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ABSTRACT

Mathematical methods of information theory provide a useful framework for describing how stimuli are encoded by signaling
effectors in biological systems. Yet applying this perspective remains conceptually and computationally challenging, often
due to the lack of analytical formulations that connect directly to biophysical models. Here, by deriving closed-form or easily
computable information capacity formulas, we quantify how well different signaling models, including binomial, multinomial,
Poisson, Gaussian, and Gamma distributions, discriminate among input signals. These expressions clarify how key features
such as signal or response range, noise scaling, pathway length, and receiver diversity shape the theoretical limits of sensing.
Our results provide intuitive, analytically grounded tools to benchmark and guide the analysis of real signaling systems without
requiring computationally expensive mutual information estimation. While motivated by cellular communication, the framework
generalizes to any system where noisy input–output relationships constrain transmission fidelity, including synthetic biology,
sensor networks, and engineered communication channels.

Introduction
Cellular signaling systems are fundamental components of living organisms, enabling cells to sense, respond to, and adapt
to changing environmental conditions. These pathways support core biological processes including cellular differentiation,
immune defense, metabolic regulation, and organismal development [? ? ? ]. Reliable and accurate signal transmission is vital,
as disruptions in signaling can lead to inappropriate cellular responses, compromising fitness and contributing to disease [?
? ? ]. Consequently, quantification of the information transfer of signaling systems has become a tangible effort of modern
biosciences [? ? ? ? ? ? ? ? ]. Beyond characterizing individual pathways, information-theoretic analysis offers a principled
framework to study the limits of inference in noisy environments, the trade-offs shaping molecular architectures, and the
scalability of biological computation. These insights are not only central to understanding evolved signaling strategies, but also
increasingly important for guiding the design of synthetic circuits that must function reliably under biological constraints.

Historically, analyses of signaling focused on qualitative descriptions and biochemical mechanisms. More recently, information
theory has offered a rigorous, quantitative framework for treating biological signaling systems as noisy communication channels
[? ? ? ? ? ]. Within this framework, the concept of information capacity, the maximum amount of information that can be
reliably transmitted through a noisy system, has emerged as particularly useful.

Formally, in the language of information theory [? ? ? ], a signaling system is described by a conditional distribution
P(Y | X = x), representing the likelihood of observing an output Y given input x. In biological contexts, X typically denotes a
signal such as ligand concentration or other stimulus intensity, while Y represents downstream outputs such as receptor activity,
gene expression, or cellular phenotypes. The accuracy of signal transmission depends on sensitivity and noise properties of
this mapping as well as the frequency of input presentations, as frequent presentation of inputs that are well discriminated
contributes more information than frequent presentation of these poorly discriminated.

Quantitatively, the amount of information transferred through a signaling system with input distribution P(X) is measured by
the mutual information (MI)

MI(X ,Y ) =
∫

X

∫
Y

P(x,y) log2
P(y|x)
P(y)

dxdy, (1)

where P(y) =
∫
X P(y|x)P(x)dx is the marginal distribution of outputs, and X , Y are the domains of X and Y , respectively.

Mutual information captures the extent to which outputs distinguish inputs, increasing when responses are reproducible and
distinct, and decreasing when responses are noisy or overlapping.
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Since mutual information depends on the chosen input distribution P(X), often a more useful measure is the information
capacity C∗, defined as the maximum mutual information over all possible input distributions

C∗ = max
P(X)

MI(X ,Y ). (2)

The distribution P∗(X) that achieves this maximum is known as the optimal input distribution and defines the theoretical upper
limit of how well a signaling system can resolve different inputs. According to Shannon’s coding theorem [? ], this capacity
directly corresponds to the maximum number of input states that can be reliably distinguished, e.g., 2 bits of capacity imply
discrimination of up to 22 = 4 distinct inputs with negligible error.

Despite its conceptual power, calculating capacity in practice is challenging. Standard numerical methods such as the
Blahut–Arimoto algorithm [? ? ? ] are computationally intensive and typically require discretization of both input and output
spaces, an obstacle for many biological applications. Consequently, there is a need for simplified, analytical tools that make
information-theoretic analyses more broadly applicable.

To address this need, we recently introduced a framework for estimating information capacity based on Fisher Information
[? ], a core concept in statistical estimation theory [? ? ? ? ]. Building on this prior work, the present study extends
the Fisher Information framework by deriving closed-form expressions for the asymptotic information capacity C∗

A across
several canonical probability distributions frequently used to model biological data, including binomial, multinomial, Poisson,
Gaussian, and Gamma distributions. These explicit formulas enable rapid estimation of capacity across a range of models,
helping to uncover how signaling precision depends on key system parameters. We illustrate these results with canonical
biological examples and provide computational scripts that facilitate application of the theory to other signaling systems.
Beyond the derivation of explicit formulas, our results reveal several general principles governing information transmission.
Capacity depends solely on the Fisher information integrated over the input range, reflecting local sensitivity and noise structure
rather than the specific activation function. This property unifies diverse probabilistic models under a common geometric
interpretation, distinguishing systems that encode relative (fold-change) versus absolute signal differences. The analysis further
shows that cellular heterogeneity contributes additively to capacity when subpopulations operate in distinct sensitivity regimes,
and that information degrades linearly along multi-step cascades. Together, these findings provide a coherent theoretical
foundation for understanding and comparing the limits of signal transmission across biological and engineered systems.

Methods
Calculating the information capacity of signaling systems typically involves optimizing mutual information, often using
numerical methods such as the Blahut–Arimoto algorithm [? ? ? ]. While accurate, these methods can be computationally
intensive and require discretization of the input and output spaces, which becomes challenging, especially for high-dimensional
or time-resolved data. To address these limitations, we recently proposed an alternative framework based on Fisher Information
[? ], which we outline below.

Fisher Information and Asymptotic Capacity
Consider a signaling system in which the output is denoted by YN = (Y (1), . . . ,Y (N)), representing N independent and identically
distributed (i.i.d.) observations of a random variable Y ∼ P(· | X = x). In biological settings, N may correspond to the number
of cells, receptor copies, or other parallel signal receivers independently sensing the same input signal X .
The corresponding information capacity quantifies the maximum mutual information between the input and the full output
vector:

C∗(X ,YN) = max
P(X)

I(X ;YN), (3)

where C∗(X ,YN) is the total capacity of the ensemble of N independent systems. The independence assumption holds when the
noise sources in each receiver are uncorrelated.
To avoid computationally expensive optimization over P(X), we approximate C∗(X ,YN) using an asymptotic relation grounded
in Bayesian statistics and the theory of reference priors [? ? ? ]. This approximation involves the Fisher Information (FI)
matrix, denoted FIi j(x):

FIi j(x) = E
[

∂ logP(Y | X = x)
∂xi

· ∂ logP(Y | X = x)
∂xj

]
, (4)

where x = (x1, . . . ,xl) and l is the dimension of the input space.
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Under regularity conditions, one obtains the following asymptotic relation:

C∗(X ,YN)−
l
2

log2 N −−−→
N→∞

C∗
A, (5)

where C∗
A is known as the asymptotic information capacity and has the closed-form:

C∗
A = log2

(
(2πe)−l/2V

)
, (6)

with
V =

∫
X

√
|FI(x)|dx, (7)

where | · | denotes the determinant. A detailed discussion of the regularity, identifiability, and independence assumptions
underlying Eq. 5 is provided in Supplementary Note 1.
From this, we define the approximation:

C∗
N = C∗

A +
l
2

log2 N, (8)

so that
C∗(X ,YN)−C∗

N −−−→
N→∞

0. (9)

A concise, implementation-oriented outline of the computation is provided in Supplementary Note 2, together with a direct
comparison to classical small-noise approximation [? ] in Supplementary Note 3.

Interpreting C∗(X ,YN), V, C∗
A, and C∗

N
To clarify the interpretation of key quantities used in the derivation, we provide a concise summary of their meaning and
relevance.

The quantity C∗(X ,YN) denotes the true information capacity of a system composed of N independent receivers, each
observing the same input signal X . It is defined as the maximum mutual information between X and the joint response vector
YN = (Y (1), . . . ,Y (N)), optimized over all input distributions. This is the theoretical gold standard for quantifying information
transmission in a population of sensors.

The term V =
∫
X

√
|FI(x)|dx, Fisher information based sensitivity metric, captures the total resolvability of the input

space X . Here,
√
|FI(x)| reflects the local density of distinguishable input values near point x, as defined by the Fisher

Information metric. In one dimension, V corresponds to the length of the input space measured in statistical units, analogous to
a Riemannian arc length in information geometry. As such, V quantifies how finely the input range can be partitioned into
reliably distinguishable regions, given the system’s noise and sensitivity. As explained in detail in the Supplementary Note 4,
V is also related the optimal input distribution under which the maximal information transmission is achieved, which in the
considered setting is the bayesian Jeffrey’s prior.

The quantity C∗
A transforms this geometric quantity V into Shannon bits and represents the asymptotic information capacity

of the system. It is the leading-order term in the large-N representation of C∗(X ,YN) and depends only on the structure of
the conditional distribution P(Y | X), not on any particular input distribution or the number of sensors. Intuitively, it sets the
baseline capacity contributed by a single receiver to the ensemble total, establishing the intercept in the scaling law for N
independent observations.

The capacity C∗
N captures the asymptotic scaling behavior of the capacity for a population of N independent sensors. It provides

a computationally efficient alternative to direct numerical optimization of mutual information, and converges to C∗(X ,YN) as N
increases. This formula is especially useful because it replaces costly mutual information optimization with a simple integral of
Fisher Information.

While C∗
A is defined independently of N, we note that for N = 1 this formula yields C∗

1 = C∗
A. As such, it can also serve as a

practical first-order surrogate for the single-receiver capacity C∗
1 ≈ C∗(X ,Y ). However, this identification is not generally exact.

For example, in signaling when the noise is sufficiently large, reliable discrimination is only possible between well-separated
inputs, favoring discrete toggling strategies over continuous sensing [? ? ]. Therefore, care must be taken in interpreting C∗

1 as
C∗(X ,Y ) without additional validation. In extreme noise regimes, the asymptotic expression may even yield negative values of
C∗

A, reflecting a breakdown of the approximation C∗
1 ≈ C∗(X ,Y ). Practical guidance on how to interpret such cases and when

to switch to direct mutual-information estimation is provided in the Supplementary Note 5. Still, the approximation is well
justified when the output variable Y can be represented as a sufficient statistic for a larger ensemble of independent observations
(due to equivalency of likelihoods), for example, when Y summarizes many identically distributed auxiliary variables, e.g., a
Gaussian variable as a mean of other Gaussian variables. Moreover, the approximation C∗

1 ≈ C∗(X ,Y ) is intuitively expected to
hold in regimes where the Fisher Information FI(x) is large and smoothly varying across the domain.
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Handling Parameter Transformations
Frequently, the distribution of interest e.g., Gaussian, is expressed in terms of a canonical parameter vector θ ∈ Rl′ , rather than
the signal x ∈ Rl directly. Suppose θ = h(x) is a smooth map from Rl → Rl′ . Then, if FI(θ) denotes the Fisher Information
with respect to θ , the FI with respect to x is given by

FI(x) = J(x)T FI(θ)J(x), where J(x) =
∂θ

∂x
∈ Rl′×l . (10)

Here, J(x) is the Jacobian matrix of partial derivatives

J(x) =


∂θ1
∂x1

· · · ∂θ1
∂xl

...
. . .

...
∂θl′
∂x1

· · · ∂θl′
∂xl

 .
Thus, one can compute FI(θ) in whichever parameterization is most straightforward (e.g. if θ has a known closed-form
expression), and then transform it back into FI(x) by applying Eq. 10.
As an example, it is worth considering log-parametrization. In many signaling contexts, inputs x range over several orders
of magnitude (e.g. ligand concentrations). It can be numerically more stable to define z = log10(x) and work with FI(z). The
Jacobian here is

dx
dz

= x ln(10),

so FI(z) = FI(x)
(
x ln(10)

)2.

Results
In this section, we apply the Fisher Information-based framework from the Methods to derive closed-form expressions for
the information capacity of systems modeled by several canonical probability distributions and associated signaling models.
These distributions naturally emerge in well-defined biochemical contexts and cover both discrete and continuous signal-
response relationships. Their analytical tractability allows us to pinpoint how key biological parameters, such as ligand binding
affinities, signal intensities, transition rates, and noise scaling, shape information transmission. In contrast to simulation-based
approaches, our method provides explicit, interpretable formulas that enable rapid capacity estimation and support both
theoretical understanding and model-guided circuit design.

Binomial and Bernoulli Distribution
Many signaling systems produce binary responses: a biochemical sensor (receptor) or a transcription factor is either bound
or unbound, ON/OFF, depending on input. These systems can be modeled using binomial or Bernoulli processes. One of
the classic examples of such a sensor is the E. coli AraC protein, which senses the presence or absence of L-arabinose and
adopts either a repressing or activating conformation. In the absence of the ligand (OFF), downstream genes remain silent,
whereas in the presence of L-arabinose (ON), AraC promotes transcription [? ]. This kind of binary response is well captured
by binomial/Bernoulli modeling.
Formally, for a single Bernoulli trial where the random variable Y ∈ {0,1} equals 1 with probability p, the Fisher Information
with respect to p is

FI(p) =
1

p(1− p)
. (11)

This expression quantifies how sensitively the likelihood responds to changes in p. Using Eq. 7, we obtain

V =
∫ pmax

pmin

1√
p(1− p)

d p = arcsin(2pmax −1)− arcsin(2pmin −1), (12)

leading to the asymptotic capacity as defined by Eq. 6

C∗
A = log2

(
(2πe)−

1
2 (arcsin(2pmax −1)− arcsin(2pmin −1))

)
. (13)

For N independent Bernoulli copies Y (1), . . . ,Y (N), according to Eq. 8 the capacity can be approximated as
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C∗
N =

1
2

log2

(
N · [arcsin(2pmax −1)− arcsin(2pmin −1)]2

2eπ

)
, (14)

which simplifies further if pmin = 0 and pmax = 1

C∗
N =

1
2

log2

(
Nπ

2e

)
. (15)

The above expression is the information capacity of the Bernoulli distribution. To ensure statistical rigor in transforming the
capacity of N independent binomial variables, Y (1), . . . ,Y (N), into the capacity of a Bernoulli variable, ∑

N
i=1 Y (i), we note that

the two formulations are equivalent because the joint vector YN = (Y (1), . . . ,Y (N)) and the aggregate count ∑
N
i=1 Y (i) contain the

same amount of information about the underlying parameter p. This is due to the fact that ∑
N
i=1 Y (i) is a sufficient statistic for p

under the binomial model.

Example: Simple Biochemical Sensor
Consider a system of N identical biochemical receptors, each of which is active with probability p = h(x), where x denotes the
concentration of an activating ligand, e.g., arabinose in the case of the AraC protein. A typical functional form for h(x) is the
Hill function [? ]

h(x) =
(x/H)n

1+(x/H)n , (16)

where H is the half-maximal effective concentration, and n is the Hill coefficient, which quantifies the cooperativity of ligand
binding, i.e., how binding at one site influences affinity at others. For non-cooperative systems, n = 1. The Hill function
is an arbitrary choice to map any signal input range to a bounded output in (0,1). In principle any other function, e.g.,
Monod-Wyman-Changeux, or Hall, can be used yielding similar conclusions [? ].

Using the variable transformation formula, Eq. 10, we get Fisher information

FI(x) =
1

h(x)(1−h(x))

(
∂h(x)

∂x

)2

. (17)

The corresponding Fisher-based sensitivity metric, Eq. 7, required for capacity calculation is

V =
∫ xmax

xmin

1√
h(x)(1−h(x))

∣∣∣∣∂h(x)
∂x

∣∣∣∣ dx =
∫ h(xmax)

h(xmin)

1√
p(1− p)

d p, (18)

where xmin and xmax specify the operational signal range. This integral quantifies the system’s ability to distinguish between
different input concentrations. Interestingly, the value of V depends only on the endpoints h(xmin) and h(xmax), and not on the
detailed shape or steepness of h(x) in between [? ? ].
For example, if h(x) transitions fully from 0 to 1 over the signal range, i.e., pmin = 0, pmax = 1, according to Eq. 12, we have
V = π resulting in the capacity

C∗
N =

1
2

log2

(
Nπ

2e

)
. (19)

This result illustrates that systems that span the full output range [0,1] have the same information capacity regardless of the
slope of the transition. Thus, a steep response curve does not increase capacity, perhaps contrary to intuition. The framework
here exposes such not necessarily obvious dependencies of capacity on model parameters, highlighting the importance of range,
and not sensitivity, in optimizing signal transmission in binomial systems [? ? ]. Relatedly, the capacity-maximizing input
distribution for this receptor class is characterized in Supplementary Note 4 and Supplementary Figue 1, where we visualize its
concentration near the point of maximal sensitivity.

Multinomial Distribution
In many biological signaling systems, a single sensor does not merely toggle between two states but instead produces multiple
discrete outcomes, each associated with a distinct functional consequence. Such behavior can arise from multi-state receptors
and corresponding downstream processing modules resulting in more than two outputs.
A canonical example is the β2-adrenergic receptor, a G-protein-coupled receptor (GPCR) that can adopt several active
conformations. These states selectively engage different intracellular partners, such as G-proteins or arrestins, thereby initiating
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distinct signaling cascades [? ? ]. These different signaling outcomes are naturally modeled using the multinomial distribution,
which generalizes the binomial framework to account for systems with more than two discrete response states.
In what follows, we show how to compute the information capacity for such multinomial signaling systems and how the
structure of their response profiles, e.g., overlap or separation between response modes, modulates information transmission.
Formally, in the multinomial setting, a system performs N independent ‘trials’ each yielding one of m distinct outcomes with
probabilities p1, p2, . . . , pm, where ∑

m
j=1 pj = 1. Let Y = (Y 1,Y 2, . . . ,Y m) denote the vector of counts, so that Y j is the number

of trials that end up in outcome j. Formally,

Y = (Y 1,Y 2, . . . ,Y m) ∼ Multinomial
(
N, p1, p2, . . . , pm

)
,

and the probability mass function is

p
(
y1,y2, . . . ,ym;N, p1, . . . , pm

)
=

N!
y1!y2! · · ·ym!

py1
1 py2

2 · · · pym
m ,

subject to ∑
m
j=1 yj = N and pj ≥ 0.

The Fisher Information for the Multinomial(N, p1, . . . , pm) distribution with a parameter vector p takes a particularly simple
diagonal form

FI(p) = N


1
p1

0 · · · 0
0 1

p2
· · · 0

...
...

. . .
...

0 0 · · · 1
pm

 . (20)

Because the probabilities p1, p2, . . . , pm must sum to 1, only m−1 of them are truly independent. The resulting singularity
of Fisher information implies that additional assumptions or context regarding how input signal drives each pj are needed to
quantify information transfer. As a concrete illustration, we next examine an example of an allosterically regulated sensor,
where different ligand-binding states map onto multiple output states.

Allosterically Regulated Sensor
Beyond the GPCR example [? ? ], many sensory systems exhibit multi-state allosteric regulation. Certain enzymes, such as
aspartate transcarbamoylase (ATCase) or phosphofructokinase-1 (PFK-1), respond to multiple effector ligands (e.g., nucleotides
or substrates) and can occupy distinct ligand-bound states with varying catalytic activities [? ? ? ]. Another prominent example
is the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase that binds a variety of ligands, including EGF. These
ligands differentially stabilize receptor conformations and lead to distinct phosphorylation patterns, thereby recruiting different
adaptor proteins and selectively activating downstream signaling pathways such as MAPK, PI3K/Akt, or STAT cascades [? ].
In such systems, varying ligand concentrations shape the probability distribution over multiple conformational states, rather
than inducing a simple binary switch. This naturally motivates the use of multinomial models to capture the multi-outcome
signaling behavior
In mathematical modeling, these conformations map onto multinomial outcomes [? ? ? ? ]. Here, we assume the sensor
can take k distinct functional states, each associated with a potential of activating a distinct signaling outcome, e.g., distinct
signaling pathway. Each sensor molecule takes the functional state i with probability ωi for i = 1, . . . ,k. Probabilities of
taking different functional states are often dependent on concentrations of modulatory ligands, which for tractability is not
modeled here. Each functional state can then be active with probability hi(x), where x is the input signal (such as input ligand
concentration), or inactive with probability 1−hi(x). Therefore, overall, the system occupies m = 2k distinct states, with the
probabilities of each state given by

p = (ω1h1(x),ω1(1−h1(x)),ω2h2(x),ω2(1−h2(x)), . . . ,ωkhk(x),ωk(1−hk(x))) . (21)

This is visually represented in Figure 1A-C. Figure 1A shows the probability of a receptor being active for the case where
k = 1 (a single functional state) as in the Binomial scenario. Panels B&C correspond to a system with k = 4 functional states,
showing how different functional states respond by turning active with increasing ligand concentrations. Panel B illustrates
overlapping sensitivity ranges for each functional state, modeled using different values of the Hill parameter H. As the value of
H increases, the sensitivity of each state shifts, allowing the system to respond in a higher range of signal values. The ratio of
subsequent Hill parameters R = Hi+1/Hi tunes therefore separation of sensitivity ranges of subsequent functional states, with
higher R implying stronger separation. In panel B the ratio between subsequent Hill parameters R = 2 results in moderately
overlapping sensitivity ranges. Panel C illustrates the case where the sensitivity ranges are more distinct, which is achieved by
increasing the ratio R up to 4.

6/21

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



Having defined how the input signal x maps onto parameter vector p, the Jacobian matrix J(x), which accounts for the
transformation of the FI, is given by

J(x) =
(

ω1
∂h1(x)

∂x
,−ω1

∂h1(x)
∂x

,ω2
∂h2(x)

∂x
,−ω2

∂h2(x)
∂x

, . . . ,ωk
∂hk(x)

∂x
,−ωk

∂hk(x)
∂x

)
, (22)

which leads to the Fisher Information for the system

FI(x) =
k

∑
i=1

ωi

(
∂hi(x)

∂x

)2( 1
hi(x)

+
1

1−hi(x)

)
. (23)

Numerically, this expression can be evaluated to compute the system’s information capacity. However, we can derive a
closed-form solution under three simplifying assumptions. Consider a scenario where the sensitivity ranges of all functional
states hi(x) are non-overlapping, meaning that for any given signal x, only one of the response functions hi(x) has non-zero first
derivative ∂hi(x)

∂x . Besides, assume even distribution of receptors among all functional states (ωi = 1/k), for i = 1, ...,k. This
assumptions, along with hi(0) = 0 and hi(∞) = 1, for i = 1, ...,k, allows us to simplify the integration of the Fisher Information:

V =
∫

∞

0

√√√√ k

∑
i=1

1
k

(
∂hi(x)

∂x

)2( 1
hi(x)

+
1

1−hi(x)

)
dx =

√
1
k

k

∑
i=1

∫ 1

0

(
1√

qi(1−qi)

)
dqi =

√
kπ.

Substituting this result into the capacity equation, we obtain

C∗
N =

1
2

log2

(
kNπ

2e

)
. (24)

This result establishes an upper bound on the information capacity achievable when a sensor operates through k distinct
functional states, each tuned to a different segment of the input range. As shown in Figure 1D, the capacity C∗

N grows with both
the number of receptors N and the number of functional states k. The benefit from higher k however depends on how distinct
sensitivity ranges of the functional states are.
Further, Figure 1E demonstrates that how closely to the upper bound a system operates depends critically on how well-separated
the response profiles hi(x) are. When these profiles overlap substantially, i.e., when the Hill parameter ratio R = Hi+1/Hi is
small, states become redundant and add little new information. As R increases and the profiles become more distinct, the system
transitions from redundancy-limited to resolution-limited behavior, with capacity approaching the theoretical maximum derived
in Eq. 24. This illustrates how quantitative tuning of biochemical parameters governs the efficiency of information transfer.
In summary, this example illustrates how the proposed framework can be used to quantify the benefits of conformational
diversity in allosteric sensors. It provides a tractable way to assess whether additional receptor states meaningfully improve
signal discrimination, and how this depends on the tuning of their sensitivity profiles. Besides, because the multinomial
distribution and its Fisher Information generalize naturally to other systems with discrete multi-state outputs, such as stochastic
biochemical networks modeled via the Chemical Master Equation [? ? ], the same analytical tools can be broadly applied
across diverse molecular signaling contexts.
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Figures/Figure_1.pdf

Figure 1. Information capacity for the binomial and multinomial signaling models.
(a) The probability of a sensor being active as a function of the signal x, modeled as Hill function h(x) = (x/H)n

1+(x/H)n with H = 1,
n = 2.
(b) The probability of a sensor in each of the four equiprobable (ωi = 1/k) functional states (k=4) being active, ωihi(x), as a
function of the signal x for a strongly overlapping sensitivity ranges of each functional state modeled as a Hill function with
H1 = 0.5, H2 = 1, H3 = 2, H4 = 4.
(c) Same as in (b) but for small overlaps between sensitivity ranges of each functional state: H1 = 0.5, H2 = 2, H3 = 8,
H4 = 32.
(d) Capacity C∗

N as a function of the sensors copy number, N, in a scenario with one conformational state (k = 1, Binomial
output), as well as two and four conformational states (k=2 and k=4, Multinomial output).
(e) Capacity C∗

N in a scenario with two (k = 4) and four (k = 4) conformational states as a function of the ratio R = Hi+1/Hi,
together with the limit of fully non-overlapping sensitivity ranges (dashed lines) for each functional state established by Eq. 24.
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Poisson Distribution
The Poisson distribution is an essential model for biochemical signaling systems in which outputs are counts of discrete,
stochastic events, such as transcription initiation, ion channel openings, receptor–ligand interactions, or molecular arrivals.
These processes are typically memoryless and governed by exponential waiting times, making the Poisson model a natural fit.
The distribution is parameterized by λ > 0, the expected number of events, which directly captures both the signal strength and
its inherent noise level. Furthermore, the Poisson model connects directly to the structure of the Chemical Master Equation [? ?
], enabling rigorous, first-principles modeling of information flow through noisy molecular pathways. In the following analysis,
we derive exact expressions for the information capacity of Poissonian systems and show how signal range, pathway length,
and degradation rates constrain the precision of information transfer.
We denote Y ∼ Poisson(λ ), meaning that the random variable Y takes integer values y = 0,1,2, . . . with probability

Poisson(Y = y | λ ) =
λ ye−λ

y!
.

The Fisher Information for the rate parameter λ is

FI(λ ) =
1
λ
.

Using the formalism introduced, we integrate the square root of the Fisher Information, Eq. (7). Integrating over the range from
λmin to λmax, we have

V = 2
√

λmax −2
√

λmin.

Substituting this into asymptotic information capacity formula, Eq. 6, results in

C∗
A = log2

(
(2πe)−

1
2

(
2
√

λmax −2
√

λmin

))
. (25)

Unlike binomial or multinomial models, where the asymptotic regime is naturally defined by the number of trials N, the Poisson
distribution lacks an explicit structure representing different receivers. Nevertheless, an analogous asymptotic interpretation
remains valid and useful. Consider partitioning a Poisson-distributed variable Y ∼ Poisson(λ ) into a sum of N independent
Poisson components

Y (i) ∼ Poisson
(

λ

N

)
for i = 1, . . . ,N,

such that Y = ∑
N
i=1 Y (i). Since the sum of independent Poisson variables equals a Poisson with summed rates, this decomposition

is exact. Moreover, the total count ∑
N
i=1 Y (i) is a sufficient statistic for λ , meaning that the full collection Y N = (Y (1), . . . ,Y (N))

contains no more information about λ than the sum alone.
This identity justifies treating N as an effective number of independent signal receivers, akin to other distributions. Therefore,
increasing λ mirrors the the asymptotic behavior of the capacity in terms of increasing N. When the rate parameters of interest
are larger, specifically, when λmin becomes sufficiently large, the asymptotic capacity C∗

A becomes a tight approximation of the
exact capacity C∗:

C∗
A −C∗ −−−−−→

λmin→∞

0, (26)

and hence C∗
A ≈ C∗.

This result offers practical value: for high-rate Poissonian processes (e.g., frequent transcription, fast molecular turnover), the
asymptotic expression can replace costly numerical estimation without significant loss of accuracy, streamlining the analysis of
signal fidelity.

Biochemical cascade
To illustrate the practical utility of the Poisson capacity formulas, we consider a canonical biochemical cascade composed of m
molecular states S1,S2, . . . ,Sm, depicted in Figure 2A. Molecules enter the initial state S1 at a signal-dependent rate

κ0(x) = β0 +κ
max
0 ·h(x),

where β0 is a constant basal input rate, and h(x) = (x/H)n

1+(x/H)n is a Hill function modeling activation by an external signal x. Here,
H is the input level for half-maximal activation, and n determines the steepness (cooperativity) of the input–output response.
Molecules transition sequentially from state Si to Si+1 at a uniform conversion rate κ , while each state also undergoes first-order
degradation at rate γ . Because transitions and degradation are governed by exponential waiting times, the system dynamics can
be modeled as a continuous-time Markov process, and molecule counts at each state follow Poisson distributions [? ? ].
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At steady state, balance equations can be used to compute the expected number of molecules in each state, denoted E[YSi ].
These expectations reflect how signal intensity propagates through the cascade and allow one to compute the corresponding
Fisher Information and ultimately the system’s information capacity.
For each state Si (i = 1,2, . . . ,m), the rate of change of the expected number of molecules E[YSi ] is zero, therefore at steady state

E[YS1 ] =
β0 +κmax

0 ·h(x)
γ +κ

,

E[YS2 ] =
kE[YS1 ]

γ +κ
=

(β0 +κmax
0 ·h(x)) ·κ

(γ +κ)(γ +κ)
,

for i = 1,2, . . . ,m−1

E[YSi ] =
(β0 +κmax

0 ·h(x)) ·κ i−1

(γ +κ)i ,

and for the last m-th state

E[YSm ] =
(β0 +κmax

0 ·h(x)) ·κm−1

γ(γ +κ)m−1 .

We have therefore

YSm ∼ Poisson
(

β0 +κmax
0 ·h(x)
γ

·αm−1
)
,

where

α =

(
κ

κ + γ

)
,

and, using Eq. 7,

V =
∫ xmax

xmin

1√
1
γ
(β0 + kmax

0 ·h(x)) ·αm−1
·
∣∣∣∣ d
dx

(
1
γ

kmax
0 ·αm−1 ·h(x)

)∣∣∣∣ dx =
∫

λmax

λmin

1√
λ

dλ ,

= 2

√
αm−1

γ
(β0 + kmax

0 ·h(xmax))−2

√
αm−1

γ
(β0 + kmax

0 ·h(xmin)).

Assuming h(xmin) = h(0) = 0 and h(xmax) = h(∞) = 1, we obtain

V = 2α
(m−1)/2

(√
β0 +κmax

0
γ

−

√
β0

γ

)
,

and therefore the asymptotic information capacity is

C∗
A = log2

(
2α(m−1)/2

(2πe)1/2

(√
β0 +κmax

0
γ

−

√
β0

γ

))
.

To make explicit how information capacity depends on cascade length and kinetic parameters, it is helpful to rewrite the
expression as

C∗
A = log2

(
2

(2πe)1/2

(√
β0 +κmax

0
γ

−

√
β0

γ

))
+

1
2
(m−1) log2

(
κ

κ + γ

)
. (27)

The resulting expression provides a quantitative account of an inherent limitation in multistep signaling cascades: as a signal
is transmitted through successive biochemical states, information is inevitably lost. This decline is not merely plausible,
it is mandated by the data processing inequality, a foundational result in information theory [? ], which guarantees that
post-processing steps cannot increase the information about the input. Here, that principle is made explicit: the derived
formula directly links molecular parameters, conversion rate κ , degradation rate γ , and cascade length m, to an upper bound on
information transfer, exposing the fundamental constraints imposed by network topology and kinetics. The capacity decreases
linearly with the number of steps m, modulated by the ratio κ

κ+γ
< 1, which encodes the trade-off between forward progression

and degradation. The formula reflects the cumulative effect of biochemical noise introduced at each stage. Figure 2B illustrates
this behavior: longer cascades or increased degradation result in greater information loss, progressively limiting the system’s

10/21

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



ability to resolve input values. While this model deliberately abstracts away from biological complexities such as temporal
averaging, enzyme saturation, spatial effects, or feedback regulation, it serves as a transparent and analytically tractable
benchmark. It demonstrates how the Fisher Information formalism can reveal structural trade-offs in signaling design and
identify limits on information fidelity imposed purely by network architecture and stochastic kinetics.
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Figures/Figure_2.pdf

Figure 2. Information capacity of the linear conversion cascade.
(a) Graphical representation of a chemical linear conversion pathway of length m, in which molecules appear in state S1 at rate
κ0 = β0 +κmax

0 ·h(x) that depends on the external signal x through a monotonic function of choice, here Hill function
h(x) = (x/H)n/(1+(x/H)n), and then are converted to the next subsequent state, Si+1, at rate κ or degrade (transition to
empty state ∅) at rate γ . The last state Sm is considered as the output of the system. All events are assumed to have exponential
waiting time implying Poissonian distribution of molecule copy number in each state.
(b) Information capacity, C∗

A, as a function of cascade length, m, for different values of the degradation rate γ . For
computations, we assumed β0 = 0.5, κ = 1, κmax

0 = 20, H = 1, n = 2.
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Gaussian distribution
The Gaussian (normal) distribution is widely used to model biological signaling systems with continuous outputs, especially
when the system integrates many stochastic molecular events (e.g., transcriptional bursts, receptor activation, or diffusion) that,
in aggregate, lead to approximately normal response distributions. Examples include protein or mRNA concentrations in single
cells, intracellular calcium levels, or nuclear localization of signaling factors, where the mean response and its variability are
continuous-valued and often experimentally accessible.
Here, we apply the Fisher Information framework to systems with Gaussian-distributed outputs and consider two biologically
motivated cases: (1) a constant variance model, and (2) a signal-dependent variance model. The first reflects situations where
variability remains steady across input conditions, e.g., when noise is dominated by baseline or other signal independent
fluctuations. The second captures the widespread biological observation that noise often scales with the mean, as seen in gene
expression and cytokine signaling [? ? ]. These cases allow us to evaluate how different noise models impact the information
capacity of signaling systems and how this capacity changes with signal range, signal fold-change and cell population size.
The FI for the Gaussian distribution, Y ∼ N (µ,σ2) with the mean µ and variance σ2 and the probability density function

f(x; µ,σ2) =
1√

2πσ2
exp
(
− (x−µ)2

2σ2

)
.

is given as

FI(µ,σ2) =

[ 1
σ2 0
0 1

2σ4

]
.

Special Case: fixed σ

The first case is where the mean µ varying from µmin to µmax is the input signal, while the variance σ2 remains constant. Using
transformation rule given by Eq. 10, computation of FI with respect to µ is straightforward as ∂σ2

∂ µ
= 0. We have

FI(µ) =
1

σ2 .

Therefore, as defined in Eq. 7, we have

V =
µmax −µmin

σ
,

which here takes the form of the signal-to-noise-ratio (SNR) commonly used in engineering. The asymptotic information
capacity of the system is then

C∗
A = log2

(
µmax −µmin

(2πe)
1
2 σ

)
.

This example formalizes the classical concept of SNR within the information-theoretic framework of information capacity. In
the case of constant variance, the asymptotic information capacity depends logarithmically on the dynamic range of the mean
response divided by the noise level providing a quantitative link between intuitive engineering heuristics and a formally derived
capacity.

Special Case: σ = λ µ

Now consider a scenario where the variability of the response increases proportionally to the mean. This corresponds to
biological systems where the strength of noise grows linearly with the signal, which is often exactly or approximately observed
[? ? ? ? ]. We model this by assuming σ2 = (λ µ)2, where λ is a constant proportionality factor. In this case, we have
that ∂σ2

∂ µ
= 2λ 2µ , therefore the Fisher Information for the mean µ is obtained using a transformation Jacobian, Eq. 10,

J = [1,2λ 2µ]T ,

FI(µ) =
1

µ2

(
1

λ 2 +2
)
,

leading to V defined in Eq. 7 given as

V =

√
1

λ 2 +2
(

ln
(

µmax

µmin

))
.

The corresponding asymptotic capacity is
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C∗
A = log2

(
1

(2πe)
1
2

√
1

λ 2 +2
(

ln
(

µmax

µmin

)))
. (28)

This case demonstrates how scaling of the variability with signal level, a feature often observed in biological systems such as
cytokine signaling or gene expression leads to information capacity being predominantly dependent on fold-change of the mean
response µmax/µmin, as opposed to additive increase in the constant variance scenario. A full derivation of Eqs. (28)–(29) is
provided in Supplementary Note 6.

Example: Single Cell Signaling
Now consider a biological example to interpret the formulas above. Let x denote, the input signal x typically representing a
biologically controllable quantity such as ligand concentration, receptor occupancy, or upstream activation level. Besides, let
Y (i) be the response of an individual cell i, e.g., the nuclear concentration of a transcription factor, transcription rate, protein
abundance, or some other parameter of output intensity. We model this response as normally distributed with mean µ and
standard deviation σ that is proportional to the mean, so that σ2 = (λ µ)2. Assume that each cell has an identical mean response
function h(x), an arbitrary differentiable increasing function, not necessarily Hill function, and not necessarily limited to [0,1]
range. The function h(x) maps the input to the mean of the output distribution.

The asymptotic information capacity can be then computed by substituting µmax = h(xmax) and µmin = h(xmin) into Eq. 28,
which gives the information capacity regarding ligand concentration stored jointly in N cells

C∗
N = log2

(
1

(2πe)
1
2

√
1

λ 2 +2
(

ln
(

h(xmax)

h(xmin)

)))
+

1
2

log2(N). (29)

This result highlights two insights. First, when noise scales with the signal, the system’s capacity to resolve input levels is
governed primarily by the fold-change in the output response, not the absolute range, supporting the idea that many signaling
systems operate in a fold-change detection mode [? ? ? ]. Second, pooling responses from multiple cells increases the capacity
additively in 1

2 log2(N), reflecting classic results from statistical estimation theory.

Gamma Distribution
The Gamma distribution is another relevant model for biological systems, especially when the data is skewed or limited to
positive values. The probability density function of a Gamma-distributed random variable Y with shape parameter α and rate
parameter β is given by

f(y;α,β ) =
β α yα−1e−βy

Γ(α)
, y > 0,

where α > 0 and β > 0. The mean µ and variance σ2 are related to α and β as

µ =
α

β
, σ

2 =
α

β 2 .

Thus, the shape and rate parameters can be re-parametrized in terms of µ and σ2 as

α =
µ2

σ2 , β =
µ

σ2 .

The FI in terms of (α,β ) is

FI(α,β ) =

[
ψ ′(α) − 1

β

− 1
β

α

β 2

]
,

where ψ ′(α) is the trigamma function, the derivative of the digamma function ψ(α). Using the variable transformation, Eq. 10,
from (α,β ) to (µ,σ2), we have the Jacobian matrix of the transformation

J =

[
∂α

∂ µ

∂α

∂σ2
∂β

∂ µ

∂β

∂σ2

]
=

[
2µ

σ2 − µ2

(σ2)2
1

σ2 − µ

(σ2)2

]

resulting in FI with respect µ and σ2

FI(µ,σ2) =

 σ2

µ2 ψ ′
(

µ2

σ2

)
−σ4

µ3 ψ ′
(

µ2

σ2

)
−σ4

µ3 ψ ′
(

µ2

σ2

)
σ6

µ4 ψ ′
(

µ2

σ2

)
+ 2σ4

µ2

 .
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Although the above formula is useful for numerical studies its manual manipulation is difficult. We focus, therefore, similarly
to the gaussian scenario, on a special case. Here, however, only on the case where σ = λ µ as the case of constant variance
does not seem to have a simple form.

Special case: σ = λ µ

In the considered special case, we have that

α =
1

λ 2 β =
1

λ 2µ
,

therefore,

∂α

∂ µ
= 0

∂β

∂ µ
=− 1

λ 2µ2

and J = [0,− 1
λ 2µ2 ]

T . After multiplication JT FI(α,β )J, we get Fisher Information with respect to µ

FI(µ) =
1

λ 2µ2

and

V =

(
1
λ

)(
ln
(

µmax

µmin

))
.

The capacity is then given as

C∗
A = log2

(
1

(2πe)
1
2

(
1
λ

)(
ln
(

µmax

µmin

)))
. (30)

Similarly as in the Gaussian scenario, the assumption σ = λ µ implies dependance of the asymptotic capacity on the fold-change
of the mean.

Example: Single cell signaling

The formula can be used in the same way as in the Gaussian example to study signaling capacity of N cells. Considering the
same example, for outputs distributed as Gamma we have the following capacity

C∗
N = log2

(
1

(2πe)
1
2

(
1
λ

)(
ln
(

h(xmax)

h(xmin)

)))
+

1
2

log2(N). (31)
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Information Capacity in Heterogeneous Cell Populations
Having derived closed-form expressions for information capacity in canonical settings, we now apply them to a more complex,
biologically relevant scenario: a heterogeneous cell population [? ? ]. We assume the population comprises m distinct
phenotypes, denoted as Z ∈ {1, . . . , j, . . . ,k}. Each cell independently adopts phenotype j with probability ωj, such that
∑

k
j=1 ωj = 1. The conditional probability of observing response Y from a cell of phenotype j, given input X = x, is denoted as

Pj(Y | X = x). We focus here on the case where the phenotypic state Z is observed, as it allows for analytical tractability as
Fisher Information decomposes additively across phenotypes, while the marginal model, with Z unobserved, requires numerical
evaluation of a mixture distribution (Supplementary Note 7 and Supplementary Figure 2). Modeling Z as observed is suitable
when phenotypes are distinguishable, experimentally or conceptually, allowing the contributions of distinct subpopulations to
be explicitly analyzed. In contrast, marginalizing over Z is appropriate when phenotypic identity is inaccessible or intentionally
abstracted, but this comes at the cost of increased analytical complexity and a neglect of mechanistic variability across
phenotypes.
Therefore, we consider the joint distribution of (Y,Z) given x as

P(Y,Z = j | X = x) = ωjPj(Y | X = x).

The Fisher Information with respect to x for this mixture model is given by

FI(x) = E

[(
∂

∂x
logP(Y,Z | X = x)

)2
]
.

Expanding the expectation over phenotype assignments and conditioning on Z = j, we obtain

FI(x) =
k

∑
j=1

ωj EY∼Pj

[(
∂

∂x
logPj(Y | X = x)

)2
]
=

k

∑
j=1

ωj FIj(x),

where FIj(x) is the Fisher Information for phenotype j. The integrated square root of the total Fisher Information becomes

V =
∫ xmax

xmin

√√√√ k

∑
j=1

ωjFIj(x)dx.

In the special case, where the Fisher Information is localized, that is, each x activates only one phenotype significantly (i.e.,
FIj(x)≫ 0 for a single j), the integral simplifies to

V =
k

∑
j=1

√
ωjVj, where Vj =

∫ xmax

xmin

√
FIj(x)dx.

These expressions give opportunity to reuse the analytical results derived earlier, as each Vj corresponds to the integrated Fisher
Information of a specific distribution. Assuming all phenotypes share the same integrated Fisher Information (i.e., Vj = V0 for
all j), and are equiprobable (i.e., ωj =

1
k ), we obtain

V =
√

k ·V0 (32)

and

C∗
N = log2

(
1

(2πe)1/2 V0

)
+

1
2

log2(kN). (33)

This final expression reveals that in the limit of non-overlapping phenotypic responses, the sensing capacity of a heterogeneous
cell population scales as 1

2 log2(kN), where N is the number of cells and k the number of distinct response phenotypes. This
scaling implies that phenotypic diversity can enhance population-level information transfer, essentially by 1

2 log2(k) when
phenotypes are well-separated. Crucially, the gain is independent of the specific form of the response distribution and arises
without increasing single-cell precision, just by partitioning the input range across cell types.
To use concrete distributional forms, suppose the response of phenotype j has a mean µj(x) = hj(x), and standard deviation
σj(x) = λ µj(x), where λ is a constant. Assume each response function spans the range of output values

hj(xmin) = µmin, hj(xmax) = µmax, for all j,
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however for different ranges of input values, ensuring the assumption of localized Fisher information is satisfied. Then, using
our earlier derivations, the information capacity for N cells and m phenotypes for Gaussian-distributed responses is given by

C∗
N = log2

(
1

(2πe)1/2

√
1

λ 2 +2 · ln
(

µmax

µmin

))
+

1
2

log2(kN), (34)

and for Gamma-distributed responses by

C∗
N = log2

(
1

(2πe)1/2 · 1
λ
· ln
(

µmax

µmin

))
+

1
2

log2(kN). (35)

The above formulas quantify the sensing capacity of a population of N cells. with k distinct cellular phenotypes in the limit of
non-overlapping responses distributed according to Gaussian and Gamma distribution.
We further examine how it depends on overlaps between response sensitivities of different phenotypes by considering a
numerical example in which each phenotype j exhibits a distinct mean response function defined as

hj(x) = µmin +(µmax −µmin) ·
(x/Hj)

n

1+(x/Hj)n ,

where µmin and µmax are the minimum and maximum possible response levels, respectively, Fig 3A. The Hill function parameter
Hj controls the input value at which phenotype j reaches half its maximum activation, and n determines the steepness of the
response. Further, similarly as in the allosteric sensor example, we define the ratio R = H j+1/Hj, which quantifies the spacing
between the sensitivity ranges of adjacent phenotypes. As R increases, the activation curves of different phenotypes become
more distinct and less overlapping, approaching the idealized limit in which each phenotype operates over a localized region of
input space, Fig 3B-C. In this limit, the system approaches the maximum capacity predicted by Eq. 34 for the Gaussian case
and Eq. 35 for the Gamma case, Fig 3D-E.
This example also underscores the practical value of the Fisher-based formalism. The explicit capacity formulas enable
a decomposition of how population size, phenotypic heterogeneity, noise scaling, and dynamic range each contribute to
information transfer. This analytic clarity facilitates quantitative assessment of trade-offs in sensing system design. Whether the
goal is to understand adaptive advantages of diversity in natural populations or to optimize synthetic biosensors, the framework
here identifies when heterogeneity enhances performance, and when it does not.
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Figures/Figure_3.pdf

Figure 3. Information capacity of homogeneous and heterogeneous cell populations in Gaussian and Gamma signaling
models.
(a) Mean response of a cell to stimulus level x in a scenario where all cells share the same response parameters. The mean
response is described by h(x) = µmin +(µmax −µmin)

(x/H)n

1+(x/H)n with µmin = 1, µmax = 2, H = 1, and n = 2.
(b) Mean responses hi(x) of four (k = 4) distinct phenotypes with strongly overlapping sensitivity ranges. Each mean response
is modeled as in (a), with phenotypes i characterized by different H values: H1 = 0.5, H2 = 1, H3 = 2, and H4 = 4, yielding
R = Hi+1/Hi = 2.
(c) As in (b), but for phenotypes with minimally overlapping sensitivity ranges: H1 = 0.5, H2 = 2, H3 = 8, H4 = 32, yielding
R = 4.
(d) Information capacity CN as a function of the number of cells N in a scenario with homogeneous mean response, as in (a),
for Gaussian and Gamma output distributions, with σ = λ µ and λ = 0.1.
(e) Asymptotic capacity C∗

A in a scenario with four response phenotypes (m = 4) as a function of the ratio R = Hi+1/Hi, for
Gaussian and Gamma output distributions, σ = λ µ and λ = 0.1. Dashed lines indicate the limit of fully distinct responses, as
given by Eq. 34 and Eq. 35.
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Discussion
The analytical expressions we derive for the asymptotic information capacity C∗

A, summarized in Table 1, offer a practical
toolset for evaluating the limits of signal resolution in biological systems. By expressing capacity in terms of Fisher Information,
our framework reveals how type of output distribution, kinetic rates, input values range, input-dependent noise, and population
heterogeneity, quantitatively shapes the ability of a system to encode and transmit information. Unlike conventional approaches
based on numerical mutual information estimation (e.g., via Blahut–Arimoto or Monte Carlo sampling), our method yields
closed-form results or efficiently computable integrals that directly expose how parameters control capacity. In particular, we
show that for a wide class of biologically relevant distributions, Binomial, Multinomial, Poisson, Gaussian, and Gamma, the
capacity can be expressed as a scaled log of a resolved input volume V, integrating the local Fisher Information over input
space. This links information transmission directly to geometric properties of the statistical model, and establishes a principled,
computation-free approximation of capacity in large-N systems.

The biological examples we present are intentionally grounded in canonical probabilistic models that abstract away from
system-specific architectural complexity to facilitate analytical treatment. These idealized models have long served as building
blocks in systems biology [? ] and provide a transparent view of how fundamental features, like input and output range,
noise scaling, or response curvature, shape communication capacity. While they omit meaningful biological details, including
receptor multimerization, temporal correlations, or transcriptional bursting, these simplifications allow for the derivation of
closed-form results that are otherwise inaccessible. Many previous studies have taken a complementary route by incorporating
more detailed conceptual assumptions or mechanistic insights [? ? ? ? ? ? ? ? ], often through Gaussian approximations,
stochastic simulations, or numerical mutual information estimation.

Building on this general perspective, our analytical formulation identifies a simple unifying principle: the asymptotic capacity
depends only on the Fisher information integrated over the input range, reflecting local sensitivity and noise structure. As a
consequence, the derived formulas are independent of the choice of the specific activation function h(x), such as the Hill function,
because only the boundary values h(xmin) and h(xmax) enter the final expressions: through the difference h(xmax)−h(xmin)
for constant noise models, or through the fold-change h(xmax)/h(xmin) when noise scales with the mean. When noise scales
with the mean in Gamma or Gaussian models, capacity depends on the fold-change in signal levels, resulting in a logarithmic
dependence on the input signal that is consistent with fold-change detection observed across diverse signaling systems.
Conversely, when noise is additive and fixed (constant-variance Gaussian), capacity instead scales with the absolute signal
range, i.e., the signal-to-noise ratio. This dichotomy provides a potential formula-based explanation for why biological sensors
so often encode relative changes rather than absolute concentrations: systems in which noise grows with signal amplitude
naturally favor a fold-change–based coding strategy, while systems dominated by additive noise benefit more from encoding
absolute differences.

This dependence of capacity on the fold-change in mean output may resemble the principle of Fold-Change Detection (FCD)
studied in adaptive network motifs [? ], but the two describe different, though related, phenomena. FCD is a dynamical
invariance property whereby responses depend only on relative changes in input and typically arises from nonlinear feedback [?
]. In contrast, our result is purely static and information-theoretic: multiplicative noise models leads to a capacity dependent on
h(xmax)/h(xmin). This fold-change dependence reflects the statistical distinguishability of inputs, not dynamical adaptation, and
underscores that encoding relative differences can emerge directly from the geometry of noise in the signal–response map.

The derived formula also reveal that phenotypic heterogeneity, when organized into non-overlapping sensitivity regimes,
contributes additively to capacity. In such cases, the capacity scales as 1

2 log2(kN), where k is the number of distinct phenotypes
and N the number of cells. This allows direct quantification of the benefit of diversity, offering a design principle for synthetic
circuits or a testable hypothesis for natural systems: if subpopulations are tuned to distinct input regimes, the net sensing
capacity increases without altering the precision of individual cells.

Finally, our analysis of signal degradation in multi-step cascades reveals a fundamental constraint: information decays linearly
with pathway length. The derived expressions isolate how degradation rate and conversion efficiency impose strict upper bounds
on usable capacity. While based on idealized assumptions, these formulas provide analytic limits that any realistic system
must obey, offering useful benchmarks for both biological modeling and synthetic design. Additional context, caveats, and
connections to prior literature are elaborated in Supplementary Discussion.

In summary, the value of this framework is threefold: (i) it replaces costly optimization with tractable integrals; (ii) it exposes
how distributional assumptions and parameters impact resolvability; and (iii) it enables decomposition of sensing performance
into interpretable components, range, noise, population, and dynamics. Beyond biology, the same principles apply to any
noisy measurement system, sensor networks, data compression, or analog-to-digital conversion, where understanding the
structure–capacity relationship is essential.

19/21

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



Data Availability
All relevant data are available from the authors upon request.
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Table 1. Summary of Derived Formulas for Asymptotic Information Capacity C∗
A

Distribution Parameters Additional Assumptions Asymptotic Capacity C∗
A

Binomial pmin, pmax - C∗
A = log2

(
(2πe)−1/2(arcsin(2pmax −1)− arcsin(2pmin −1))

)
pmin, pmax pmin = 0, pmax = 1 C∗

A = log2
(
(2πe)−1/2π

)
Multinomial k,ωi,hi(x) Non-overlapping sensitivity

ranges
C∗

A = 1
2 log2

(
k·π

2e/π

)
Poisson λmin,λmax large λmin C∗

A = log2
(
(2πe)−1/2(2

√
λmax −2

√
λmin)

)
Gaussian µmin,µmax,σ Fixed σ C∗

A = log2

(
µmax−µmin
(2πe)1/2σ

)
µmin,µmax,λ σ = λ µ C∗

A = log2

(
1

(2πe)
1
2

√
1

λ 2 +2
(

ln
(

µmax
µmin

)))
Gamma µmin,µmax,λ σ = λ µ C∗

A = log2

(
1

(2πe)
1
2

( 1
λ

)(
ln
(

µmax
µmin

)))
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