(Jgurr)fT (Jg J(]) ~ Jg.

Transformation T4 In the current paper, we propose
another transformation rule for large deformations, i.e.

H(q) = F; 7 F2(q), (29)

where Fy 7 is used instead of Fy, when compared to
Eq. (21). Using I/F‘E(q) of Eq. (25) in the above formula,

we obtain

H(q) =F; 735" G(a) 35" 2
J (30)
= (35" Gla) I3 33—0
where Fy7J;7 = (FoJo)~7 = (J§")~T. For small
deformations (J§u) =T ~ J; 7.
In summary, the above described four transformation
rules are as follows:

(T1)  H(q) =TF, Fi(q) = FoJo A = J§"™" A,

(T2)  H(q) = Fy F2(q) = FoJ; A = J§™* (351357) A,

€2))

(T3)  H(q)=F;" Fl(q) = F;"Jo A = (I5") " (3 Jo) A,

(T4)  H(q) =F;" F2(q) =F;7I3;7A = (J¢™) T A,

where A = G(q) J5' (jo/j) is the common part of all
transformations. Note that the term (J ry 0) ~! of T2 does not
appear in T4, so it can cause differences between the solu-
tions for these transformations. Also the term (JZ'Jo) in T3
is not present in T1, which can have similar consequences.

Below we shortly address the selected properties of the
above transformations.

1. Objectivity under superposed rigid-body motion for T4
Let x = (X)) be the current position of a particle X. Con-
sider a motion superimposed on the current position x, i.e.
xT = T (x) = Qx + ¢, where Q € SO(3) is the rotation
tensor and c is the translation vector. Then the deformation
gradient transforms as follows:

oxt  9(Qx+c)
oxX  oX

F(x*) = = Qg—; =QF(x). (32

For objectivity of the enhanced deformation gradient,
Fe“h(x, q) , we require an analogous formula to be satis-
fied, i.e.

F'(xT, q) = QF™(x,q), (33)

Using Eq. (20), rewritten as F°""(x, q) = F(x) + H(x, q),
we obtain

F'(xt,q) = QF(x) + QH(x,q). (34)

Because the first term Q F(x) = F(x™), hence the require-
ment of Eq. (33) reduces to

H(X+7 q) = QH(X7 q)' (35)

Considering the four transformations of Eq. (31), we note
that they depend on the current position x through F( as
also J§** = FoJg by Eq. (7). Hence we obtain

ox+ (Qx+c¢
Fo(x") = F(x")|, = x| T %
0

= QF(x)|, = QFo(x),

ox
= x|,

(36)

0

where “0” is the element’s center. Using the definition of H
of Eq. (31), the Lh.s. of Eq. (35) for T4 is

H(x",q) = F; 7 (x*) F2(q). (37)
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On the other hand, the r.h.s. of Eq. (35) for T4 is
QH(x,q) = QF; " F2(q) = Fy " (x")F2(q),  (38)

where QFo(x) = Fo(x') of Eq. (36) was used. The
last form was obtained on use of Q = Q~7, as then
QF, " =Q TF,;T = (QF,) " =F;T(x*). As both
sides are equal, the requirement of Eq. (35) is satisfied and
the enhancement H is objective for T4. The numerical test
of objectivity is described in Sect. 5.2.2.

Remark The enhanced right Cauchy-Green deformation
tensor Ce"t = (Fenh)T Fenh of arguments (x*, q), on use
of Eq. (33) becomes

Ccnh — (QFanh)T (QFenh) — (Fonh)TQTQ Fcnh — (Fcnh)TF(\'nh, (39)

where FP = Ferb(x ), and QTQ =1 was used. As
Cenb is not affected by Q, it is objective, but, obviously, it
depends on the form of the enhancement.

2. Rigid-body rotation When Fg= Qy, where
Qo € SO(3), then both the transformations T2 and

T4 become equal to H(q) = Qo I/E‘E(q) on use of
Fi' =Qp" = Qo.

3. Effect of transposition of G on linear strain The
enhanced linear strain is

Eenh _ Fenh + (Fenh)T —91

=F+F' -2)+ (H+HT), (40)

where, for small deformations, the enhancement matrix
H= ﬁ(q) for T1 and T3, and H = ﬁ(q) for T2 and T4.
For the above defined four transformations, the underlined
term becomes:

For T1 and T3,
(H+H") = [3 Gla) I +357 G"@) I 72, @D

For T2 and T4,

H+H")=J;" [G(q) + G (q)] ngi—?. (42)

We see that (H + HT') does not change under the transposi-
tion of G(q) for transformations T2 and T4, but it does for
T1 and T3. In consequence, the linear solutions obtained
using GT(q) or G(q) are identical for T2 and T4, but are
different for T1 and T3. Hence T1 and T3 are not suitable
for the method of stabilization based on the transposition of

G(q).
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When comparing T2 to T4 for large deformations, their
solutions are generally different, no matter whether G*(q)
or G(q) is used. The use of GT(q) is beneficial, as it sup-
presses hourglassing at the critical strain for nearly-incom-
pressible hyperelastic material, see Sect. 5.3.4.

4. Variation ofH The variation of H(q) for the transfor-
mation rule T4 of Eq. (31)4 is

§H(q) = [6(J§"") " G(a) + (J§) T 6G(q)] I ]70 (43)
The variation §(J§") ~! is obtained by taking the variation
of (J§WT)~LJ§Wr = I, which yields

5(J8urr)—1 — _(Jgurr)—l 6J8urr (Jgurr)—l’ (44)
where 6J§"" can be computed in a standard manner.

3.2 Representation EADG2 for enhancement H

The 0th order part of the enhanced deformation gradient can
be defined analogously to this part of strain in Eq. (12);.
Using Eq. (20), we obtain

FO (u,q) = FO(u) + H'(u G(q.£)),
—_——

EADG

(45)

where HY is the 0th order enhancement matrix. For the
transformation rule T4 of Eq. (31), we have

H’(u, G(q)) = (J§") " G(g, &n) Ig! ‘770 (46)

where J"" is the current Jacobian matrix and j = det J.
The subscript “0” indicates the element’s center. Analogous
formulas for T1, T2 and T3 can be obtained from Eq. (31).

Using the idea explained in Egs. (1) and (2), we employ
a simple 2-parameter representation, designated EADG2, to
define the matrix of representations

[0 amns O _
Glgi &Em) = | @és 0 0|, i=1,2. (47
0 0 0

The skew coordinates g, s are defined as

s =8+ Auén, ns=n+Axnén, (48)

where All = (j’n)o/jo, A21 = (j@)o/jo and j = det J.
For parallelogram-shaped elements, A;; = As; = 0, so the
difference between the natural and skew coordinates van-
ishes, see [52, Sect. 3.2]. The so-defined G depends
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on &n€[-1,1], but not on the thickness coordinate
¢e[-1,1].

Finally, we note that the Oth order enhanced Green strain
is defined as

2EO enh — (F() enh)T FO enh I, (49)

where FU " is given by Egs. (45-48).

4 New solid-shell elements free from
hourglassing

In this section we describe three new solid-shell elements
which are free from hourglassing. In all of these elements
the transverse shear strain and thickness strain are treated as
described in Sect. 2.1, while the /st order bending/twisting
strain remains standard.

The 0th and the Ist order parts of the stress, strain and
deformation gradient w.r.t. the thickness coordinate ¢ are
designated respectively by the superscript “0” and “1”.

4.1 HW element with EADG enhancement

In this section we use the Hu—Washizu solid-shell element
HW19 of [52] as the parent element, and describe its modi-
fications to create the new element HW18/EADG2, which
is free from mesh hourglassing.

4.1.1 Parent element HW19

The 8-node solid-shell element HW19 is based on the par-
tial/enhanced Hu—Washizu functional,

Fawig = /B {W(ESE + By + CEé,gASv E{NS

+CE S, BOp™) (50)

NG| e

where W is the strain energy density, F,; is the potential of
the external loads and the body force, and V is the volume
of the 3D body in the initial configuration B.

The Lagrange multiplier method is applied only to the
in-plane strain components, see the underlined term, where
Sg; is the assumed Lagrange multiplier, Egg is the assumed

strain and EJ 5 is the compatible strain. Note that ¢ £, 545

and CELFAS result from the enhancement of thickness
strain of Eq. (17), while the terms E94*N5 and E24NS from
the ANS method of Eq. (15), see Sect. 2.1.

Assumed stress/strain representations In the element
HW19, all the assumed stress/strain representations are ¢
-independent, and are defined as follows:

1. The assumed CTV stress representation is defined as

AV = [q17q2707 q370ﬂ0]T7

51
C, = [C11,C42,0, 0,0,0]7, (51)

where C11 =quns and Coy = g5&s. This is the
5-parameter stress representation of Pian and Sumihara
[34] but expressed in skew coordinates {g,ns defined
in Eq. (48). The CTV — CART transformation of
components of stress is

S=TSA, + T C,y, (52)

where T is computed at the element’s center (super-
script “0”) and at the reference surface (superscript
“¢ = 07). Components Sgg are extracted from the vec-
tor S&.

2. The assumed CTV strain representation is defined as
follows:

AV = [QI7q2507 Q3a070]Ta

53
C, = [C11,04,0, C12,0,0]7, 53)
where Cii=@ués+agsns +q6 EsMs»
Cy = q7&s +qsns +q9 EsMs and

Ci2 = q10és + q11ms. In total 11 parameters. The
CTV — CART transformation of components of strain
is

E¢=THA, + TSOC,, (54)

where T, is computed at the element’s center (super-
script “0”) and at the reference surface (superscript
“¢ = 07). Components Egg are extracted from the vec-

tor E¢. The CTV — CART transformation is used for
the assumed strains because then the results are more
accurate than for the COV — CART transformation,
when the reduced representations are assumed, see [53].

The above transformation operators T's and Tg as well as
the stress/strain vectors are defined in Appendix 1. In total,
the element HW19 involves 19 additional parameters ¢;: 5
for the assumed stress, 11 for the assumed strain and 3 to
enhance the thickness strain.

Remark If the underlined terms of Ci; and Css in
Eq. (53) are omitted then for the nearly-incompressible
material, 2 large eigenvalues appear. The eigenvector asso-
ciated with the second large eigenvalue is shown in Fig. 3.
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It is the scaled vector of nodal vertical displacements
[-1,1,-1,1,1,-1,1,—1], for which the element’s vol-
ume remains unchanged. It resembles the h4; mode for the
8-node solid 3D element of [4, Fig. 4]. The underlined terms
in C11 and Css eliminate the second large eigenvalue and
this eigenvector.

4.1.2 New element HW18/EADG2

This element is obtained from the parent element HW19 by
adding the 2-parameter EADG enhancement to the in-plane
compatible strain E° 5 in the Lagrange multiplier term. The
governing partial/enhanced Hu—Washizu functional is as
follows:

Fuwis/Eapc2 = /;; {W(ER; +CELs + CELEAS, B3NS
LB B
+50%. [EOenh —Eg;]} dV — Fuy.

af

(35)

Two important changes have been introduced into Frwio of

Eq. (50) to obtain the above functional:

1. The Oth order enhanced strain EQS™ (underlined
in Eq. (55)) has replaced the standard Egﬁ, which is
used in Eq. (50). Eggnh is obtained using the EADG
enhancement of the deformation gradient described in
Sect. 3.2, see Eqgs. (45—48). It uses the transformation
rule T4 and the 2-parameter EADG?2 representation.

2. The assumed representation of stress Sg; is modified by
adding the non-zero component C12 = g s + q71)s-
Then the assumed CTV stress representation is defined
by two vectors:

Av = [qlquaoa Q37030]Ta (56)

Cv = [0117 0227 07 Cl?a O; O]Ta
where C11 and Cy5 remain unmodified. Hence, in total,
7 parameters ¢; are used for the assumed stress, and the
CTV — CART transformation of the stress compo-
nents of Eq. (52).

1

Fig. 3 Eigenvector associated with the second large eigenvalue (thick
line) superimposed on the solid-shell element (thin line)
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The assumed strain EgB is unmodified, compared to the

element HW19. The remaining terms in ﬁHWlS JEADG2 are
treated identically as in ﬁHng.

In total, the element HW18/EADG?2 involves 23 addi-
tional parameters ¢;: 7 for the assumed stress, 11 for the
assumed strain, 3 for the EAS3 representation of the /st
order enhanced thickness strain and 2 for the EADG2
enhancement to prevent hourglassing.

4.2 EAS element with EADG enhancement

In this section we use the solid-shell element EAS10 as the
parent element, and modify it to obtain the new element
EASS/EADG2, which is free from mesh hourglassing.

4.2.1 Parent element EAS10

The 8-node solid-shell element EAS10 is based on the
Enhanced Assumed Strain (EAS) method of Simo and Rifai
[41], and involves 10 parameters. The first version of this
element in Klinkel et al. [22] used one parameter in the EAS
enhancement of the /st order thickness strain. Two addi-
tional parameters were added in Vu-Quoc and Tan [44] to
pass the out-of-plane bending patch test.

The EAS10 element is based on the enhanced potential
energy functional,

Fe(u,q) = /

w ((Eo(u) +E’*4%(u, q))
B

(57)
+¢ (E'(n) + B, q))> AV = Fear,

where W is the strain energy density. The 0th order enhanced
strain consists of two components

0 —T 120 COV -1

E'(u) = J(:O E (u) Jg:o,

1 58
B S(u,q) = 3,7 Gla) 35" 2, %)

where E°(u) is the compatible strain computed as outlined
in Eq. (10); and E° ©OV is the matrix of covariant com-
ponents. The second component E° FAS(u, q) is the EAS
enhancement of the in-plane strains, which includes the fol-
lowing 7-parameter (symmetric) representation EAS7,

@é+qén g§+aqen+aqrén 0

G(g, &n) = | sym. g:sn+q4§n 8 ,

(59)
i=1,...,7.

The transformations used in Eq. (58) are obtained from
Eq. (9), and J ! is computed at the reference surface (sub-
script “¢ = 0”) and at the element’s center (subscript “0”).



Computational Mechanics

The Ist order compatible strain E!(u) is defined in
Eq. (12)2, while E1B4S(u, q) is the enhancement of thick-
ness strain, and is computed as outlined in Eq. (18).

The EAS10 element suffers from the mesh hourglassing
at the critical strain for nearly-incompressible materials, see
the test of Sect. 5.3.4.

4.2.2 New element EAS5/EADG2

This element is obtained from the parent element EAS10 by
implementing two modifications of the 0th order strains: (1)
the 2-parameter EADG enhancement is added to eliminate
hourglassing, and (2) the EAS7 representation is reduced
to the EASS representation. The resulting element EASS/
EADG?2 is free from mesh hourglassing.

The 8-node solid-shell element EASS5/EADG?2 is based
on the enhanced potential energy functional,

enh
FEAS5/EADG2(u7 q)

- / W((Eo(u)+E° BAS (4, q)
? (60)

+ B2 (F0 (1, q))) + (B! () + B A5 (u, q)))

av — Fewt:

where the underlined term is added. Regarding the 0t/ order
terms, B0l (F0enh(u, q)) is defined in Eq. (49) using the
enhanced deformation gradient FO " with the transforma-
tion rule T4 and the EADG2 representation, see Egs. (45—
48). Besides, E? PA5(u,q) is defined as for the parent
element EAS10, i.e. using Eq. (58), but with the EASS rep-
resentation defined below.

EASS representation Due to the presence of ¢1ns and
q2€s in the EADG?2 representation of Eq. (47), the terms
&5 and ngg must be omitted in the EAS7 representation of
Eq. (59). This yields the (symmetric) EASS representation,

@€+ q28n q5&n 0
G(qi, &n) = @n+aqién 0 |,
sym. 0 (61)
t=1,...,5.

The Ist order terms, i.e. the compatible strain E!(u) and
the enhancement of the thickness strain E'FAS(u, q) are
treated as in the element EAS10.

In total the element EAS5/EADG?2 involves 10 additional
parameters ¢;: 5 for the EASS representation and 2 for the
EADG?2 representation, both in the enhancements to the 0th
order membrane strain, and 3 for the EAS3 representation
of the /st order enhanced thickness strain.

4.3 New EADG7 element

In this section the solid-shell element with the 0th order
in-plane part enhanced by the EADG method is described.
The standard EADG4 representation is sufficient to sup-
press the mesh hourglassing by transposition of G but addi-
tional 3 parameters are added to eliminate one of the two
large eigenvalues for the nearly incompressible hyperelastic
material and to improve the bending behavior.

The 8-node solid-shell element EADG?7 is based on the
enhanced potential energy functional,

h
FgAbar(u,q)

/WEO

+ ¢ (E'(u) + E'"(u,q))) dV = Fea,

EO enh(FO enh(u, q)) (62)

where W is the strain energy density. Note that 0th order
term E0nb(FOenh(y q)) is defined in Eq. (49) using the
enhanced deformation gradient F0°"® with the transfor-
mation rule T4 and the EADG7 representation, which is
defined below.

The Ist order compatible strain E!(u) is defined as in
Eq. (12),, while E! EAS(u,q) is the enhancement of the
thickness strain, which is computed as in Egs. (18) and (19).

EADG?7 representation of the enhancement of deforma-
tion gradient Recall that the standard 4-parameter represen-
tation EADG#4 is

@€ q3m

0
Glgi, &Em) = | @& @n 0|, i=1,...,4  (63)
0 0 0

and it does suppress the mesh hourglassing when trans-
posed. However, the solid-shell element based on the
EADGH4 yields two very large eigenvalues instead of one,
in the eigenvalue test for nearly incompressible hyperelastic
material (v = 0.499999999), see Sect. 5.1. As a remedy, the
following 7-parameter representation EADG?7 is proposed,

aé+qén an+aién 0

G(q, &n) = q4€ entaén 0|,
0 0 0 (64)

i=1,...,7,

where three bi-linear (underlined) terms are added to the
EADGH4 representation. The diagonal terms with ¢; and
q7 remove one large eigenvalue for nearly incompress-
ible hyperelastic material. The off-diagonal term with ¢
improves the bending behavior, see the “Twisted beam” test
of Sect. 5.3.3.
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In total, the element EADG7 involves 10 additional
parameters g; : 7 for the EADG7 enhancement of the 0th
order membrane strain and 3 for the EAS3 enhancement of
the /st order thickness strain.

Remark Note that both, the /st order thickness strain E§3
of Eq. (18) and the EADG enhancement for the transfor-
mation T4 of Eq. (46), utilize the “COV — CART” trans-

formation, the latter through F2(q). Hence, the EADG
method and transformation T4 can be tested as a replace-
ment for the EAS method for the thickness strain E3;. Then
in the enhanced potential energy functional of Eq. (62),
E!'FAS(u, q) is replaced by

El enh(u,q) — (Jgurr)—T Gl(q) Jal %), (65)

where G'(q) is given by Eq. (19). In the tests of Sect. 5, the
modified element yielded the solutions which are similar to
those for the element EADG?7, but not always identical.

2D check of EADG?7 representation Let us consider for
simplicity a bi-unit (2 x 2) square element, for which the
initial position vector components are X; = £ and X5 = 7.
Then J is the identity matrix and the EADG enhancement of
Eq. (46) is reduced to H(q) = G(gi, &,7). Only the upper
2 x 2 sub-matrices of H’(q) and G are considered below.
For bi-linear shape functions, the compatible displacements
are

uw(&,n) = ug + ur +nug + £nus,
v(&,m) = vo + v +nva + Enus,

where u; and v; (i = 0,1,2,3) are functions of the nodal
displacements. Then the deformation gradient and the
enhancement using the EADG7 representation of Eq. (64)
are

Fo_ | Lruit+nuz  ug+Eug
V1 +nv3 1+v+&vs |’

HO — | @€+ q28n gsn+q6én
7€ asn +qaén |’

and the enhanced deformation gradientis FO "t = FO + HO.
The enhancement H? cannot be arbitrary; the restrictions are
discussed in Simo and Armero [39] and Simo et al. [40, see
(i) and (ii) on p. 365 and Eq. (3.3)]. For the above F?°"! we
can check that: (i) The components of H? are not present in
FO, when considered component by component. This pre-
cludes the rank deficiency of the tangent matrix and ensures
stability of the method. (ii) The integral of a variation of the
enhancement matrix H® over the element’s domain must
vanish, f v SHY dV = 0. This condition results from the Lo

-orthogonality of §H to the (assumed) constant stress field
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and is a counterpart of the patch test. For the EADG?7 repre-
sentation, we obtain

0qi & +0q28n g5+ g6 &N oo
{ dg7 € 5Q377+6q4§77}d77d5_{0 0}' (66)

On use of F0°»1 the enhanced linear strain is

EOenh _ [ ur +nuz gl(ug + 1) + Euz + v ]

sym. vy + &3
| a€t @i slard + g+ g6 én)
sym. q3n + qaén ’

and after summing up these two matrices, all components
are bi-linear polynomials. For the standard EADG4 repre-
sentation, the bi-linear (underlined) terms are omitted.

5 Numerical tests

This section describes numerical tests of the three new
8-node solid-shell elements proposed in the current paper,
see Table 2. In all of the elements the mesh hourglassing at
the critical point is effectively suppressed by transposition
of the representation matrix G in the EADG enhancement
H. The EADG enhancement is characterized by a pair of
features (transformation rule, original/transposed form of
G), see Sect. 3. The EADG (T4,G”) enhancement is of par-
ticular interest.

These elements are based on the Green strain and devel-
oped from ecither the partial/enhanced Hu—Washizu func-
tional (HW18/EADG?2) or the enhanced potential energy
functional (EAS5/ EADG2 and EADG?7). The element’
name characterizes only its in-plane part, which is a con-
vention different to that used in [52].

All new solid-shell elements are identical in the fol-
lowing aspects: (a) the 3-parameter EAS enhancement to
the Ist-order thickness strain F3, is applied, (b) the ANS
methods are applied to the 0th order strains: the transverse
shear strains £, and the thickness strain EY;, and (c) the
1st order bending/twisting part remains standard (unmodi-
fied), (d) the 2 x 2 x 2 Gauss rule is used to integrate the
elements.

The last column in Table 2 shows the total number of
additional elemental parameters ¢;. They are eliminated at
the element’s level and updated by the scheme U2, see [48].

The Oth and Ist order parts of stress/strain (w.r.t. the
thickness coordinate () are respectively designated by the
superscripts “0” and “1”. In the sequel, “parameter” is
abbreviated to “p”.

Three solid-shell elements are used for reference:
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Table 2 Characteristics of the tested/reference solid-shell 8-node elements

Element Enhancement of membrane part Assumed membrane stress/strain Total number of parameters
Tested new solid-shell
HW18/EADG2 EADG 2p, Eq. (47) 7p/11p, Egs. (56/53) 23p
EAS5/EADG2 EAS 5p, Eq. (61) and - 10p
EADG 2p, Eq. (47)
EADG7 EADG 7p, Eq. (64) - 10p
Ref: solid-shell
HW19* [52] - 5p/11p, Egs. (51/53) 19p
EAS10* EAS 7p, Eq. 59) - 10p
HSEE* [23] EAS 4p 18p/18p 43p

( )* our implementation

1. The element HW19 is based on the partial/enhanced
Hu—Washizu functional, in which the Lagrange mul-
tiplier method is applied only to the membrane strain
components. It includes the 3-parameter EAS enhance-
ment of the /st order thickness strain of Eq. (17), but
does not use the EADG enhancement.

2. Theelement EAS10 uses the 7-parameter EAS enhance-
ment of the in-plane strains of Wilson et al. [47],

ESOY = i€ + qo€n,  ESOY = gsn + quén, 7
ESPV = g5€ + qon + q18n,

and the 3-parameter EAS enhancement of the /st order
thickness strain of Eq. (17). The initial version of this
element of [22] used only ¢; in G:%SCOV in Eq. (17). The
linear terms g2¢ and g3n were added later to pass the
bending patch test in [44]. In total, this element involves
10p, and does not use the EADG enhancement.

3. The HSEE element with 43 parameters of Klinkel et al.
[23] is a Hu—Washizu type element; it is also described
and compared to our HW35 element in [52, Sect. 3.4.2].

All these elements show mesh hourglassing at the critical
point for the incompressible hyperelastic material. Also sev-
eral other elements are used for comparison, including a 3D
solid element and the Reissner-Mindlin shell elements with
6 dofs/node.

Modifications of 3D TSCG12 element for shell appli-
cations The 3D solid element TSCG12 is the 8-node hexa-
hedron of Korelc et al. [24], and we use it for reference. To
improve its accuracy in shell applications, we have intro-
duced the following modifications:

1. The local (elemental) reference basis is constructed in
the same way as for solid-shell elements, see Sect. 2,
and transformations of the tangent stiffness matrix and
the residual vector between the local and the global ref-
erence bases are performed. Note that for 3D elements
the local basis is usually constructed differently. When

the global reference basis is used for the TSCG12 ele-
ment, the inward and outward displacements at the
forces applied to the pinched hemisphere of Sect. 5.3.2
are not equal, even though they should be so in a linear
test. This is caused by the reduced matrices H, and H{!
which are used in the original TSCG12 element, and
this issue is partly alleviated by using a local (elemen-
tal) reference basis.

2. The 2 x 2 x 2-point Gauss integration is used as being
more suitable for bending of elastic shells than the spe-
cial 9-point rule, which serves as a replacement of the
3 x 3 x 3-point Gauss integration in [40], and is rather
intended for plasticity, which remains beyond the scope
of the current paper.

In effect, the solutions yielded by the modified element 3D
TSCGI12 are closer to the solid-shell solutions than those
yielded by the original element.

All our elements are derived using the symbolic sys-
tem for automatic code generation, code optimization and
automatic differentiation AceGen developed by J. Korelc
[26] and are tested within the finite element program FEAP
developed by R. L. Taylor [43, 57]. We gratefully acknowl-
edge the use of these programs. Our parallel multithreaded
(OMP) version of FEAP is described in [21].

We tacitly assume that any consistent set of units is used
for the data defined in numerical examples.

5.1 Eigenvalues of a single element

The eigenvalues of the tangent matrix are computed for a
single unsupported element, and for the Young’s modulus
E =1 and the Poisson’s ratio v = 0.3. Several element’s
shapes described in our recent paper [52, Sect. 5.1] are
tested, and for all of them, the new solid-shell elements have
the correct number of zero eigenvalues (6).

For all new solid-shell elements, one large eigenvalue
and 6 zero eigenvalues is obtained for v = 0.499999999
and the truncated pyramid shape of Fig. 4. This shape is
obtained from a hexahedron of size 2 x 2 x 0.1 by shifting

@ Springer



Computational Mechanics

its nodes by the vectors [+£0.1, +0.1, 0]. We note that for
the element EADG?7, one of two large eigenvalues is elimi-
nated due to 2 additional modes added to the diagonal of G,
see Sect. 4.3.

5.2 Linear tests
5.2.1 Patch tests

The shell-type patch tests (membrane and bending) are
adapted and performed as described in [52, Sect. 5.2.1]. The
tested solid-shell elements yield the correct displacements
at the internal nodes and compatible strains at Gauss Points.

The standard 3D patch test is failed by the solid-shell ele-
ments, which is caused by the ANS method for the trans-
verse shear strains. (The ANS method for the /st order
thickness strain has no such consequence.) In contrast, the
3D 8-node hexahedron solid elements fail the shell-type
bending patch test. Hence, for the bending dominated shell-
type applications, the solid-shell elements are preferable to
the 3D elements.

5.2.2 Objectivity test

This test was proposed to check objectivity of the enhanced
4-node 2D plane strain elements and the Ogden’s material in
Glaser and Armero [12, Example 4.3]. We adapt it here for
the solid-shell elements and use the hyperelastic material.

The beam is strained and rotated in the X0Z plane, see
Fig. Sa. Both ends of the beam are clamped. Strains are gen-
erated by the transversal shift of the right end by d = 2 A,
where 4 is the beam’s height. Next the strained beam is rig-
idly rotated up to 90°, which is controlled by the displace-
ments applied to boundary nodes at the left and right ends.
The boundary conditions are specified as in [12, Egs. (30)
and (31)], and the Newton method is used to solve the equi-
librium equations.

The data is as follows: the beam length L = 1.0, height
h =0.1. The size in the 0Y direction b = 1.0, and to
enable comparison with the plane strain results the 0Y-dis-
placements are constrained. The neo-Hookean hyperelas-
tic material of Eq. (68) with x = 100, the bulk modulus
K = 116.666666(6) and 8 = —2 is used. These values of 1
and K correspond to the material constants, which are used
in [12] for the Ogden’s material.

Fig.4 Truncated pyramid (not to
scale)

For each rotation increment, the beam-type axial force N
and transverse shear force Q, and the bending moment M
are calculated using the reaction forces at the left end nodes.
For the solid-shell element EADG7 with the enhancement
(T4,GT) the beam-type forces and moment are shown in
Fig. 5b. Two orientations of the solid-shell element are
tested, with the nodal “directors” parallel to either the
0Z-axis or the 0Y-axis, which we designate “dir 0Z” and
“dir 0Y”, respectively. We see in this figure that the lines for
both orientations of this element coincide. Similar solutions
are obtained also for the other tested solid-shell elements.

The 2D reference results obtained using two 4-node
plane strain elements are designated as follows: (a) “2D
EADG4”—our EADG4 element and the hyperelastic mate-
rial of Eq. (68), (b) “feap enha”—the enhanced element of
FEAP [43] and the hyperelastic material, and (c) “2D Q1/
ET4 Ogden”—the Q1/ET4 element and the Ogden’s mate-
rial taken from Glaser and Armero [12, Fig. 13].

In conclusion, the obtained N, Q and M are constant w.r.t.
the rotation angle, which means that the strained enhanced
solid-shell elements are invariant to the rigid-body rota-
tion. Hence, the transformation used in the enhancement
(T4,GT) is correct.

5.2.3 Two-element distortion test

The cantilever is modeled by two solid-shell elements, and
a tilt of their common side is defined by the parameter d, see
Fig. 6. The data is as follows: £ = 1500, v = 0, h = 1, and
P = 10. The nodes shown in Fig. 6 are doubled to create a
mesh for the 8-node solid-shell elements. The pair of forces
+ P is replaced by four forces +P/2. The applied boundary
conditions are as described in [23].

This test is used to separately verify the in-plane part and
the through-thickness part of solid-shell elements. Bend-
ing takes place in the X0Y plane, and two orientations of
the elements are tested, i.e. the nodal “directors” are either
parallel to the 0Z-axis (in-plane bending) or belong to the
X0Y-plane (out-of-plane bending). Displacement u,, at the
tip for a changing d is shown in Figs. 7 and 8. The EADG
enhancement used with (T4,G{}*T T) and (T4,G) gave
identical results. The reference solutions are indicated by
broken lines.

middle surface
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Fig.5 Objectivity. a Scheme of a)
the test, b N, Q and M for two
orientations of the solid-shell

element EADG7 (T4,GT) and the
hyperelastic material

1.0

N, dir 0Z
Q, dir 0Z
M, dir 0Z

ft

N, dir 0Y

N,Q,M at left end

: : : ‘N : | 3 M. dir 0Y
0.4 [ s

0.3 [

Q, dir 0Y

‘1 Ref.N, 2D EADG4

Ref. Q, 2D EADG4

Ref. M, 2D EADG4

Ref. N, 2D feap enha

- Ref. Q, 2D feap enha

Ref. M, 2D feap enha

Ref. N, 2D Q1/ET4 Ogden
Ref. Q, 2D Q1/ET4 Ogden ---—
Ref. M, 2D Q1/ET4 Ogden .-

[t

TP pp P

10 20 30 40

Fig.6 Two-clement distortion test.
Initial geometry and load

50 60 70 80 90

T

A°

1. The solutions for the in-plane bending are shown in
Fig. 7. For d < 2, the most accurate is the tested ele-
ment HW18/EADG2, next the reference HSEE and
then the tested EAS5/EADG2 and EADG?7, and the ref-
erence EAS10. The latter three elements yield identical
results. When d > 2, i.e. beyond the range of practical
use, most of the curves ascend for increasing d, and the
smaller the ascension the better in this range. Refer to
the discussion of this issue in [52, Sec. 5.2.4].

2. The solutions for the out-of-plane bending are shown
in Fig. 8. All the tested elements yield an analytical
solution u, = 1 in the whole range of d. The reference
solid-shells HW19 and EAS10 of [52] have similar
accuracy. For the reference solid-shell HSEE, the error

v

grows with the distortion d, which is also characteristic
for the HW51 element of [52].

5.2.4 Straight cantilever of trapezoidal elements

This classical 2D test by MacNeal and Harder [28] can also
be applied to transverse deformation of solid-shell elements,
as in Harnau et al. [18]. The accuracy of displacements for a
trapezoidal through-thickness shape of solid-shell elements
is assessed. This test is run with the EADG enhancement
(T4,GT).

The directors of the trapezoidal mesh are in the X0Z-
plane and the load P is parallel to the 0Z-axis. The data is as
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Fig. 7 Two-element distortion test. In-plane bending. EADG
(T4,G/GT)
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Fig. 8 Two-element distortion test. Out-of-plane bending. EADG
(T4,G/GT)

Fig.9 Straight cantilever by trapezoidal
elements. Geometry and meshes
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follows: E = 107, v = 0.3, the length L = 6, the thickness
h = 0.2 and the width in the 0Y direction w = 0.1 (Fig. 9).

The vertical displacement u, at node A is presented in
Table 3. For the rectangular mesh, all the tested and ref-
erence solid-shell elements perform well and the relative
errors are below 0.78%. For the trapezoidal mesh, the tested
elements perform similarly as for the rectangular mesh. The
elements EASS5/EADG2 and EADG?7 are very accurate,
with an error of just 0.08% for both meshes. The reference
modified 3D TSCGI12 performs well with the rectangular
mesh but is locked for the trapezoidal mesh.

5.2.5 Curved 3D cantilever

Skew nodal “directors” of solid-shell elements do affect the
accuracy of the solution, especially when the thickness /4
diminishes.

The curved 3D cantilever is fixed at one end and loaded
by a moment M, at the other, see Fig. 10. The data is as
follows: E = 2-10°, v = 0, width b = 0.025 and radius of
curvature R = 0.1, thickness h = 10=2 (R/h = 10). The
nodes shown in Fig. 10 are doubled in the through-thickness
direction to created a mesh for the 8-node elements. Six-
element mesh is used.

The regular mesh of Fig. 10 is used in the circumferential
direction. Note that the distorted mesh in this direction is
tested in Koschnick et al. [27] and subsequently in [52]. In
the through-thickness direction, two meshes are tested; one
with the radial and the other with skew nodal “directors”,
where the angle ¢ ~ 35°, see Fig. 11.

The displacements u,, at point A (node 1) obtained in the
linear analysis are shown in Table 4, where also the relative
errors [in %] are given. The EADG (T4,G T') enhancement
is used. The results for (T4,G) are identical.

The reference analytical displacement for a curved beam

is uy"® = M_R?/EI, where I = bh?®/12 is the moment of

inertia. The external moment M, = (R/ h)f3 is applied to
the 8-node solid-shell element as two pairs of opposite tan-
gent forces P = M, /h/2. For the given data, the reference
value is u2® = 12/(bER) = 0.024.

Rectangular

Trapezoidal 45° 45°
h=0.2

>
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Table 3 Straight cantilever of trapezoidal elements

Element

Vertical displacement u,, x 10 and its relative error [in %]

Rectangular mesh

Trapezoidal mesh

Tested new solid-shell
HWI18/EADG2
EASS5/EADG2
EADG7

Ref. solid-shell
HW19

EAS10

HSEE

Ref. 8-node 3D solid

3D TSCG12* with Hf
Reference [28]

1.0726 (— 0.78%)
1.0801 (~ 0.08%)
1.0801 (~ 0.08%)

1.0726 (— 0.78%)
1.0726 (~ 0.78%)
1.0728 (- 0.76%)

1.0719 (- 0.84%)
1.081

1.0719 (— 0.84%)
1.0801 (~ 0.08%)
1.0801 (~ 0.08%)

1.0719 (~ 0.84%)
1.0719 (- 0.84%)
1.1312 (4.64%)

0.2413 (— 77.68%)

Linear results. EADG (T4,GI")

*Modified (local reference basis as for solid-shells and 2 x 2 x 2 Gauss Points)

Fig. 10 Curved 3D cantilever. Initial geometry and load. Regular mesh
in circumferential direction

For the radial nodal “directors”, all the tested solid-shell
elements are equally accurate, with an error of 1.81%. For
the skew “directors”, the errors approximately double this,
and the differences between the tested elements are small.

5.3 Non-linear tests
5.3.1 Cook’s membrane

In the Cook’s membrane test [7], the elements are skewed
and tapered and the in-plane shear deformation dominates.
The membrane is clamped at one end, while a uniformly

Fig. 11 Curved 3D cantilever. a)
a Radial and b skew nodal
“directors”

distributed vertical load P is applied at the other end, see
Fig. 12a. The nodes shown in this figure are doubled in the
0Z direction to obtain the mesh for the 8-node solid-shell
elements and the reference 3D solid element. The nodal
“directors” are in the 0Z direction.

A. Linear tests. SVK material The purpose of this test is
twofold: (1) to compare the accuracy of the tested solid-
shell elements, and (2) to check the element EADG7 for
various combinations of transformations T1/T2/T3/T4 of
Sect. 3 and the form of the matrix G/G7 .

The data for the SVK material is as follows: F =1,
v =1/3, and the thickness h = 1. Two meshes are used;
a coarse 2 x 2-element mesh and a fine 32 x 32-element
mesh in the X0Y plane. One element is used in the 0Z direc-
tion in both cases. The uniformly distributed vertical load
P = +1 is applied.

The vertical displacements u,, at point A obtained in the
linear analysis are presented in Table 5, alongside the rela-
tive errors [in %]. For the enhancement (T4,GT), HW18/
EADG? is the most accurate with an error for the coarse
mesh smaller than of the reference HW19. For the fine

b)
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Table 4 Curved 3D cantilever

Element

Displacement u, X 100 and relative error [in %]

Radial “directors”

Skew “directors”

Tested new solid-shell

HW18/EADG2 2.4434 (1.81%) 2.4898 (3.74%)
EASS/EADG2 2.4434 (1.81%) 2.4884 (3.68%)
EADG7 2.4434 (1.81%) 2.4887 (3.70%)
Ref. solid-shell

HW19 2.4434 (1.81%) 2.4980 (4.08%)
EAS10 2.4434 (1.81%) 2.4979 (4.08%)
HSEE 2.4618 (2.58%) 2.7033 (12.64%)

Ref. 2D 4-node Plane Stress
HW14-S, HR5-S [49]
Ref. 8-node 3D solid

2.3610 (— 1.63%)

2.3832 (— 0.70%)

3D TSCG12* with HY [24] 2.3495 (— 2.10%) 2.2434 (6.53%)
Ref. beam solution [28] 2.4000
Displacement u,, at node A and its relative error [in %] for radial and skew nodal “directors”. EADG (T4,G/G™)
*Modified (local reference basis as for solid-shells and 2 x 2 x 2 Gauss Points)
a) b)
Mesh A 3 Mesh B
P=1 o
4 3
1 1 2 1
< <
< <
Y N 1 N4

x

48

Fig. 12 Cook’s membrane. a Initial geometry and load. b Two meshes with different orders of nodes (g1 and g2 are natural vectors at the master

block’s center.)

mesh, all of the tested elements are equally accurate with
an error of 0.31%.

Next, for the element EADG?7, all combinations of trans-
formations T1/T2/T3/T4 and the matrix G/G” were tested.
In linear tests, T2 and T4 are identical because then JG"'* is
reduced to Jg, see Eq. (31). For G and G7, the results are
identical because the enhanced linear strain is insensitive to
the transposition of G, see Eq. (42). The idea of using G
to suppress mesh hourglassing must be discarded for T1 and
T3. However it is admissible for T2 and T4; see the results
for the element EADG7 in Table 5. Therefore, only the com-
binations (T2,G7) and (T4,G7) are tested in the sequel.

Finally, two different numberings of nodes are used on
the master block, from which mesh A and B are generated,
see Fig. 12b. The same results for both meshes are obtained
as required.

B. Nonlinear tests. Hyperelastic material The solid-
shell element EADG7 is tested in the range of large
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deformations. Either (T2,G7) or (T4,GT) variant of the
EADG enhancement is used. Two load cases, —P and +P,
are studied.

The nodal “directors” are positioned along the 0Z axis
(see Fig. 12a) and the displacements u, are constrained
to zero for nodes located at z = 0 to prevent out-of-plane
buckling. Three n x n-element meshes for n = 2,4, 16 are
used, and one element is used through thickness. The stan-
dard Newton method and the load increments AP = £0.01
are applied. The deformed meshes for loads —P and +P after
320 steps are shown in Fig. 13.

The modified neo-Hookean hyper-elastic material of
Eq. (68) is used with the shear modulus o = 0.333355557
and the bulk modulus K = 0.166666667 - 10%; these val-
ues are obtained from F = 1 and v = 0.4999. Additionally,
8 = —2is used.



Computational Mechanics

Table 5 Cook’s membrane

Element Form of EADG Vertical displacement u,, (error in %)
Mesh 2 x 2 Mesh 32 x 32
Tested new solid-shell
HWI18/EADG2 (T4,GT) 21.294 (— 10.57%) 23.884 (0.31%)
EAS5/EADG2 (T4,GT) 21.076 (— 11.49%) 23.884 (0.31%)
EADG7 (T1/T3,G) 21.076 (— 11.49%) 23.884 (0.31%)
(TYT13,GT) 13.600 (— 42.88%) 23.802 (— 0.03%)
(T2/T4,G/GT) 21.076 (— 11.49%) 23.884 (0.31%)
Ref. solid-shell
HW19 - 21.126 (— 11.27%) 23.884 (0.31%)
EAS10 - 21.076 (— 11.49%) 23.884 (0.31%)
HSEE - 21.073 (— 11.49%) 23.884 (0.31%)
Ref. 2D Plane Stress [own]
2D TSCG6™™ Hy/HF 21.136 (— 11.23%) 23.940 (0.55%)
2D EAS7 - 21.129 (— 11.26%) 23.940 (0.55%)
Ref. 8-node 3D solid
3D TSCG12* [24] H} 21.021 (= 11.71%) 23.884 (0.31%)
Ref 23.81 23.81

Linear analysis. Accuracy of elements and effects of various combinations of T1/T2/T3/T4 and G/GT
*Modified (local reference basis as for solid-shells and 2 x 2 x 2 Gauss Points) **2D TSCG®6 for Plane Stress is analogous to 3D TSCGI2 of

[24]
a) b) ,l
I
g """:"",'}El}\}
QN
li"l'c‘":"'l;',"
i

Fig. 13 Cook’s membrane. Deformed mesh after 320 steps for load:
a—Pb+P

The displacements u, and u, at node A are shown in
Fig. 14. (Node A is positioned as shown in Fig. 12a.) The
reference solutions (Ref.) are obtained using the mesh for
n = 16 and three finite elements: (1) solid-shell element
EADG7 with the enhancement (T2,G7), (2) solid-shell
element EADG7 with the enhancement (T4,G7), (3) solid
element 3D TSCG12 with H} of [24] modified for shell
applications as described in the introduction to Sect. 5. For
all these elements, the solutions coincide for the selected

displacement component and the load case, and are treated
as the reference solution.

This example is then run for coarse meshes (n = 2 and 4)
and the solid-shell element EADG?7 either with (T2,G7) or
(T4,GT). The results are shown in Fig. 14, where the order
of the curves, from most to least accurate, is as follows:

(a) For the load —P (Fig. 14a),

wp:(n=4, T2) = (n=4, T4), (n=2, T2),
(n =2, T4),

uy : (n=4, T2), (n=4, T4), (n=2, T2),
(n =2, T4).

For u, and n = 4, the curves for T2 and T4 coincide,
while for u,, the curve for T2 is slightly more accurate
than the one for T4.

(b) For the load +P (Fig. 14b),

Uyt (n=2, T4) =Ref., (n=4, T4),
(n=4, T2), (n=2, T2),
uy:(n=4, T4) = (n=2, T4)

=Ref, (n=4, T2), (n=2, T2).

For u,, the curve (n = 2, T4) coincides with the ref-
erence curve (Ref.). For u,, both curves for T4 coin-
cide with the reference one, while those for T2 are less
accurate.
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Fig. 14 Cook’s membrane. Non-linear solutions for load: a— P, b+P.
Element EADG7. Enhancement matrix G7 and transformations T2
and T4 are tested

In summary, the transformation T4 performs very well in
this non-linear example. For the load +P, it performs even
better than T2, which is used in [25] and [12].

5.3.2 Pinched hemispherical shell with hole

The hemispherical shell with an 18° hole is loaded by two
pairs of equal but opposite external forces, see Fig. 15. The
shell undergoes an almost in-extensional deformation, so a
membrane locking of solid-shell elements can be detected
by this test.

Fig. 15 Pinched hemispheri- a) 18°
cal shell with hole. a Geometry

: L R=10
and boundary conditions. b VAARRNN
Deformed shape 'l.‘HE?“kk\

[T
/|
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Using the shell’s and load’s double symmetry, a quar-
ter of the shell is modeled. One element is used through
the thickness and three meshes with 8 x 8, 16 x 16 and
64 x 64 elements over the surface. The nodes shown in
Fig. 15 are doubled in the through-thickness direction to
obtain the mesh for 8-node solid-shell elements. The thick-
ness h = 0.04 is used, as in [28].

This test is run for two materials. For the SVK mate-
rial, £ = 6.825 x 107 and v = 0.3. For these values the
bulk modulus is K = 5.6875 x 107 and the shear modu-
lus is jt = 2.625 x 107. The latter constants are used for
the hyperelastic material of Eq. (68). All new elements, i.e.
HW18/EADG2, EASS/EADG?2 and EADG7, are run with
the EADG (T4,G”') enhancement.

The results of the linear analyses are given in Table 6,
where the inward displacement u,, under the force P = 1 at
the inner node is reported. The conclusions are as follows:

1. For all new solid-shell elements, the obtained displace-
ments are identical to those yielded by the reference
solid-shell elements HW19 and EAS10, but slightly dif-
fer from those yielded by the reference HSEE.

2. The results for reference 8-node 3D solid elements are
less accurate for the 8 x 8 and 16 x 16-clement meshes
than the ones for the solid-shell elements. For the dense
64 x 64-element mesh, the results have the same rela-
tive error.

The non-linear analyses are performed using the 16 x 16
-element mesh and the Newton method. The solution curves
are shown in Fig. 16. For all new solid-shell elements and
both materials, linear elastic (SVK) and hyperelastic, the
curves fully coincide over the whole load range, and are
very close to that for the reference 4-node shell element
HW47 with 6 dofs/node and the RBF correction of [50].
The solutions obtained by two versions of the 3D
TSCG12 element of Korelc et al. [24] are also shown in
Fig. 16. The standard version uses the special 9-point inte-
gration rule (2 X 2 x 2 + center) of [40], while the modified
version uses the 2 X 2x2 Gauss integration and the local
reference basis, see the introduction to Sect. 5. The modified
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Table 6 Pinched hemispherical shell with hole

Element Displacement —u, x 100 and relative error [in %]

v 8 1616 64 64
Tested new solid-shell
All new elmts 9.4306 (0.33%) 9.3446 (— 0.59%) 9.3548 (— 0.48%)
Ref. solid-shell
HWI19, EAS10 9.4306 (0.33%) 9.3446 (— 0.59%) 9.3548 (— 0.48%)
HSEE 9.4505 (0.54%) 9.3511 (- 0.52%) 9.3555 (= 0.43%)
Ref. 8-node 3D solid
3D.HW51 6.9776 (6.14%) 9.2594 (— 1.49%) 9.3545 (— 0.48%)

3D.EAS-30[1]

6.9776 (6.14%)
4.5510 (~ 51.6%)

9.2594 (— 1.49%)
8.8978 (— 5.34%)

9.3545 (— 0.48%)
9.3546 (— 0.48%)

3D TSCG12* with Hf
Reference [28]

9.4000

Linear solutions for 3 meshes. SVK material. h = 0.04. EADG (T4,GT)

*Modified (local reference basis as for solid-shells and 2 x 2 x 2 Gauss Points)

T T T 7 T
800 |-SVK: all new solid-shell with (T4,G.r . . JURNY I SR . -
Hy?EI: all new solid-shell with (T4,GE) x 1 /
Ref. HW19, EAS10, HW35 SVK/HypE! P 3
Ref. 4n shell HW47 SVK noRBF N 0 >
700 [-Ref. 4n shell HW47 SVK RBF A A SRR S
Ref. 3D 8n TSCG12 (Hy,;) 2x2x2+¢ --- ' /

Ref. 3D 8n TSCG12 (H,') 2x2x2,modified -— i 7
600 |- 2 e . . / o]

Inward displacement ~Uy at force P

Fig. 16 Pinched hemispherical shell with hole. Non-linear solutions
for SVK and hyperelastic material. Mesh 16 x 16 elements. h = 0.04

Table 7 Pinched hemispherical shell with hole

Element Max AP No. of iterations
Tested new solid-shell

HWI18/EADG2 0.5 24
EAS5/EADG2 0.4 28

EADG7 0.4 28

Ref: solid-shell

HW19 0.5 24

EAS10 0.4 28

HSEE 44 14

HW35 [52] 3.5 11

One-step non-linear test. h = 0.01

version is more accurate than the standard one, with the 8%
error of the inward displacement at P = 800.

One-step non-linear test. The non-linear finite elements
can differ in the radius and rate of convergence of the New-
ton method. These can be characterized by the maximum
AP for which the method converges and by the number of
iterations performed.

In this test only one step is performed and the maximum
load for which the Newton method converges is found by
successively increasing the initial AP by 0.1. The shell and
load of Fig. 15a are analyzed using the 16 x 16-element
mesh and the thickness h = 0.01 for the SVK material.
The results obtained using the EADG enhancement with
(T4,GT) are presented in Table 7.

The tested new solid-shell elements inherit the radius of
convergence (Max A P) and the number of iterations from
their parent elements, i.e. HW18/EADG?2 from the refer-
ence HW19, and EAS5/EADG?2 from the reference EAS10.
The reference solid-shell elements HSEE and HW35 of [52]
converge for a larger Max AP and in fewer iterations, but
involve more additional parameters.

5.3.3 Twisted beam

The initial geometry of the beam is twisted so all the ele-
ments are warped (non-flat) but the initial strains are equal
to zero. The beam is clamped at one end and loaded by a
force P, at the other end, see Fig. 17a. The SVK (linear,
elastic) material is used with £ = 2.9 x 107 and v = 0.22.
The other data is as follows: the length L = 12, the width
w = 1.1 and the twist angle is 90°, as in [28].

In the computations, a4 x 24-element mesh of the 8-node
solid-shell elements and a small thickness h = 0.0032 are
used. One element is used through the thickness. Regard-
ing the reference shell elements (Reissner-Mindlin with 6
dofs/node), the 4 x 24-element mesh is used for the 4-node
HW47 and the 2 x 12-element mesh for the 9-node MITCOi.
All new solid-shell elements use the EADG (T4,G7)
enhancement.

The results of a linear analysis for P, = 107¢ are pre-
sented in Table 8, where the u, x 10? displacement at point
A and its relative error are shown. The tested new solid-shell
elements, i.e. HW18/EADG2, EAS5/EADG2 and EADG7,
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Fig. 17 Twisted beam. a Initial a)
mesh and load. b Deformed mesh
at P, =0.1

Table 8 Twisted beam

Element Form of EADG

uy X 103 Relative error

Tested new solid-shell
HW18/EADG2 (T4, GT) 1.2934  —0.05%
EASS5/EADG2 (T4, GT) 1.2916  —0.19%
EADG7 (T4, GT) 1.2924 —-0.12%

(T4, G) 1.2927  —-0.10%
Ref. solid-shell
HW19 - 1.2900 —0.31%
EAS10 - 1.2918  —0.17%
HSEE - 1.2915  —-0.19%
Ref. 8-node 3D solid
3D TSCG12* H/ 0.5339 —58.74%
Ref. shell 6 dofs/node
4-node HW47 [50] - 1.2877  —0.49%
9-node MITC9i [51] - 1.2948 0.06%
Reference [28] 1.2940

Linear results for out-of-plane load P, = 10~°

*Modified (local reference basis as for solid-shells and 2 x 2 x 2
Gauss Points)

have the accuracy similar to the reference elements HW19,
EAS10 and HSEE.

The non-linear load-deflection curves are obtained for
AP, = 107" using the arc-length method and are shown
in Fig. 18. The displacement u, at point A is monitored.
The tested new solid-shell elements yield the solutions that
coincide with those for the reference solid-shell elements.
They are only minimally stiffer than the solution for the ref-
erence 4-node shell HW47 with 6 dofs/node run with the
RBF correction.

In summary, the analyzed shell is very slender
(L/h = 3750) but all the new solid-shell elements provide
results of very good accuracy.

Remark. Three curves in Fig. 18 are inaccurate; for the
reference solid element 3D TSCG12 (modified) and for two
reference solid-shell elements HW12/EADG2 and EADG4,
which have not been characterized yet. The element HW 12/
EADG?2 is obtained from HWI18/EADG2 by removing
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Fig. 18 Twisted beam. Out-of-plane load. Non-linear solutions. The
elements yielding inaccurate solutions (dotted lines) are described in
the text. EADG (T4,GT)

the assumed stress S¥5° and the assumed strain EY5 from
Eq. (55), and using the compatible strain EY, in the strain
energy W instead. The element EADG4 is formulated as the
element EADG?7 but is based on the EADG4 representation
of Eq. (63).

5.3.4 Compression of a nearly-incompressible block

The purpose of this test is to find the critical compressive
strain for the tested new solid-shell elements and to check
whether mesh hourglassing occurs at this strain. To remove
hourglassing, the EADG (T4,G”) enhancement is used.
The 1 x 1 x 1 block is supported at the bottom in the
vertical direction and compressed by a sequence of vertical
displacement increments Av = 0.001 applied at the top, see
Fig. 19. The mesh of 10 x 10 x 1 elements is used, with one
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element in the direction normal to the plane of the figure.
The displacements in this direction are set to zero.

The modified neo-Hookean hyper-elastic material model
is used, with the strain energy function W for the volumet-
ric/isochoric split of the deformation gradient F,

K
+ —

5 (77— 1+pmT),  (68)

W= % (J’Z/?’tr C- 3)

where C = FTF is the right Cauchy-Green deformation
tensor and J = det F. The material data is as follows: the
shear modulus z = 20, the bulk modulus K = 4 - 10° and
the dimensionless parameter 5 = —2. For these 1 and K, we
obtain E = 59.999 and v = 0.499975. For these values, K
plays the role of a penalty multiplier for the second term in
Eq. (68). The transverse shear correction factor k = 1.

The procedure is as follows: The Newton method is used
to solve the equilibrium equations for each increment Av
and the 5 lowest eigenvalues of the tangent stiffness matrix
are computed at converged configurations using ARPACK .!
For the lowest eigenvalue equal to zero, the corresponding
scaled eigenvector is then plotted on the current mesh.

For the compression in the tangent plane of the solid-shell
elements, i.e. when the nodal “directors” are perpendicular
to the plane of Fig. 19, the obtained critical strains (first zero
eigenvalue) are given in Table 9. The EADG enhancement
is used with the transformation rule T4 and either G” or G.
The last column indicates whether hourglassing appears at
the critical strain. We note that:

1. For G", the same critical strain 0.526 is obtained for all
the tested new solid-shell elements, and the mesh hour-
glassing at this strain is suppressed.

2. For G, the critical strain is smaller, equal to 0.417,
and the hourglassing is present at the critical strain
for all elements. The same value and hourglassing are
obtained for the reference solid-shell elements HW19
and EAS10.

The lowest eigenvalues of the stiffness tangent matrix are
shown vs. the vertical displacement v in Fig. 20. For the
tested new solid-shell elements:

1. All the solutions for G” coincide and all the solutions
for G coincide, so only two curves are depicted for
these two cases.

2. The curves for solid-shell elements correspond to the
curves for the reference 3D TSCGI12 element in the
standard or modified form, using either HbT or Hy.

! ARPACK is a numerical software library for solving large scale
eigenvalue problems (www.arpack.org).

Fig. 19 Compression of nearly-incompressible block. Problem
definition

Table 9 Compression of a nearly-incompressible block

Element Form of EADG  In-plane compression
Critical strain ~ Hourglassing
Tested new solid-shell
HWI8/EADG2  (T4,GT) 0.526 No
(T4,G) 0.417 Yes
EASS/EADG2  (14,GT) 0.526 No
(T4,G) 0.417 Yes
EADG7 (T4,GT) 0.526 No
(T4,G) 0.417 Yes
Ref: solid-shell (no EADG)
HWI19 - 0.416 Yes
EAS10 - 0.416 Yes
HSEE - 0.373 Yes
HWS51 - 0.297/0.309  No

Ref. 8-node 3D solid
3D TSCG12* H]

H, 0.372 Yes
Critical strains and hourglassing

0.513 No

*Modified (local reference basis as for solid-shells and 2 x 2 x 2
Gauss Points)

The computed eigenvectors at the first zero eigenvalue are
re-scaled and superimposed on the deformed mesh. Exam-
ples of a mesh with and without hourglassing are shown in
Fig. 21.

Remark For the normal compression of the tested new
solid-shell elements, i.e. when the nodal “directors” are
within the plane of Fig. 19, the obtained critical strain is
0.115 and the mesh hourglassing appears for all elements.
Similar values are obtained for the reference (parent) solid-
shell elements HW19, EAS10 and HSEE, see Table 12 in
[52].
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Fig. 20 Compression of a nearly-incompressible block in the tangent
plane of elements. Lowest eigenvalue of the tested new elements using
EADG (T4, G/GT)

6 Final remarks

Three eight-node (hexahedron) solid-shell elements have
been proposed and tested in the current paper. Their for-
mulation eliminates mesh hourglassing at the bifurcation
point for a nearly incompressible hyperelastic material
under compression. The elements have correct rank, pass
the membrane and bending patch tests and are free from
the curvature thickness, transverse shear and volumetric
locking.

1. Mesh hourglassing is suppressed by transposing the
matrix G in the enhancement of the deformation gradi-
ent F, as for a 4-node 2D plane strain element in [25]
and [12].

(a) The 2-parameter representation EADG?2 is proposed
as a means to suppress hourglassing in the elements
HWI18/EADG?2 and EAS5/EADG?2. Note that other

Fig.21 Compression of a nearly- a)
incompressible block. Eigenvec-

modifications are also required to obtain a correct
form of these elements from their parent elements,
see Sects. 4.1.2 and 4.2.2 for details.

(b) The element EADG7 inherits the feature of sup-
pressing the mesh hourglassing by transposing
matrix G from its parent element EADG4. Three én
-modes are incorporated into the EADG7 element,
see Eq. (64), to eliminate one of the spurious large
eigenvalues for the incompressible material and to
improve bending behavior.

2. With regard to the transformation rules for the EADG
enhancement, we propose and test the rule designated
T4 in Sect. 3. T4 involves (J§™*)~7 where J§"" is
the current Jacobian at the element’s center, and it is
an alternative to the three other transformations, des-
ignated T1, T2 and T3, that exist in the literature. It is
found that the transposition of matrix G works well
with T2 and the proposed T4, but not with T1 and T3.
Regarding the performance of the transformation T4,

(a) In linear tests, the results for G and G are equal
because the enhanced linear strain is insensitive to
the transposition of G, see Eq. (42) and Table 5.

(b) In non-linear tests, distinct solutions are obtained
when using G and GT'. For the Cook’s membrane
(Sect. 5.3.1), T4 performs very well and for the load
+P even better than T2. For the compression of a
nearly-incompressible block (Sect. 5.3.4), there is
no mesh hourglassing under tangent compression at
the critical strain for the EADG enhancement with
(T4,GT).

Furthermore, in terms of the accuracy of the solutions in
the tests unrelated to hourglassing, the three proposed ele-
ments perform very well, i.e. they perform either similarly
to or better than their parent elements. This validates the
proposed changes and provides an argument for using these
elements in analyses of elastic single- and multi-layer shells.
Further research is planned to verify their performance also
for elasto-plastic materials.

b)

tors for the lowest zero eigenvalue
are superimposed on the mesh and

show: a hourglassing for G, b no

hourglassing for GT

i
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Appendix 1: Transformation operators for
strain and stress vectors

Because of the symmetry of strain and stress tensors, instead
of matrices we can use the vectors of their components

E, = [E11, Ex, Es3, 2E12,2E13,2E3] 7,

. (A1)
Sy = [S11, S22, S33, Si2, S13, Sa23) ",

and define the transformation matrices to obtain the com-
ponents in another basis. Let us define the transformation
matrix

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share
adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Cre-
ative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article’s Creative Com-
mons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission

J121 J122 J123 ClJllJlQ ClJ11J13 ClJ12J13
51 5 53 aJo1Ja2 aJo1Ja3 aJaJos
T = ng ng J§3 aJ31J32 aJ31J33 aJ32J33
bJi1do1  bJiadaa bJisdaz  Jiidoo + Jiadar  Jiides + Jisdar Jiedas + Jisdae |
Jiidsr bJiaJdsa bJigJdsz Jindse + Jiodsr Jiidzz + JizJz1 JioJdzz + JizJse (A2)
bJo1Js1  bJaadsa  bJasdss  Jardszo + Jooadsi Jordsz + Jagdsr Jaodsz 4 Jazdso

where Ji, = g; i) (i,k = 1,2,3) are the components of
the Jacobian J and a, b are scalars. To perform the trans-
formations between the contravariant (CTV) components
and the Cartesian (CART) components of vectors (69), we
define two operators

Tg=T(a=1,0=2) and Tg=T(a=2,b=1). (A3)

The use of these operators is equivalent to the matrix opera-
tions, as specified below.

The CTV — CART transformation of components of
strain can be written either as
ECART _ ygCTV yT

or EJFT =T EJ™Y.  (A4)

ECART) 7ECART
=E; ,

We can check their equivalence, i.e. ( Y

where (), designates the operation of taking the compo-
nents of a matrix in a proper order to obtain the strain vector
of Eq. (69). Analogous equivalent relations for components
of stress are,

SCART -7 SCTVJT SCART — TS SCTV'

or (AS)
The modified versions of the above transformations are used
in solid-shell elements in [23] and [52], different in each of
these papers. Various rules for the assumed strains are tested
and compared for 4-node 2D Hu—Washizu elements in [53].

directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
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