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Discussed is the structure of classical and quantum excitations of in-
ternal degrees of freedom of multiparticle objects like molecules, fullerens,
atomic nuclei, etc. Basing on some invariance properties under the action
of isometric and affine transformations we reviewed some new models of the
mutual interaction between rotational and deformative degrees of freedom.
Our methodology and some results may be useful in the theory of Raman
scattering and nuclear radiation.
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1. Introduction

Roughly speaking, in what follows we are dealing with some ideas con-
cerning applications of affine symmetry in fundamental physics. The very
idea is not new. Let us mention, e.g., some papers by Hehl, Ne’eman, Šijački
and others (see [13,30,31,51,52,76–78,82] and references therein).

Everybody knows from ancient times that geometry of the physical world
is organised in a hierarchical way and consists of some modules. The most
elementary of them is one based on the ideas of Thales of Miletus. The
crucial concepts and ideas there were just the parallelism and proportion
of segments on the same straight line or, to be more precise, on parallel
straight lines. Much of our geometry may be developed in this way. And
further on, the “brutal” metrical concepts of distances and angles, or equiv-
alently — scalar products, did appear. Mathematically speaking, they have
to do with bilinear forms on the space of translations in the physical space.
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No doubt, the metrical concepts are very important also on the fundamental
level. Indeed the very pseudo-Euclidean metric structure of the Minkowskian
four-dimensional space-time or the Euclidean three-dimensional space are,
so to speak, a vacuum-state manifestation (“ground state” in a sense) of the
very important field, i.e., just the gravitational field, the force known to hu-
manity from ancient times. Nevertheless, if the Thales–Euclid hierarchy of
concepts is seriously treated, it seems very natural to ask what would be the
corresponding hierarchy of physical concepts and theories. Then one can ask,
even if motivated by a purely academic interest, what would be a hypotheti-
cal affine physics and what natural schemes of the metrical (isometry-based)
breaking of that Thales-preestablished affine harmony seem to be physically
and experimentally justified. And why at all? Is this some additional inter-
action or something like the spontaneous symmetry breaking?

The idea of using GL (3,R), SL (3,R) or other non-compact groups, e.g.,
symplectic and pseudo-orthogonal ones, is not new in fundamental physics,
let us refer again to Hehl, Ne’eman and Šijački et al. [13,30,31,51,52,76–78].
The pseudo-orthogonal group O (2, 4) is related in a known way to the theory
of hydrogen atom. In nuclear physics the group GL (3,R) (or rather its
subgroup SL (3,R); nuclear matter seems to be as incompressible as usual
macroscopic fluids) has been used for a long time in the collective droplet
model of nuclei [9, 10, 16, 17, 21, 29, 60–64, 81, 86]. Some of the mentioned
non-compact groups were thought on as configuration spaces. They were
also used as so-called non-invariance groups, spectrum-generating groups
(or algebras), e.g., Hamiltonian was one of the generators, and the spectrum
might have been found in a rather algebraic way, on the basis of commutation
relations alone, etc. (see, e.g., [5, 8, 39,50] and references therein).

In a sense the classical model of affine degrees of freedom has been used
for ages in the theory of the Earth’s shape (Riemann, Dedekind, Maclau-
rin; it seems that in a sense even Newton himself; see, e.g., [15, 38, 74]
and references therein). In XX-th century the interest in this topic re-
vived, as mentioned, in the connection with nuclear and molecular dynamics
[42, 66, 67, 72, 73], astrophysics [15] and the theory of continua with mi-
crostructure [14,23,43,44,72,73,87]. The famous concept of ellipsoidal figures
of equilibrium became fashionable. On the purely mathematical level this
effort was accompanied by new methods based on Poisson geometry and the
dynamics on co-adjoint orbits of Lie groups. The subject has been intensively
studied both on the classical and quantum levels [2, 3, 34,35,54–57,72,73].

As mentioned, we concentrate on the linear group as one which rules de-
grees of freedom of internal/relative motion. So, the only admissible modes
of motion are spatial translations, rotations and homogeneous deformations.
In a sense, our topic belongs to the dynamics on Lie groups as developed by
Arnold, Marsden, Hermann and others [2,3,32,33], in particular, something
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like “affine Euler equations” appears [72, 73]. But it is so “in a sense” only.
Degrees of freedom are ruled by Lie groups GL (3,R), GAf (3,R), but it is
not so with Lagrangians, metrics on the configuration space and equations of
motion. But the very taste of systems with group-theoretic degrees of free-
dom consists in considering left or right (or both, i.e., two-sides) invariant
geodetic models. It happens quite often that some explicit solutions may
be analytically obtained and expressed in terms of exponential mappings
on Lie algebras or in terms of some well-investigated special functions on
groups [34,35,72,73,83–85].

But for all applications and models mentioned above the affine or linear
groups do not preserve Lagrangians, Hamiltonians and equations of motion.
The corresponding metrics on the configuration space have much weaker, at
most isometric symmetry (Euclidean motions, preserving the Euclidean met-
rics of the physical space). So, and this is really disappointing, there is no
profit of using group-theoretic degrees of freedom. Hamiltonian generators
of the total affine group in general fail to be constants of motion or good
quantities to be used in balance laws when external influences are taken
into account. And geodetic models, i.e., ones without forces and poten-
tials, are not useful, because in non-compact spaces they, as a rule, predict
the unbounded, “escaping to infinity”, i.e., “dissociative”, behaviour and no
bounded motion, i.e., no oscillatory “elastic” phenomena. Similarly, on the
quantum level one obtains purely continuous spectrum, no bound states.

Let us compare all that with the beautiful structure of left-invariant
geodetic models on the rotation group, i.e., with the translations-free rigid
body (pure rotations) and with the right-invariant geodetic models on the
group of volume-preserving diffeomorphisms, i.e., with the Arnold descrip-
tion of incompressible ideal fluids [2,3,7,19,20,45,46]. And we try to repeat
this reasoning for affine bodies. Quite independently of any perspective of
physical applications, it would be interesting, at least from the purely aca-
demic point of view of analytical and quantum mechanics, to investigate the
theory of systems with the kinetic energy (Riemann structure of the con-
figuration space) just exactly invariant under spatial (Euler coordinates) or
material (Lagrange coordinates) affine group. Let us also mention that the
model right-invariant under SL (n,R) (under unimodular and orientation-
preserving transformations of Lagrange variables) may be considered as a
very drastic discretization of the Arnold description of ideal incompressible
fluids. Discretization is drastic, because it reduces the continuous system
with infinite number of degrees of freedom to one with a finite number of
them, namely n(n+1) in the n-dimensional “physical” space, i.e., 12 in the
physical case when n=3; among them 3 translational and 9 internal (relative
motion) degrees of freedom (respectively n and n2 in the academic n-dim-
ensional world). Applications, e.g., to “nuclear fluids” seem quite possible.
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Affine invariance in Euler variables is a bit more doubtful and academic,
nevertheless, there is some logical necessity which tells us that such models
must be formulated (that is done below) and their consequences must be
carefully derived and compared with the experimental data (the last thing
yet to be done). In any case, quite independently on the academic idea
of affinely-invariant models based on the Thales part of geometric axioms,
there are some physical arguments which encourage us to undertake this
effort. There are known situations where in condensed matter, especially
in strongly condensed matter, the effective kinetic energy is not based on
the “true” metric tensor, but on the tensor depending somehow on physical
parameters. The most important example is the effective mass tensor of
electrons in solid state physics [36]. The point is that the inertia of electrons
becomes then less dependent on the spatial metric tensor and more sensitive
to surrounding physical factors influencing their motion [36]. Some phenom-
ena like those are expected also in dynamics of defects in solids or in the
theory of a bit exotic objects like bubbles and voids in continua [14], e.g.,
in fluids. The more so, such exotic fluids like nuclear matter may perhaps
behave in a way compatible with predictions of affinely left-invariant models
(ones affinely invariant in the physical space). In any case some interesting
things are expected when, e.g., the effective mass tensor is proportional to
the Cauchy deformation tensor. Geometrically this is the simplest model
affinely invariant in the physical space.

It must be strongly stressed, and the above introductory remarks prove
this, that the models analysed below, in spite of their using of GL (3,R) or
GAf (3,R) and their subgroups, have little, if anything, to do with oth-
erwise very respectable and physically useful historical models discussed
classically by Riemann, Dedekind, Dirichlet, Chandrasekhar, Bogoyavlen-
ski ( [15, 72, 73] and references therein), and on the quantum microphysi-
cal level by Weaver, Cusson, Biedenharn, Rosenstell, Rove and many oth-
ers [9,10,16,17,21,29,60–64,81,86]. Their dynamics are completely different.
Because of this there are also some differences in analytical methods. When
dealing with matrix groups, calculations are usually based on various decom-
positions of groups. For our purposes the most convenient ones are polar
and, first of all, singular value decompositions; for latter one we often use
the suggestive term “two-polar decomposition”. Other well-known multi-
plicative splittings like the Gauss or Iwasawa decompositions do not seem
to be effective within the framework of our models.

The peculiarity of our model is that, according to the Noether theo-
rem, affine momenta, i.e., generators of affine group and their functions,
are quantum constants of motion. More precisely, it is so for generators
of the volume-preserving subgroup. In particular, if translational motion is
neglected, the Casimirs of SL(n,R) are constants of motion [72,73].
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Another very interesting and important feature of affinely-invariant ki-
netic energies is that they may be used as Lagrangians describing the dy-
namics of large isochoric elastic vibrations coupled with rotational motion.
No potential term is necessary in such models and all advantages of invariant
geodetic dynamical systems on Lie groups or their homogeneous spaces may
be used [2, 3, 34, 35, 54–57, 72, 73]. The idea of encoding the dynamics in an
appropriately chosen metric tensor of the configuration space resembles the
Maupertuis variational principle, however, in our model the mentioned met-
rics are very natural and follow from some first principles based on geometric
ideas. If the object is compressible, then dilatations must be stabilized by
some potential term depending on the dilatational ratio, i.e., on detϕ in the
formula (1) below. It is natural to assume something like the potential well
or other model rapidly growing when detϕ deviates from unity [19].

It must be stressed that our constituent point particles are spinless. The
term “spin” in the classical and quantum parts of our treatment refers to the
orbital angular momentum with respect to the centre of mass. When trying
to apply the model in nuclear physics one must modify it by introducing in
addition and carefully taking into account the “true” spin of constituents,
i.e., nucleons. Without such corrections our model may describe only some
aspects of the nuclear dynamics. As a matter of fact, the same concerns
molecular dynamics, although spin effects are then less essential than in
nuclear phenomena.

Incidentally, there are some subtle problems concerning the concept of
spin, its affine aspects, and the relationship between spin and orbital angular
momentum. And some ideas, perhaps rather speculative and hypothetical,
may be formulated. More precisely, we mean here some speculations about
the possibility of “explaining” spin as the “orbital” angular momentum of
internal motion of extended or composed objects. In standard theories spin
is a primary characteristic of elementary particles, described formally in
terms of irreducible unitary representations of the group SU(2) (Spin(n) in
n dimensions) acting on multicomponent wave functions or fields subject
to the quantization procedure. The use of the covering group of SO(3,R)
(SO(n,R) in n dimensions) results in appearing of half-integer spin, pre-
dicted on the purely experimental, spectroscopic basis by Goudsmit and
Uhlenbeck [80]. This is angular momentum as an irreducible concept; an-
gular momentum without rotation of anything. There were attempts of
formulating affine fundamental physics based on irreducible unitary repre-
sentations of GL(3,R), the covering group of GL(3,R) (GL(n,R) in n dimen-
sions) [52,76]. Of course, those representations are infinite-dimensional; the
problem is additionally complicated by the fact that GL(n,R) is not a lin-
ear group (does not possess faithful realizations in terms of finite matrices).
When restricted to SU(2) (Spin(n)), those representations become reducible
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and split into direct sums of infinity of irreducible representations found by
Wigner and Bargmann [30,31,52,76]; obviously, they are finite-dimensional
because SU(2) (Spin(n)) is compact. “Deformative” generators of GL(3,R)
(GL(n,R)) mix those representations and predict the existence of some ex-
cited “trajectories”. And, of course, all characteristics of energy levels are
primary and implied by the group itself. When one deals with elementary
level, they are not interpreted as following from the rotation and deforma-
tion of something in the physical space. The natural question appears as to
the possibility of such an interpretation. There were some attempts, among
other ones those by Barut, Rączka and coworkers, of interpreting elementary
particles as quantized rotating or rotating-and-deforming objects [4,6]. Spin
quantum numbers would not be then something primary, but rather some
aspects of quantized motion in the configuration space of internal degrees
of freedom. But how to explain then the half-integer spin? There is some
natural hypothesis based on two-valued wave functions. Incidentally, the
idea was suggested long ago by Pauli and Reiss [53, 58] who claimed that
the demand of one-valuedness imposed on wave functions in standard quan-
tum mechanics might be perhaps weakened and sometimes under certain
conditions rejected (cf. also [37]). This is the case in quantum mechanics of
rigid bodies or homogeneously deformable rigid bodies. The classical con-
figuration spaces SO(3,R), GL(3,R) (SO(n,R), GL(n,R) for n ≥ 3) are
doubly connected and it is quite natural to admit wave functions defined
not on them but rather on their covering groups [4, 6, 53, 58]. This idea has
to do with the projective representations of groups. The only point is that
to maintain statistical interpretation in SO(3,R) (SO(n,R)) or GL(3,R)
(GL(n,R)), one must assume some kind of superselection. Namely, the ker-
nels of projections from the coverings onto original groups are two-element
subgroups. There are two natural subspaces of wave functions: ones which
do not distinguish the elements of the kernel subgroup and ones differing in
sign there. Functions from two different subspaces cannot be superposed.
But it is not clear if statistical interpretation must hold in original groups
or in their coverings; in the latter case there is no restriction for superposi-
tions. If proceeding along such lines, one obtains half-integer values of the
angular momentum of quantized internal motion. It is interesting that, in
a sense, something like this appeared also in our model of quantum torsional
oscillator, even without working in the covering groups [68].

2. Degrees of freedom, kinematical and canonical
variables, symmetries

We shall consider a system of material points, let us say physically
a molecule or perhaps even the atomic nuclei, subject to translational mo-
tion, rigid rotations and homogeneous deformations. By this we mean that
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the current positions of constituent particles in the physical space, analyt-
ically speaking its Euler coordinates, are related to the reference Lagrange
coordinates aK by the following formula:

yi = xi + ϕiKa
K , (1)

where xi are coordinates of the spatial position of a distinguished point of
the body, usually the centre of mass, and ϕiK refer to the relative/internal
motion. Generalized coordinates are given by the system

(
xi, ϕiK

)
; just

these quantities are considered here as the functions of time. Generalized
velocities are given then by the time derivatives ẋi, ϕ̇iK , i.e., respectively
the translational velocity and the system of internal ones. Sometimes it is
convenient to use the quantities

Ωi
j = ϕ̇iAϕ

−1A
j , Ω̂A

B = ϕ−1A
iϕ̇
i
B = ϕ−1A

iΩ
i
jϕ

j
B , (2)

so-called affine velocities respectively in spatial and co-moving representa-
tions. If gij , ηAB are metric coefficients respectively in the physical and
material spaces (Euler and Lagrange metrics), then the corresponding dou-
bled skew-symmetric parts,

Ωi
j −Ωj i = Ωi

j − gikgjlΩl
k ,

Ω̂A
B − Ω̂BA = Ω̂A

B − ηACηBDΩ̂D
C , (3)

may be interpreted as angular velocities. Obviously, the upper case indices
in g and η refer to contravariant inverses of gij and ηAB, i.e.,

gikgkj = δij , ηACηCB = δAB . (4)

Usually, although not always, one uses orthonormal coordinates in which

gik =∗ δik , ηAB =∗ δAB . (5)

Remark: unlike in (2), the skew-symmetric parts (3) in general are not
ϕ-related,

Ωi
j −Ωj i 6= ϕiA

(
Ω̂A

B − Ω̂BA
)
ϕ−1B

j . (6)

The equality holds if and only if ϕ is an isometry, i.e.,

ηAB = gijϕ
i
Aϕ

j
B . (7)

Then Ωi
j , Ω̂A

B are, respectively, g- and η-skew-symmetric and coincide with
the angular velocity in spatial and co-moving representations.
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An important point is that the quantities Ωi
j , Ω̂A

B are non-holonomic
velocities or quassivelocities in the sense of Boltzmann. By this we mean that
there are no generalized coordinates xij or yAB such that Ωi

j , Ω̂A
B would

be their time derivatives. Quasivelocities are linear functions of generalized
velocities, however, with configuration-dependent coefficients.

In certain formulae it is convenient to use the co-moving components of
the translational velocity,

v̂A = ϕ−1A
iv
i = ϕ−1A

i
dxi

dt
. (8)

The Green and Cauchy deformation tensors are, respectively, given by
[22,24]

GAB = gijϕ
i
Aϕ

j
B , Cij = ηABϕ

−1A
iϕ
−1B

j , (9)

and their inverses are as follows:

G−1AB = ϕ−1A
iϕ
−1B

jg
ij , C−1ij = ϕiAϕ

j
Bη

AB . (10)

Warning: to avoid mistakes it is better not to omit the inverse label at
C−1, G−1. Otherwise, some confusions would be possible with the g- and
η-shifts of indices. And again it is typical that those are different things and
except some special situations the following inequalities hold:

C−1ij 6= gikgjlCkl , G−1AB 6= ηACηBDGCD . (11)

Having at disposal two pairs of twice covariant tensors (g, C), (η,G), we can
construct two mixed tensors

Ĉij = gikCkj , ĜAB = ηACGCB (12)

and the corresponding basic deformation invariants [22,24]

Ip = Tr
(
Ĝp
)

= Tr
(
Ĉ−1p

)
, p = 1, . . . , n . (13)

The quantity Ip for any other value of p is a function of the above ones.
This is a consequence of the Cayley–Hamilton theorem. For non-deformed
configurations the quantities G, C coincide respectively with η, g. Some-
times it is more convenient to use measures of deformations vanishing at
the non-deformed configurations, so-called Lagrange and Euler deformation
tensors [22,24]:

E = 1
2 (G− η) , e = 1

2 (g − C) . (14)
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Constructing from them the mixed tensors Ê, ê, i.e.,

ÊAB = ηACECB , ê i
j = gikekj , (15)

we can obtain new versions of basic deformation invariants

Tr
(
Ê p
)
, Tr (ê p) , p = 1, . . . , n . (16)

They have the advantage of vanishing when there is no deformation; but, of
course, there is nothing essentially new in them. They are some functions
of (13).

Transformation groups and symmetries are very important for our anal-
ysis. Linear spatial and material transformations act on internal degrees of
freedom as follows:

ϕ 7→ (LA ◦RB) (ϕ) = (RB ◦ LA) (ϕ) = AϕB , (17)

analytically [
ϕiK

]
7→
[
Aijϕ

j
LB

L
K

]
. (18)

If A, B are isometries, i.e.,

gijA
i
mA

j
n = gmn, ηKLB

K
MB

L
N = ηMN , (19)

then obviously Ip are preserved by (17):

Ip (AϕB) = Ip(ϕ) , (20)

this is just the reason why they are called deformation invariants.
Affine velocities Ω, Ω̂ suffer the following transformation rule under (17):

Ω 7→ AΩA−1, Ω̂ 7→ B−1Ω̂B . (21)

Similarly [
vi
]
7→
[
Aijv

j
]
,

[
v̂K
]
7→
[
B−1K

M v̂
M
]
. (22)

Euler velocity field in the physical space may be expressed in the following
way through the quantity Ωi

j ,

vi(y) = vi +Ωi
j

(
yj − xj

)
, (23)

i.e., Ωi
j is the gradient of y → v(y) in affine motion. Similarly, ϕ̇iA is related

to the Lagrange velocity field,

V i(a) = vi + V i
Ka

K =
dxi

dt
+
dϕiK
dt

aK . (24)
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Having in view analysis of equations of motion and first of all the quanti-
zation procedure, we must mention the basic concepts of Hamiltonian for-
malism. Canonical momenta conjugate to xi, ϕiA, or more precisely dual
to generalized velocities ẋi, ϕ̇iA, will be denoted respectively by pi, PAi.
In certain formulae it is convenient to use the co-moving representation of
translational motion:

p̂A = piϕ
i
A . (25)

Instead of PAi it is more convenient to use non-holonomic canonical mo-
menta of internal motion conjugate to non-holonomic velocities Ωi

j , Ω̂A
B.

We shall denote them respectively by Σi
j , Σ̂A

B:

Σi
j = ϕiAP

A
j ,

Σ̂A
B = PAiϕ

i
B = ϕ−1A

iΣ
i
jϕ

j
B . (26)

These quantities are referred to as components of affine spin with respect to
the space- and body-fixed axes respectively. They are Hamiltonian genera-
tors (momentum mappings) of transformations (17), (21) [2, 3, 25, 69]. Left
and right acting (in the sense of (21)) rotation subgroups SO (n, g), SO (n, η)
are generated by the corresponding skew-symmetric parts,

Sij = Σi
j −Σj i = Σi

j − gjkgilΣk
l , (27)

V A
B = Σ̂A

B − Σ̂BA = Σ̂A
B − ηACηBDΣ̂D

C , (28)

i.e., by the canonical spin S and vorticity V (in Dyson terms [18]).
Warning (like in (6)): V A

B are NOT (!) co-moving components of S, i.e.,

V A
B 6= ϕ−1A

iS
i
jϕ

j
B . (29)

The mentioned duality between non-holonomic canonical momenta and
non-holonomic velocities is meant in the obvious sense

Σi
jΩ

j
i + piv

i = Σ̂A
BΩ̂

B
A + p̂Av̂

A = PAiV
i
A + piv

i (30)

for all virtual velocities.
The non-holonomic character ofΣi

j or Σ̂A
B consists in that their Poisson

brackets do not vanish; cf. below the formulae (60), (61).
In practical calculations, especially ones concerning problems with high

dynamical symmetries, one uses special systems of generalized coordinates
based on the polar and two-polar (singular value) decompositions. They are
motivated physically by the classification of degrees of freedom and distinc-
tion between various modes of motion.
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Roughly speaking, the polar decomposition consists in representing ϕ
as a product of linear isometry (orthogonal matrix) and positively definite
symmetric matrix in that or opposite ordering; so, there are two versions of
this decomposition.

More precisely, having two pairs of “metrics” (G[ϕ], η), (C[ϕ], g) for any
internal configuration ϕ, we can express G[ϕ], C[ϕ] through normalised or-
thogonal principal axes (in the generic case those axes are unique):

G[ϕ] =
∑
a

λaF
a[ϕ]⊗ F a[ϕ] , (31)

C[ϕ] =
∑
a

λ−1
a fa[ϕ]⊗ fa[ϕ] , (32)

where Fa[ϕ], fa[ϕ] are vectors of orthonormal bases (respectively in η- and
g-sense) diagonalizing the deformation tensors G[ϕ], C[ϕ], and F a[ϕ], fa[ϕ]
are elements of the corresponding dual bases.

Let us mention that in this way the ϕ-degrees of freedom split into
three subsystems: two fictitious rigid bodies (given by principal axes of
the Green and Cauchy deformation tensors and deformation invariants, i.e.,
pure stretchings λa). There is exactly one isometry U [ϕ] such that

U [ϕ]Fa[ϕ] = fa[ϕ] , a = 1 , . . . , n . (33)

It is clear that
gijU [ϕ]iKU [ϕ]jL = ηKL (34)

and
ϕ = U [ϕ]A[ϕ] , (35)

where A[ϕ] is η-symmetric,

ηKMA[ϕ]ML = ηLMA[ϕ]MK , (36)

and positively definite.
As mentioned, one can also write

ϕ = B[ϕ]U [ϕ] , B[ϕ] = U [ϕ]A[ϕ]U [ϕ]−1 , (37)

where B[ϕ] is g-symmetric,

gikB[ϕ]kj = gjkB[ϕ]ki , (38)

and positively definite. It is well known that the polar decomposition in both
versions is unique. Analytically this is just the factorization into the product
of orthogonal and symmetric-positive matrices. Diagonalizing the symmetric
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part one obtains the singular value decomposition, i.e., representation of ϕ
as a product of orthogonal, positive-diagonal and again orthogonal matrices,

ϕ = LDR−1, L,R ∈ SO (n,R) , D = Diag
(
Q1, . . . , Qn

)
. (39)

Using more geometric language, i.e., making a systematic distinction be-
tween the material space (Lagrange variables), physical space (Euler vari-
ables) and Rn (deformation invariants), we would write that

ϕiA = LiaD
a
bR
−1b

A , (40)

where D : Rn → Rn is given by

Da
b = 0 if a 6= b, Da

a = Qa . (41)

In some formulae it is convenient to use variables qa, where

Qa = exp (qa) . (42)

The fictitious rigid bodies L, R, i.e., attitudes of the main axes of inertia
have their own angular velocities and canonical spin variables. “Spatial”
angular velocities are, respectively, given by

χij =
(
d

dt
Lia

)
L−1a

j , ϑKL =
(
d

dt
RKa

)
R−1a

L . (43)

Much more convenient are their “co-moving” representants:

χ̂ab = L−1a
i

(
d

dt
Lib

)
, ϑ̂ab = R−1a

K

(
d

dt
RKb

)
. (44)

The corresponding canonical spin variables are, respectively, denoted by

%ij , τKL , %̂ab , τ̂ab . (45)

Canonical momenta conjugate to Qa, qa are denoted, respectively, by

Pa , pa . (46)

Let us observe that Qa, qa, a = 1, . . . , n, are alternative measures of defor-
mation invariants. The two-polar splitting is not unique. The invariants Qa
or qa are indistinguishable “particles” on R and may be permuted; those per-
mutations must be accompanied by multiplying the matrices L, R on the
right by appropriate orthogonal matrices having in each row and column
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only zeros but once ±1. More precisely, this finite non-uniqueness is a char-
acteristic feature of the situation when the spectrum of D is non-degenerate,
i.e., when all Qi-s are pairwise distinct, Qi 6= Qj if i 6= j, i.e.,∏

i 6=j

(
Qi −Qj

)
6= 0 . (47)

If degeneracy occurs, i.e., when the above product expression vanishes, then
some additional continuous non-uniqueness of the right-multiplying gauge
orthogonal matrices also appears. An extreme special case is when all
Di-s are equal, i.e., when the diagonal matrix D is proportional to identity
matrix In. Then L, R separately are not well defined and it is only LR−1

that is meaningful. The set of orthogonal right-multiplying gauge matrices
is identical with the total orthogonal group. And there are, of course, in-
termediate situations between the non-degeneracy and the total degeneracy;
all they are characterized by some continuous parameters.

It is clear that %, τ coincide with spin and minus vorticity,

%ij = Sij , τKL = −V K
L . (48)

The pairing between canonical variables and velocities (holonomic and non-
holonomic) is given as follows:

〈(%, τ, p) ; (χ, ϑ, q̇)〉 =
〈

(%̂, τ̂ , p) ;
(
χ̂, ϑ̂, q̇

)〉
= paq̇

a + 1
2 Tr (%χ) + 1

2 Tr (τϑ)

= paq̇
a + 1

2 Tr (%̂χ̂) + 1
2 Tr

(
τ̂ ϑ̂
)
. (49)

Obviously,
paq̇

a = PaQ̇
a . (50)

Remark: do not confuse the above pa with translational momenta conjugate
to ẋa. Since there is a danger of confusion, from now on canonical momenta
conjugate to ẋa will be denoted by p(tr)a.

Deformation tensors are expressed by the following formulae:

GKL = ηRSA
R
KA

S
L , Cij = gklB

−1k
iB
−1l

j , (51)

ĜKL = RKaD
a
cD

c
bR
−1b

L , Ĉij = LiaD
−1a

cD
−1c

bL
−1b

j . (52)

In purely analytical matrix terms, when orthonormal axes are used and
matrices of η, g coincide with the Kronecker symbol, we can simply write

G = A2 = RD2RT = RD2R−1, C = B−2 = LD−2LT = LD−2L−1 . (53)

One should mention what is the physical meaning of the above decomposi-
tions. Roughly speaking, U [ϕ] in (35), (37) describes rotational degrees of



178 J.J. Sławianowski et al.

freedom and A[ϕ], B[ϕ] are two alternative descriptions of homogeneously-
deformative modes of motion (equivalent respectively to the Green and
Cauchy deformation tensors). But there are two important informations
in deformation tensors:

1. Purely scalar information about the stretching; in n-dimensional space
there are n independent ones (physically n = 3, sometimes 2 or 1).

2. Information about how this stretching is oriented with respect to the
space- or body-fixed reference frames.

The first information is analytically described by deformation invariants,
thus, finally by the diagonal matrix D. The “directional” information is
equivalent to the knowledge of principal axes of deformation tensors G and
C meant in the sense of metric tensors η and g, i.e., normalised eigenvectors
of Ĝ and Ĉ. And this information is contained in objects L and R.

When some origin of the Cartesian coordinate system is fixed in the
physical space, by convention the point y = 0, we can also introduce the
orbital and total affine momenta (“hypermomenta” in terminology of Hehl
and Ne’eman) [30, 31, 52, 76] with respect to that origin. We denote them,
respectively, by

Λij = xip(tr)j , J ij = Λij +Σi
j = xip(tr)j +Σi

j . (54)

Their doubled skew-symmetric parts are, respectively, the “orbital” and “to-
tal” canonical angular momenta,

Lij = xip(tr)j−xjp(tr)i , J ij = Lij+Sij = xip(tr)j−xjp(tr)i+Sij . (55)

They are Hamiltonian generators of transformations

′xi = Lijx
j , ′ϕiK = Lijϕ

j
K , (56)

where L is orthogonal,
gijL

i
kL

j
m = gkm . (57)

Similarly, (54) are Hamiltonian generators for the non-restricted transforma-
tions (56) with the general L, without the orthogonal constraints (57). How-
ever, one must always remember that unlike the absolutely defined trans-
formations (17), (56) are always related to some fixed origin in the physical
space and so are the quantities (55).

To finish with this kinematical introduction, let us quote the basic Poisson-
bracket relations finally following from{

xi, p(tr)j
}

= δij ,
{
ϕiA, P

B
j

}
= δBAδ

i
j , (58){

xi, PBj
}

= 0 ,
{
xi, ϕjA

}
= 0 ,

{
ϕiA, p(tr)j

}
= 0 . (59)
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The most important of them read{
Σi

j , Σ
k
l

}
= δilΣ

k
j − δkjΣi

l ,
{
Σ̂A

B, p̂(tr)C
}

= δAC p̂(tr)B , (60){
Σ̂A

B, Σ̂
C
D

}
= δCBΣ̂

A
D − δADΣ̂C

B ,
{
Σi

j , Σ̂
A
B

}
= 0 , (61){

J ij , p(tr)k
}

=
{
Λij , p(tr)k

}
= δikp(tr)j . (62)

If some function F depends only on the configuration variables ϕ, but not
on the generalized momenta, then{

F,Σi
j

}
=ϕiA

∂F

∂ϕjA
,
{
F,Λij

}
=xi

∂F

∂xj
,
{
F, Σ̂A

B

}
=ϕiB

∂F

∂ϕiA
. (63)

Non-quoted Poisson brackets do vanish.
The system of Poisson brackets is very helpful when deriving equations

of motion in the balance Hamiltonian form,

dF

dt
= {F,H} , (64)

where F runs over some complete family of Jacobi-independent functions on
the phase space.

3. Inertial properties and canonical symmetries

The summation of kinetic energies of constituents of our “molecule” re-
sults in the following expression:

T = Ttr + Tint =
m

2
gij
dxi

dt

dxj

dt
+

1
2
gij
dϕiA
dt

dϕjB
dt

JAB , (65)

where m is the total mass of the body and JAB are, roughly speaking, the
co-moving components of inertial tensor or, more precisely, the second-order
multipoles of the constant Lagrange distribution of matter in the space of
Lagrange coordinates,

m =
∫
dµ(a) , JAB =

∫
aAaBdµ(a) = JBA . (66)

Here µ is the Lagrange co-moving distribution of mass, automatically con-
stant in time; therefore, also m and JAB are constant in time.

Obviously, the formula (65) is valid under the assumption that xi are
current coordinates of the centre of mass, i.e., that the origin of Lagrange
coordinates, aK = 0, is chosen in such a way that the dipole moment of µ
vanishes,

JK =
∫
aKdµ(a) = 0 . (67)
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Otherwise, in the kinetic energy expression T some interference, crossing
terms bilinear in

(
dxi/dt, dϕiA/dt

)
would appear. For affine bodies the

vanishing of JK is equivalent to the equation∫ (
yi − xi

)
dµ(x,ϕ)(y) = 0 , (68)

where µ(x,ϕ) is the measure obtained from µ as its transport by the map-
ping (1). For non-affine bodies, when (1) is replaced by a general function
yi
(
aK
)
, things are more complicated, but there is no place here for their

discussion. In any case, the condition JK = 0 is not then equivalent to
taking as xi the coordinates of the current position of the centre of mass in
the physical space.

Incidentally, later on (the reasons will become clear after some additional
remarks) it is convenient to express (65) in the following form:

T = Ttr + Tint =
m

2
GAB v̂

Av̂B +
1
2
GKLΩ̂

K
AΩ̂

L
BJ

AB

=
m

2
gijv

ivj +
1
2
gijΩ

i
kΩ

j
lJ [ϕ]kl , (69)

where J [ϕ]ij are spatial, therefore time-dependent, components of the iner-
tial tensor, i.e.,

J [ϕ]kl = ϕkAϕ
l
BJ

AB . (70)

Incidentally, (70) may be written in the following form:

J [ϕ]kl =
∫ (

yk − xk
)(

yl − xl
)
dµ(x,ϕ) . (71)

This kind of expression is applicable to general bodies and in the case of affine
motion it becomes (70). Although J [ϕ] are components with respect to the
inertial frame, apparently more “touchable” than the co-moving (material)
one, they are not very useful in dynamical equations. Let us remind that
even in elementary problems of rigid body mechanics, we simply must use
constant co-moving components JAB. Those are either calculated on the
basis of our knowledge of the mass distribution in the body or somehow
postulated, estimated a priori and testified on the basis of comparison of
calculated results with experimental data.

It is clear that (65) is invariant under isometries acting in the physical
space (parameterized by Euler variables) and under the group O (U, J) pre-
serving the fixed inertial tensor J . If J is isotropic in the sense JAB = IηAB,
then we are dealing with the double orthogonal symmetry.
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If we use the above-mentioned polar decomposition (35) and the corre-
sponding “co-moving” angular velocity

ω̂ = U−1dU

dt
, (72)

then the expression for the internal kinetic energy becomes

Tint = −1
2 Tr

(
AJηA ω̂

2
)

+ Tr
(
AJη

dA

dt
ω̂

)
+ 1

2 Tr

(
Jη

(
dA

dt

)2
)
, (73)

where Jη is obtained from J by the η-lowering of the second index,

Jη
A
B := JACηCB . (74)

Obviously, if orthonormal coordinates are used, there is no numerical dis-
tinction between matrices of Jη and J . The first term in (73) is centrifugal
one, the second one represents the Coriolis inertial forces, and the third one
describes the dynamics of pure deformations.

If we use the two-polar decomposition (39) and the body is doubly
isotropic,

JAB = IηAB , (75)

i.e., in orthonormal coordinates

JAB =∗ IδAB , (76)

then the internal kinetic energy (73) can be rewritten as follows:

Tint = −I
2

Tr
(
D2χ̂2

)
− I

2
Tr
(
D2ϑ̂2

)
+ITr

(
Dχ̂Dϑ̂

)
+
I

2
Tr

((
dD

dt

)2
)
, (77)

where the first two terms are centrifugal ones, the third one describes the
Coriolis forces, and the last one is the kinetic energy of pure stretchings.
If we perform the Legendre transformation for the Lagrangian

L = T − V (x, ϕ) , (78)

where T is given by (77), and use the variables

M := −%̂− τ̂ , N := %̂− τ̂ , (79)

then (77) becomes as follows:

Tint =
1
2I

∑
a

P 2
a +

1
8I

∑
a6=b

(Ma
b)

2

(Qa −Qb)2 +
1
8I

∑
a6=b

(Na
b)

2

(Qa +Qb)2 . (80)
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Although everything is in principle clear from the context, it is perhaps
convenient and instructive to quote some explicit formulas and statements.

Let L be a Lagrangian of some classical system with generalized coordi-
nates ξµ and generalized velocities ξ̇µ. Geometrically speaking,

(
ξµ, ξ̇µ

)
are

adapted coordinates in the tangent bundle TQ, where Q denotes the configu-
ration space, a manifold of generalized “positions”. Legendre transformation
L leads from generalized velocities ξ̇µ to their conjugate momenta πµ; in
geometric terms, it maps TQ into the cotangent bundle T ∗Q parameterized
by (ξµ, πµ). Analytically it is given by(

ξµ, ξ̇µ
)
7→ (ξµ, πµ) =

(
ξµ,

∂L

∂ξ̇µ

)
. (81)

In “usual” mechanics this mapping is invertible, more precisely, it is a dif-
feomorphism of TQ onto T ∗Q. Inverting it we express generalized velocities
in terms of canonical momenta; substituting this expression to the energy
function

E
(
ξµ, ξ̇µ

)
= ξ̇µ

∂L

∂ξ̇µ
− L

(
ξµ, ξ̇µ

)
, (82)

one obtains Hamiltonian as a function H : T ∗Q→ R, analytically, H(ξ, π).
Later on one can proceed in Hamiltonian terms, following the formula (64).
If Lagrangian has the potential structure (78) (sometimes called “natural”
one), then obviously in (81) L may be replaced by T itself.

Some comments are necessary concerning the formulas (79), (80), the
more so that “non-holonomic” quantities χ̂, ϑ̂, %̂, τ̂ are used there. Non-
holonomic velocities, or quasivelocities, introduced long ago by Boltzmann
and many others, are given by expressions:

ωA = ωAµ(ξ)ξ̇µ , (83)

where ωAµ(ξ) depend on generalized coordinates ξ in an irreducible way,
i.e., the Pfaff forms ωAµ(ξ)dξµ fail to be differentials. In many problems,
appropriately chosen ωA are more convenient than ξ̇µ; typical examples are
angular velocity (in space dimension higher than two) and our affine velocity.
There is a conjugate concept of non-holonomic momenta, or quasimomenta,
σA given by

σA = pµσ
µ
A , (84)

where the ω- and σ-matrices are mutually reciprocal,

ωAµσ
µ
B = δAB , σµAω

A
ν = δµν , σAω

A = πµξ̇
µ . (85)

The “non-holonomic” character of σ-s is that their Poisson brackets do not
vanish. Typical examples are angular momentum of rotational motion or
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our affine momentum (“hyperspin”). And in general, when Q is a Lie group,
then it is typical that ω, σ are elements of its Lie algebra and co-algebra
(dual of a Lie algebra).

When non-holonomic quantities ω, σ are used, Legendre transformation
(82) may be alternatively expressed as follows:

(
ξµ, ωA

)
7→ (ξµ, σA) =

(
ξµ,

∂L

∂ωA

)
, (86)

where, obviously, L is to be treated as a function of ξ, ω. The energy function
E becomes

E (ξ, ω) = ωA
∂L

∂ωA
− L (ξ, ω) . (87)

Inverting Legendre transformation, i.e., expressing ω through σ, one obtains
Hamiltonian H (ξ, σ).

Just this procedure is meant in formulas (77)–(80). Configurations ξ
are there given by the triples (Q,L,R) “parameterizing” the object ϕ. Non-
holonomic velocities we use are arrays

(
Q̇a, χ̂ab, ϑ̂

a
b

)
, the kinetic energy is

expressed by them in (77); this is just our specification of the kinetic part
of (87), and our non-holonomic conjugate momenta are arrays (Pa, %̂ab, τ̂ab).
The kinetic part of the Hamiltonian is given by (80), the total Hamiltonian
contains in addition some potential energy term V (x;ϕ) = V (x;Q,L,R).
Legendre transformation corresponding to (77) is analytically given by the
following expression of Pa, %̂ab, τ̂ab through Q̇a, χ̂ab, ϑ̂ab:

Pa =
∂Tint

∂Q̇a
= IQ̇a, (88)

%̂ab =
∂Tint

∂χ̂ba
, %̂ = [%̂ab] = I

(
D2χ̂+ χ̂D2 − 2Dϑ̂D

)
, (89)

τ̂ab =
∂Tint

∂ϑ̂ba
, τ̂ = [τ̂ab] = I

(
D2ϑ̂+ ϑ̂D2 − 2Dχ̂D

)
. (90)

Let us remind that the matrix D is diagonal and Qa are its diagonal ele-
ments — deformation invariants. The last two formulas are a bit “symbolic”
because χ̂, ϑ̂ are skew-symmetric and their matrix elements are not inde-
pendent. We mean the following: In expression (77) we replace Q̇a, χ̂, ϑ̂ by
Q̇a + δQ̇a, χ̂+ δχ̂, ϑ̂+ δϑ̂ and calculate the corresponding variation of Tint,
i.e., δTint up to terms linear in δQ̇a, δχ̂, δϑ̂. After some easy calculations
we obtain that

δTint = PaδQ̇
a + 1

2 Tr (%̂δχ̂) + 1
2 Tr

(
τ̂ δϑ̂

)
, (91)
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where the skew-symmetric matrices %̂, τ̂ are given just in (88)–(90). Compare
this also with (49), (50). The space of skew-symmetric matrices is isomorphic
with its own dual in the sense of the above trace expressions, and in this
sense the last two formulas in (88)–(90) are meant, because the differential
of a function is by definition given by the main part of its variation, i.e.,
one linear in variation of independent variables. The factors 1/2 in (49),
(88)–(90) are due to the fact that because of the skew-symmetry of χ̂, ϑ̂, %̂,
τ̂ every term in the traces in (91) occurs twice. In the physical dimension
n = 3 (but neither in planar problems n = 2, nor in the “academic” situation
n > 3), the above formulas may be written in a simpler and more familiar
form, when χ̂, ϑ̂, %̂, τ̂ are identified with 3-dimensional pseudovectors (axial
vectors); do not confuse them with the usual (“non-pseudo”) vectors:

χ̂ab = −εabcχ̂c , ϑ̂ab = −εabcϑ̂c , (92)

%̂ab = εab
c%̂c , τ̂ab = εab

cτ̂c . (93)

Obviously, ε denotes here the totally antisymmetric Ricci symbol and the
shift of indices is meant in the trivial sense of the Kronecker-delta metric.
Then (88)–(91) become, respectively, as follows:

Pa =
∂Tint

∂Q̇a
= IQ̇a , (94)

%̂a =
∂Tint

∂χ̂a
, (95)

τ̂a =
∂Tint

∂ϑ̂a
, (96)

δTint = PaδQ̇
a + %̂aδχ̂

a + τ̂aδϑ̂
a . (97)

Solving (88)–(90) with respect to Ḋ, χ̂, ϑ̂ one obtains (80) with M , N
expressions defined in (79).

As seen from the very form of Ttr in (65), the Lagrangian given by Ttr

alone, without the potential term V (x, ϕ), is non-physical in elasticity and
condensed matter theory, because it predicts an unbounded expansion of the
body. This is also seen in (80) where the interaction between deformation
invariants is purely repulsive.

And at the same time there is some “aesthetic” drawback of (65) and the
mentioned resulting formulae. Namely, in spite of the affine symmetry of
degrees of freedom, the kinetic energy is not affinely invariant in the sense
of dynamics. Kinetic energies, i.e., the metric tensors on the configuration
space, invariant under the left or right affine translations are, respectively,
given by the following expressions:
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T = Ttr + Tint =
m

2
ηAB v̂

Av̂B +
1
2
LABCDΩ̂B

AΩ̂
D
C , (98)

T = Ttr + Tint =
m

2
gijv

ivj +
1
2
RijklΩj

iΩ
l
k , (99)

where LABCD and Rijkl are both constant and symmetric in bi-indices(
A
B,

C
D

)
,
(
i
j ,
k
l

)
. There are no metrics which would be simultaneously

left and right affinely invariant and non-degenerate. The reason is that the
affine group is not semisimple and contains the normal subgroup composed
of translations.

There exist, however, some models of the internal kinetic energy invariant
simultaneously under the left and right action of the affine group. They are
given by the linear combination of second-order Casimir invariants:

Tint =
A

2
Tr
(
Ω2
)

+
B

2
(Tr Ω)2 =

A

2
Tr
(
Ω̂2
)

+
B

2

(
Tr Ω̂

)2
, (100)

where A, B are constants.
The B-term is a merely secondary correction. The main structure is

controlled by the A-term. It is not positively definite and this property of the
kinetic energy might seem embarrassing. It turns out however that at least
for the incompressible body the negative contribution to Tint may encode
the dynamics, without introducing any potential energy into Lagrangian or
Hamiltonian. Such geodetic highly-invariant models may be often solved
explicitly, analytically, in terms of some well-known special functions on
groups. In some situations they may be solved in terms of exponential
functions on groups, at least to some extent.

There are also other interesting models where the total kinetic energy,
including translational one, is invariant under the left-acting isometry group
and the right-acting total affine one. There are also models of opposite
properties, i.e., invariant under the left-acting affine group and right-acting
isometry one. The model affinely invariant on the right may be interpreted
as a very drastic discretization of the Arnold description of ideal fluids [3].
In Arnold theory this was the Hamiltonian system on the infinite-dimensio-
nal group of all volume-preserving diffeomorphisms; in our model this is the
finite-dimensional group of affine volume-preserving mappings. Such models
may be useful when describing molecules and droplets of nuclear matter. It is
interesting that models affinely invariant in the physical space may be also
realistic and convenient in condensed matter theory. The point is that due
to strong interactions and strong concentration of matter, molecules may be
non-sensitive (in their kinetic energy terms) to the metric g of the physical
space; instead, they may “feel”, e.g., the Cauchy deformation tensor C as
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a metric object underlying the structure of the kinetic energy. Incidentally,
such situations are faced with, e.g., in solid state physics. The kinetic energy
of electron is then based on the so-called tensor of effective mass, not on the
usual metric geometry. Moreover, the tensor of effective mass may have
various exotic properties, e.g., it need not be positively definite.

If we insist on positive definiteness, then it is interesting that when some
phenomenological constants are appropriately chosen, then the left- or right-
invariant affine kinetic energies of the total (internal together with transla-
tional) motion may have the positive signature. And at the same time they
have the structure admitting rigorous analytical solutions.

The kinetic energy invariant under spatial isometries but not under the
larger spatial group and simultaneously invariant under all material affine
transformations has the following form:

T =
m

2
gijv

ivj +
I

2
gijΩ

i
kΩ

j
lg
kl +

A

2
Tr
(
Ω2
)

+
B

2
(Tr Ω)2 . (101)

The kinetic energy invariant under spatial affine group and under mate-
rial isometries (but not under a larger group of material, i.e., Lagrangian
transformations) has the shape as follows:

T =
m

2
ηAB v̂

Av̂B +
I

2
ηABΩ̂

A
CΩ̂

B
Dη

CD+
A

2
Tr
(
Ω̂2
)

+
B

2

(
Tr Ω̂

)2
, (102)

where in both formulae above m, I, A, and B are inertial constants.
Obviously, the two last terms in both formulae (101), (102) are respec-

tively equal to each other and different symbols Ω, Ω̂ are used only for
aesthetic reasons.

Let us remind the formula (69) and notice that (101), (102) may be
written in the following suggestive forms:

T =
m

2
GAB v̂

Av̂B +
I

2
GABΩ̂

A
CΩ̂

B
DG
−1CD +

A

2
Tr
(
Ω̂2
)

+
B

2

(
Tr Ω̂

)2
,

T =
m

2
Cijv

ivj +
I

2
CijΩ

i
kΩ

j
lC
−1kl +

A

2
Tr
(
Ω2
)

+
B

2
(Tr Ω)2 .

If we use Lagrangians of traditional potential forms, i.e.,

L = T − V (x, ϕ) , (103)

then the Legendre transformation may be written in any of the following
equivalent forms, cf. also formulas (81)–(87):

p(tr)i =
∂L

∂vi
=
∂T

∂vi
, Σj

i =
∂L

∂Ωi
j

=
∂T

∂Ωi
j
, (104)

p̂(tr)A =
∂L

∂v̂A
=

∂T

∂v̂A
, Σ̂B

A =
∂L

∂Ω̂A
B

=
∂T

∂Ω̂A
B

. (105)

There are also various mixed possibilities.
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Inverting these formulae, i.e., expressing velocities in terms of canoni-
cal momenta and substituting them to T , we obtain the kinetic terms T of
Hamiltonians. We can admit also some potentials V (x, ϕ) and consider the
total Hamiltonians. However, it turns out that if the body is incompressible,
the kinetic term alone may encode the dynamics of elastic vibrations. This
resembles the Maupertuis principle where the dynamics (including some hid-
den version of the potential energy) may be encoded in the metric structure
of the configuration space, i.e., in some geodetic model [3].

The mentioned model of incompressible body predicts both the bounded
motion (below some energy threshold) and unbounded one. The only obsta-
cle comes from compressibility, which must be stabilised by some potential
term preventing the body from the dissociation (splitting) or contraction
(collapse).

So, it is convenient to separate the isochoric motion from the pure
compressibility. In the case of affinely-invariant dynamical models this is
achieved by introducing on the real line R the centre of mass of the loga-
rithmic deformation invariants,

q =
1
n

(
q1 + · · ·+ qn

)
, (106)

and the corresponding conjugate momentum,

p = p1 + · · ·+ pn . (107)

These quantities have to do with the uniform dilatations. This is rather
exceptional phenomenon and should be prevented by some potential V (q).
As mentioned, other rotational and deformative modes of motion may be
described in a satisfactory way by some geodetic dynamical models. Never-
theless, some potentials are also admissible. The most realistic of them are
superpositions of binary and dilatational models:

V
(
q1, . . . , qn

)
= V (q) +

1
2

∑
i 6=j

fij
(
qi − qj

)
, (108)

where the second term corresponds to the shear-like part of the motion.
The next quantities to be used are Casimir invariants built of Σ, Σ̂, i.e.,

C(k) = Tr
(
Σk
)

= Tr
(
Σ̂k
)
, (109)

and of their trace-less parts, i.e.,

CSL(n)(k) = Tr
(
σk
)

= Tr
(
σ̂k
)
, (110)
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where
σ = Σ − 1

n
(Tr Σ) In , σ̂ = Σ̂ − 1

n

(
Tr Σ̂

)
In . (111)

We need also the squared magnitudes of spin and vorticity,

‖S‖2 = −1
2 Tr

(
S2
)
, ‖V ‖2 = −1

2 Tr
(
V 2
)
, (112)

butAttention: those two positively-definite quantities, i.e., ‖S‖2 and ‖V ‖2,
are not equal to each other when some deformation occurs!

The model of T affinely invariant in space but metrically invariant in the
system of particle (Lagrangian variables) has the following form:

T aff−metr
int =

1
2α

Tr
(
Σ̂2
)

+
1

2β

(
Tr Σ̂

)2
+

1
2µ
‖V ‖2 , (113)

where

α = I +A , β = −(I +A) (I +A+ nB)
B

, µ =
I2 −A2

I
. (114)

For the model of T metrically invariant only in space but affinely invariant
within the body we obtain that

T metr−aff
int =

1
2α

Tr
(
Σ2
)

+
1

2β
(Tr Σ)2 +

1
2µ
‖S‖2 . (115)

In other words we have, respectively

T aff−metr
int =

1
2α
C(2) +

1
2β
C(1)2 +

1
2µ
‖V ‖2 , (116)

T metr−aff
int =

1
2α
C(2) +

1
2β
C(1)2 +

1
2µ
‖S‖2 . (117)

Separating the dilatational motion and shear, we obtain respectively

T aff−metr
int =

1
2 (I +A)

CSL(n)(2) +
1

2n (I +A+ nB)
p2

+
I

2 (I2 −A2)
‖V ‖2 , (118)

T metr−aff
int =

1
2 (I +A)

CSL(n)(2) +
1

2n (I +A+ nB)
p2

+
I

2 (I2 −A2)
‖S‖2 . (119)
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These expressions become the doubly affine invariant model when we put
I = 0, i.e.,

T aff
int =

1
2A

C(2)− B

2A (A+ nB)
C(1)2 . (120)

And similarly, they may be obtained from (120) when we substitute A 7→
I +A and introduce in addition the mentioned ‖V ‖2-, ‖S‖2-terms.

Obviously, the geodetic system with Lagrangian given by the internal
kinetic term (120) is explicitly solvable in terms of matrix exponents. The
corresponding geodetics are given by

ϕ(t) = exp (Ωt)ϕ0 = ϕ0 exp
(
Ω̂t
)
, (121)

where ϕ0, Ω, Ω̂ are constants and

Ω̂ = ϕ−1Ωϕ. (122)

As mentioned above, it is assumed here that the translational motion
is neglected or dynamically independent on the internal/relative one. It is
clear that ϕ0 is the initial configuration at t = 0 and Ω, Ω̂ are constant
(thus, automatically initial) values of affine velocities (2); this is the reason
for notation used in (122). Those initial conditions are completely arbitrary.
The above general solution (121) is a priori obvious. However, we are in-
terested mainly in dynamically relevant quantities qi, pi, Ma

b, Na
b. Their

time dependence may be in principle extracted from the exponential formula
(121), although it is not an easy task; some implicit function and inverse
function procedures are meant. But on the level of differential equations for
the relevant quantities qi, pi, Ma

b, Na
b this would be hopeless. There is

also some qualitative advantage from using the exponential description of
geodetics. Namely, on its basis one can show that there are open subsets of
bounded and unbounded trajectories (“below threshold” and “above thresh-
old” motions) in the configuration space. And of course, it is so also on the
level of the subfamily of state variables (qi,Ma

b, N
a
b), because motion in

L,R-variables is always bounded; the submanifolds of corresponding degrees
of freedom are compact. And the details of motion in L,R-variables are not
of large physical interest in problems like the scattering data, radiation and
absorption. There are obvious quantum counterparts of these statements.

For Lagrangians (118), (119) the general solution is not any longer given
by the exponential formula (121). Only some special “stationary solutions”
of such a form (obvious generalizations of stationary rotations in rigid body
dynamics) do exist. In those solutions ϕ0 is arbitrary, but Ω, Ω̂ must satisfy
certain algebraic conditions. So, for (118), (119) respectively, the following
must hold: [

Ω̂, Ω̂ηT
]

= 0 ,
[
Ω,ΩgT

]
= 0 , (123)
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where the η- and g−transposes are, respectively, given by(
Ω̂ηT

)A
B = ηACηBDΩ̂

D
C ,

(
ΩgT

)i
j = gikgjlΩ

l
k . (124)

Roughly speaking, the corresponding affine velocities are “normal” in the
η-sense for (118) and in the g-sense for (119).

Nevertheless, on the level of quantities (qi,Ma
b, N

a
b) the exponential

formula is still useful and the time dependence of those variables may be,
as for (120), extracted from it. Again one must remember that in the ex-
ponential procedure based on (120), A must be replaced by (I + A). And
everything concerning the bounded and non-bounded trajectories remains
valid.

Let us now quote the one-dimensional lattice aspects of the classical
dynamics [12,79]. They are interesting in themselves and are strongly related
to the hyperbolic version of Sutherland integrable lattices (at least in the
geodetic case). In the affine-affine version they have the following form:

T aff
int =

1
2α

∑
a

p2
a +

1
32α

∑
a6=b

(Ma
b)

2

sh2
(
qa−qb

2

) − 1
32α

∑
a6=b

(Na
b)

2

ch2
(
qa−qb

2

) +
1

2β
p2 .

(125)
The reasoning which leads from (100) to (125) is a direct replication of that
presented in formulas (81)–(87), but now with the kinetic energy (100) used
instead of (77).

In the explicit binary representation:

T aff
int =

1
4nα

∑
a6=b

(pa − pb)2 +
1

32α

∑
a6=b

(Ma
b)

2

sh2
(
qa−qb

2

)
− 1

32α

∑
a6=b

(Na
b)

2

ch2
(
qa−qb

2

) +
nα+ β

2nαβ
p2 , (126)

or in a more apparent way:

T aff
int =

1
4nA

∑
a6=b

(pa − pb)2 +
1

32A

∑
a6=b

(Ma
b)

2

sh2
(
qa−qb

2

)
− 1

32A

∑
a6=b

(Na
b)

2

ch2
(
qa−qb

2

) +
1

2n (A+ nB)
p2 . (127)

The lattice structure of the dynamics of deformation invariants is obvious.
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For the affine-metric and metric-affine kinetic energies we have, respec-
tively

T aff−metr
int = T aff

int [A→ I +A] +
I

2 (I2 −A2)
‖V ‖2 , (128)

T metr−aff
int = T aff

int [A→ I +A] +
I

2 (I2 −A2)
‖S‖2 , (129)

where T aff
int [A→ I +A] denotes (120) with A replaced by I +A.

It is interesting that the Casimir invariant C(2) has the following form
for the incompressible body:

CSL(n)(2) = Tr
(
σ2
)

= Tr
(
σ̂2
)

=
1

2n

∑
a6=b

(pa − pb)2+
1
16

∑
a6=b

(Ma
b)

2

sh2
(
qa−qb

2

) − 1
16

∑
a6=b

(Na
b)

2

ch2
(
qa−qb

2

) ,(130)
neither q nor p enters here (no dilatational contribution to dynamics).

The mentioned possibility of encoding the dynamics of bounded elastic
vibrations in affinely-invariant kinetic energy forms (without using any po-
tential energy) is explicitly visualized in formulas (125)–(127). Namely, the
negative configuration describes the apparently exotic “centrifugal attrac-
tion” of deformation invariants. The total formulas describes the balance of
attraction and repulsion which results in the existence of open families of
bounded and escaping trajectories (open as subsets of the general solution,
i.e., family of all trajectories).

It is seen that the deformation invariants qa behave like indistinguish-
able “particles” on the real line R. On the quantum level they become
some strange parastatistical “particles”. This follows from the very peculiar
non-uniqueness of the two-polar decomposition, as described above. Defor-
mation invariants, as seen in the above formulas, interact mutually and are
coupled to each other via the quantities Ma

b, Na
b which play the role of

some “springs”, respectively, repulsive and attractive ones. These coupling
“constants” are however variable; they are dynamical quantities which to-
gether with invariants qa satisfy the closed system of evolution equations
obtained from (65) by substituting our Tint for the Hamiltonian H and our
qa, pa,Ma

b, Na
b for the state variable F . Incidentally, the situation becomes

particularly suggestive in the planar case n = 2, i.e., in the “Flatland” world
as described by Abbott [1]. This has to do with the exceptional properties
of GL(2,R) among all groups GL(n,R). These properties follow from the
fact that SO(2,R), being a one-dimensional Lie group, is Abelian. Because
of this, χ̂ = χ, ϑ̂ = ϑ, %̂ = % = S, τ̂ = τ = V and any of these matrices
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has only one independent component. Obviously, the same concerns the
matrices M , N and we shall use the following symbols:

m := M1
2 , n := N1

2 . (131)

The two-polar decomposition takes on the following matrix form:

ϕ = LDR−1 =
[

cosα − sinα
sinα cosα

] [
Q1 0
0 Q2

] [
cosβ sinβ
− sinβ cosβ

]
(132)

and as usual, in affine models the exponential representation

Qa = exp (qa) , a = 1, 2 (133)

is convenient. Canonical momenta conjugate to Qa or qa are also denoted
by the usual symbols Pa, pa.

Canonical momenta conjugate to angular variables α, β are denoted by
pα, pβ . One can show that, obviously,

χ1
2 = χ̂1

2 = −dα
dt
, ϑ1

2 = ϑ̂1
2 = −dβ

dt
, (134)

%1
2 = %̂1

2 = pα , τ1
2 = τ̂1

2 = pβ . (135)

It is clear that
m = pβ − pα , n = pβ + pα . (136)

It is also convenient to introduce the variables q, x, characterizing, respec-
tively dilatation and shear,

q = 1
2

(
q1 + q2

)
, x = q2 − q1 . (137)

The corresponding conjugate momenta p, px are given by

p = p1 + p2 , px = 1
2 (p2 − p1) . (138)

Then for (125) we obtain that

T aff
int =

p2
x

A
+

(pβ − pα)2

16Ash2
(
x
2

) − (pβ + pα)2

16Ach2
(
x
2

) +
p2

4 (A+ 2B)
(139)

and similarly (118), (119) become, respectively

T aff−metr
int = T aff

int [A→ I +A] +
Ip2

β

I2 −A2
, (140)

T metr−aff
int = T aff

int [A→ I +A] +
Ip2

α

I2 −A2
, (141)

where, as previously, T aff
int [A→ I +A] denotes T aff

int with A replaced by I+A.
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It is seen that the x-terms of the last three formulas may be written as

T aff
int [x] =

p2
x

A
+ V eff

m,n(x) , (142)

where the effective potential V eff
m,n is given by

V eff
m,n(x) =

m2

16Ash2
(
x
2

) − n2

16Ach2
(
x
2

) . (143)

Obviously, α, β are cyclic variables, thus, pα, pβ are constants of motion
and their fixed values m, n of (pβ − pα), (pβ + pα) characterize the families
of the x-motions in the general solutions. It is seen that if |m| < |n|, then at
large |x|-distances the attractive negative term prevails; if |m| > |n|, then the
repulsive term prevails for |x| → ∞. In the first case one deals with bounded
vibrations in the x-variable, i.e., in the mutual displacements of deformation
invariants. As the first, repulsive term of V eff

m,n(x) is positively-infinite when
x → 0, we are dealing formally with the characteristic shape known from
the theory of intermolecular forces (cf., e.g., Fig. 1 and Fig. 2 with x taken
instead of R). If |m| > |n|, then V eff

m,n(x) is purely repulsive. Thus, in the
isochoric, SL(2,R)-ruled part of motion we are dealing with some thresholds
|m| = |n| separating the bounded (oscillatory) and non-bounded (decaying)
motions. What concerns the q-part, i.e., pure dilatations, motion is un-
bounded, just the uniform motion with constant velocity, thus, collapsing
or infinitely expanding on the level of the variable exp(q). This is just the
earlier mentioned necessity of correcting T aff

int by some extra potential V (q)
stabilizing dilatations (the potential well or something very quickly increas-
ing with |q|) [19]. Here, in the exceptional case n = 2 everything is easily
seen because M , N are now constants of motion. Everything remains true

Fig. 1.
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Fig. 2.

for T aff−metr
int and T metr−aff

int , because pα, pβ are constants of motion. As well
everything remains valid on the quantized level, where one deals respectively
with the discrete and continuous spectrum of energy.

All is so nice in affinely-invariant models. In traditional d’Alembert
model (80) only pure repulsion occurs in geodetic models and they are com-
pletely non-viable without introducing of some potential term. In particular,
in two dimensions n = 2, (80) becomes

Tint =
1
2I
(
P 2

1 + P 2
2

)
+ +V eff

m,n

(
Q1, Q2

)
, (144)

where

V eff
m,n

(
Q1, Q2

)
=

m2

4I (Q1 −Q2)2 −
n2

4I (Q1 +Q2)2 . (145)

Without the extra potential term, only the unbounded purely scattering
motion of deformation invariants is possible.

It is very interesting to deviate for a while from the hyperbolic Suther-
land lattices (130) to their trigonometric analogues. Namely, if we consider
a dynamical system on the unitary group U(n) and use again the analogue
of the two-polar decomposition (39),

ϕ = LDR−1 , (146)

where L,R ∈ SO(n,R) are real-orthogonal and D is diagonal with complex
unitary entries on the diagonal,

Daa = exp (iqa) , qa ∈ R , (147)

then for the combination of Casimir invariants controlled by constants A, B
we obtain the kinetic energy

Tint = −A
2

Tr
(
Ω2
)
− B

2
(Tr Ω)2 = −A

2
Tr
(
Ω̂2
)
− B

2

(
Tr Ω̂

)2
, (148)
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where A > 0, B > 0 and the Lie-algebraic elements

Ω =
dϕ

dt
ϕ−1 , Ω̂ = ϕ−1dϕ

dt
= ϕ−1Ωϕ (149)

are skew-Hermitian.
The corresponding kinetic energy becomes then in the Hamiltonian rep-

resentation as follows:

Tint =
1

2A

∑
a

p2
a +

1
32A

∑
a6=b

(Ma
b)

2

sin2
(
qa−qb

2

)
+

1
32A

∑
a6=b

(Na
b)

2

cos2
(
qa−qb

2

) − B

2A (A+ nB)
p2 . (150)

Separating explicitly the dilatational (q, p)-variables we obtain

Tint =
1

4nA

∑
a6=b

(pa − pb)2 +
1

32A

∑
a6=b

(Ma
b)

2

sin2
(
qa−qb

2

)
+

1
32A

∑
a6=b

(Na
b)

2

cos2
(
qa−qb

2

) +
1

2n (A+ nB)
p2 . (151)

The Casimir invariant C(2) for SU(n) takes on the following form:

CSU(n)(2) =
1

2n

∑
a6=b

(pa − pb)2

+
1
16

∑
a6=b

(Ma
b)

2

sin2
(
qa−qb

2

) +
1
16

∑
a6=b

(Na
b)

2

cos2
(
qa−qb

2

) . (152)

Let us notice an important role of the negative contribution to (130).
It describes attraction and stabilises the vibrating regime of incompressible
bodies. All contributions to (152) are positive. However, it does not matter
in view of the circular topology of the q-variable and all qa-ones in general.
Because then it is impossible to distinguish between repulsion and attraction.

It is very interesting that in (128), (129) the characteristic ‖S‖2- and
‖V ‖2-terms appear. Those invariants of spatial and material rotations are
very suggestive and resemble certain formulae appearing in the description of
Raman scattering, rotational and deformative excitation of nuclear matter,
especially on the quantized level.
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Let us also mention, one can suspect some physical interpretation in
collective models, where both the ‖S‖2- and ‖V ‖2-terms appear. They would
contain highly symmetric affinely-invariant expressions controlled by A, B as
above and in addition two orthogonal terms restricting the symmetry group
to isometries in the physical and material space (in Euler and Lagrange
variables, respectively). In terms of velocities they would be given by the
following phenomenological formulae:

Tint =
I1

2
gikg

jlΩi
jΩ

k
l +

I2

2
ηKLη

MN Ω̂K
M Ω̂

L
N +

A

2
Tr
(
Ω̂2
)

+
B

2

(
Tr Ω̂

)2
.

(153)
Obviously, the third and fourth terms may be as well written as

A

2
Tr
(
Ω2
)

+
B

2
(Tr Ω)2 . (154)

The first term may be alternatively written in the following form:

I1

2
GKLG

−1MN Ω̂K
M Ω̂

L
N . (155)

Similarly, the second one may be written as

I2

2
CikC

−1jlΩi
jΩ

k
l . (156)

Every of these forms may appeal to some intuitions and may be suggestive
when properly read out.

It is clear that after the Legendre transformation based on (153) we
obtain the following kinetic term of the Hamiltonian:

Tint =
1

2I1

gikg
jlΣi

jΣ
k
l +

1
2I2

ηKLη
MN Σ̂K

M Σ̂
L
N

+
1

2A
Tr
(
Σ̂2
)

+
1

2B

(
Tr Σ̂

)2
, (157)

where I1, I2, A, B are some inertial constants built algebraically of I1, I2,
A, B. Let us also mention expressions similar to (154), (155), (156).

It is also clear that the corresponding expressions for (157) will contain on
equal footing both terms proportional to ‖S‖2 and ‖V ‖2. Let us also mention
that the dynamics for qa, pa,Ma

b, Na
b is closed (at least when the potentials

V do not exist or depend only on the deformations invariants q1, . . . , qn,
first of all on q separated from qa − qb). Equations of motion written in
terms of quantities qa, pa, Ma

b, Na
b are autonomous and independent of L,

R-variables. They have the following form based on the Poisson brackets:
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dqa

dt
= {qa, H} =

∂H

∂pa
, (158)

dpa
dt

= {pa, H} = −∂H
∂qa

, (159)

dMa
b

dt
= {Ma

b, H} = {Ma
b,M

c
d}

∂H

∂M c
d

+ {Ma
b, N

c
d}

∂H

∂N c
d
, (160)

dNa
b

dt
= {Na

b, H} = {Na
b,M

c
d}

∂H

∂M c
d

+ {Na
b, N

c
d}

∂H

∂N c
d
, (161)

where

{qa, pb} = δab ,

{qa,M c
d} = {pa,M c

d} = {qa, N c
d} = {pa, N c

d} = 0 . (162)

To obtain the Poisson brackets for M , N one must use the brackets for %̂,
τ̂ from which M , N are built. In turn, the brackets for %̂, τ̂ are implied by
the commutation relations in the Lie algebra SO(n,R)′ for SO(n,R) because
%̂, τ̂ are Hamiltonian generators of transformations acting on L, R in (40),
respectively, the following ones:[

Lia
]
7→
[
LibA

b
a

]
,

[
RKa

]
7→
[
RKbB

b
a

]
, (163)

where A,B ∈ SO(n,R). Those Hamiltonian generators are related to spin
and vorticity variables as follows:

%̂ab = L−1a
iS
i
jL

j
b , τ̂ab = −R−1a

KV
K
LR

L
b . (164)

Therefore, after the Kronecker-delta shift of indices we obtain that

{%̂ab, %̂cd} = %̂adδcb − %̂cbδad + %̂dbδac − %̂acδdb , (165)
{τ̂ab, τ̂cd} = τ̂adδcb − τ̂cbδad + τ̂dbδac − τ̂acδdb , (166)
{%̂ab, τ̂cd} = 0 , (167)

and finally,

{Mab,Mcd} = {Nab, Ncd} = Mcbδad −Madδbc +Macδdb −Mdbδac , (168)
{Mab, Ncd} = Ncbδad −Nadδbc +Nacδdb −Ndbδac . (169)

Solving (in principle) equations of motion (158)–(161) and performing par-
tially the inverse Legendre transformation, one obtains that

χ̂ab =
∂H

∂%̂ba
, ϑ̂ab =

∂H

∂τ̂ ba
, (170)
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so, one can find (in principle) the time dependence of χ̂, ϑ̂ and then the time
dependence of L, R may be found by solving the following equation:

dL

dt
= Lχ̂ ,

dR

dt
= Rϑ̂ . (171)

4. Quantum models

We are interested in studying physical phenomena in the micro- and
nano-scale, where the quantized theory must be used.

Roughly speaking, for quantum models the configuration space of inter-
nal/relative degrees of freedom may be identified with L2 (GL(n,R)), a bit
more rigorously with L2 (LI(U, V )), where LI(U, V ) denotes the manifold
of linear isomorphisms of U onto V (usually the volume-preserving ones).
Kinetic energies are usually based on some underlying metrics,

Γµν(y)dyµ ⊗ dyν , T = 1
2 Γµν(y)

dyµ

dt

dyν

dt
. (172)

The corresponding Hilbert space of wave functions L2 (Q,µ) consists of
square-integrable functions on the configuration space Q endowed with the
canonical measure µ built of the metric tensor Γ . The corresponding scalar
product is given by

〈Ψ1, Ψ2〉 =
∫
Ψ1(y)Ψ2(y)dµ(y) , (173)

where
dµ(y) =

√
| det [Γµν(y)] |dy1 . . . dyN , N = dimQ . (174)

Fortunately, our metrics have certain invariance properties and because of
this the measures µ are what mathematicians call Haar measures [40]. Those
are invariant under the left (Euler-spatial) and right (Lagrangian-material)
translations, cf. (17). If we take into account the translational degrees of
freedom, then the corresponding measure α is given by

dα(x, ϕ) = (detϕ)−n−1 dx1 . . . dxndϕ1
1 . . . dϕ

n
n

= (detϕ)−1 dλ(ϕ)dx1 . . . dxn , (175)
dλ(ϕ) = (detϕ)−n dϕ1

1 . . . dϕ
n
n . (176)

The two-polar (singular value) decomposition implies that

dλ(ϕ) = dλ(L, q,R) =
∏
i 6=j

∣∣sh (qi − qj)∣∣ dµ(L)dµ(R)dq1 . . . dqn , (177)
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where µ denotes the Haar measures on the compact, connected and simply
connected orthogonal groups SO(n,R).

If we wish to consider the incompressible bodies, then the dilatation
factor must be cancelled by the corresponding Dirac distribution,

dλSL(n)(ϕ) =
∏
i 6=j

∣∣sh (qi − qj)∣∣ dµ(L)dµ(R)δ
(
q1 + · · ·+ qn

)
dq1 . . . dqn .

(178)
When quantizing the d’Alembert-like models (80), it is more convenient to
deal with the usual Lebesgue measure ` on the manifold of internal degrees
of freedom,

d`(ϕ) = dϕ1
1 . . . dϕ

n
n . (179)

Then, if we use the two-polar splitting, we have that

d`(L,Q,R) = P`
(
Q1, . . . , Qn

)
dµ(L)dµ(R)dQ1 . . . dQn, (180)

where

P`
(
Q1, . . . , Qn

)
=
∏
a6=b

∣∣∣∣(Qa)2 −
(
Qb
)2
∣∣∣∣ =

∏
a6=b

∣∣∣(Qa +Qb
)(

Qa −Qb
)∣∣∣ .
(181)

If translational degrees of freedom are explicitly taken into account, then
in analogy to (175) we have that

da(x, ϕ) = d`(ϕ)dx1 . . . dxn = d` (L,Q,R) dx1 . . . dxn . (182)

It will be also convenient to write the Haar measure (177) in the abbreviated
form analogous to (180), (181):

dλ(ϕ) = dλ(L, q,R) = Pλ
(
q1, . . . , qn

)
dµ(L)dµ(R)dq1 . . . dqn , (183)

where now
Pλ
(
q1, . . . , qn

)
=
∏
i 6=j

∣∣sh (qi − qj)∣∣ . (184)

Obviously, the measure λ is invariant under all transformations (17);
similarly, α is invariant under (17) accompanied by all affine mappings acting
on xi, i.e., on translational degrees of freedom. Unlike this, the Lebesgue
measures `, a are invariant only if the mentioned mappings are restricted to
isometries.

In general, the procedure of Schrödinger quantization in a Riemannian
manifold (Q,Γ ) begins from introducing the operator of kinetic energy, pro-
portional to the Laplace–Beltrami operator [17,41],

T = −~2

2
∆Γ = −~2

2
Γµν∇µ∇ν =

1
2
Γµν

(
~
i
∇µ
)(

~
i
∇ν
)
, (185)
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where ∇µ denotes the operator of the covariant differentiation in the Γ -Levi-
Civita sense along the µ-th coordinate axis.

The operators (~/i)∇µ and −(~2/2)∆ are formally self-adjoint, i.e.,
satisfy [17,41]

〈AΨ1|Ψ2〉 = 〈Ψ1|AΨ2〉 , (186)

if Ψ1, Ψ2 are confined to some dense subdomain of L2(Q,µ) consisting of
sufficiently smooth functions. Being differential operators, they are evidently
unbounded. They are formally self-adjoint, because the Levi-Civita parallel
transport does preserve the Riemann measure µ.

However, in general, such a procedure would be extremely strenuous.
It would be very difficult to avoid mistakes and even if avoiding them we
would obtain some rather obscure, non-readable expressions. Fortunately,
differential operators generating left and right regular translations in the
configuration space enable one to simplify the procedure in a remarkable
way.

Namely, it may be easily shown that transformations of wave functions
induced by the argumentwise action of (18) are unitary in L2 (LI(U, V ), λ),
just due to the left and right invariance of the measure λ. Similarly, the usual
vector translations in the physical space, just as (18) themselves, are unitary
in L2(Q,α). On the other hand, there is a unitary failure in L2 (LI(U, V ), `),
L2(Q, a), unless the argumentwise action of transformations on Ψ will be
accompanied by certain multiplicative correction factor built of the deter-
minants of A, B in (18).

Because of all that, the operators

Σa
b :=

~
i
Lab =

~
i
ϕaK

∂

∂ϕbK
, (187)

Σ̂
A
B :=

~
i
RA

B =
~
i
ϕaB

∂

∂ϕaA
= ϕ−1A

aϕ
b
BΣ

a
b (188)

are “formally Hermitian”. The “formally anti-Hermitian” first-order differ-
ential operators Lab, RA

B are infinitesimal generators of the mentioned
unitary groups in L2(Q,α). Obviously, the operators of spin and vorticity,
i.e.,

Sab = Σa
b −Σb

a = Σa
b − gacgbdΣd

c , (189)

V A
B = Σ̂

A
B − Σ̂B

A = Σ̂
A
B − ηACηBDΣ̂

D
C , (190)

or rather their (i/~)-multiplies, are infinitesimal generators of “spatial” and
“material” rotations. Σa

b, Σ̂
A
B are operators representing affine spin with

respect to the space- and body-fixed axes, respectively. An important point
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is that no problems of ordering operators appear here. Namely, just due
to the geometric interpretation of operators as generators of well-defined
transformation groups, the ordering is exactly like in (187), (188).

Instead of fighting with formulae like (185) we simply write the follow-
ing well-defined expression for the model of internal kinetic energy affinely
invariant both in the Euler and Lagrange variables:

T aff−aff
int =

1
2A
Σi

jΣ
j
i −

B

2A(A+ nB)
Σi

iΣ
j
j

=
1

2A
Σ̂
K
LΣ̂

L
K −

B

2A(A+ nB)
Σ̂
K
KΣ̂

L
L , (191)

just the automatic replacement of Σi
j , Σ̂K

L by the operators Σi
j , Σ̂

K
L in

the corresponding classical formulae.
For the models only isometrically invariant in Euler variables and affinely

invariant in Lagrange ones we obtain obviously the following operator of
kinetic energy:

Tmetr−aff
int =

1

2Ĩ
gikg

jlΣi
jΣ

k
l +

1

2Ã
Σi

jΣ
j
i +

1

2B̃
Σi

iΣ
j
j , (192)

where

Ĩ =
I2 −A2

I
, Ã =

A2 − I2

A
,

B̃ = −(I +A) (I +A+ nB)
B

. (193)

Obviously, the kinetic energy operator affinely invariant in Euler vari-
ables and only isometrically invariant in Lagrange ones can be obtained in
the following dual form:

T aff−metr
int =

1

2Ĩ
ηABη

CDΣ̂
A
CΣ̂

B
D +

1

2Ã
Σ̂
A
BΣ̂

B
A +

1

2B̃
Σ̂
A
AΣ̂

B
B , (194)

with the same meaning of inertial constants (193).
The accompanying expressions for the operators of translational kinetic

energy are given, respectively, by

Tmetr−aff
tr =

1
2m

gijp(tr)ip(tr)j =
1

2m
G−1ABp̂(tr)Ap̂(tr)B , (195)

T aff−metr
tr =

1
2m

C−1ijp(tr)ip(tr)j =
1

2m
ηABp̂(tr)Ap̂(tr)B , (196)
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where, let us remind, p(tr)i, p̂(tr)A are formally Hermitian operators of lin-
ear (translational) momentum as expressed in spatial (laboratory)/material
(co-moving) terms:

p(tr)a =
~
i

∂

∂xa
, p̂(tr)K = ϕaKpa =

~
i
ϕaK

∂

∂xa
. (197)

On the classical level we used the logarithmic dilatational invariant q
(106) and its conjugate canonical momentum p (107). In quantized theory
this momentum is represented by the following formally Hermitian operator:

p =
~
i

∂

∂q
. (198)

It is interrelated to the shear parts of the affine spin (deviator) through the
following formulae:

sab = Σa
b −

1
n
pδab , ŝAB = Σ̂

A
B −

1
n
pδAB , p = Σa

a = Σ̂
A
A . (199)

Just like on the classical level, one can perform a partial separation of
shear (incompressible motion) and dilatations. Expressions for the operators
of internal kinetic energy become then as follows:

T aff−aff
int =

1
2A

CSL(n)(2) +
1

2n(A+ nB)
p2, (200)

Tmetr−aff
int =

1
2(I +A)

CSL(n)(2)

+
1

2n(I +A+ nB)
p2 +

I

2 (I2 −A2)
‖S‖2, (201)

T aff−metr
int =

1
2(I +A)

CSL(n)(2)

+
1

2n(I +A+ nB)
p2 +

I

2 (I2 −A2)
‖V ‖2, (202)

where on the quantum level we mean that

CSL(n)(k) = sabs
b
c . . . s

r
ss
s
a = ŝAB ŝ

B
C . . . ŝ

R
S ŝ

S
A , (203)

(k factors) and

‖S‖2 := −1
2
SabS

b
a , ‖V ‖2 := −1

2
V A

BV
B
A . (204)
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Sometimes, however, it is more convenient to write simply that

T aff−aff
int =

1
2A

C(2)− B

2A(A+ nB)
p2 , (205)

Tmetr−aff
int =

1
2α
C(2) +

1
2β
p2 +

1
2µ
‖S‖2 , (206)

T aff−metr
int =

1
2α
C(2) +

1
2β
p2 +

1
2µ
‖V ‖2 , (207)

where α, β, µ are given by (114) and again the operators C(k) are built
according to the Casimir prescription,

C(k) = Σa
bΣ

b
c . . .Σ

r
sΣ

s
a = Σ̂

A
BΣ̂

B
C . . . Σ̂

R
SΣ̂

S
A , (208)

k multiplicative factors.
The quantized version of the model (153), (157) will be based on the

following operator of kinetic energy:

Tmetr−metr
int =

1
2I1

gikg
jlΣi

jΣ
k
l +

1
2I2

ηKLη
MNΣ̂

K
MΣ̂

L
N

+
1

2A
Σ̂
K
LΣ̂

L
K +

1
2B

Σ̂
K
KΣ̂

L
L . (209)

In all the above expressions for T there is no problem with the ordering
of operators just due to the geometric interpretation of the operators Σi

j ,
Σ̂
A
B as generators of some groups of unitary transformations. And it is

easily seen that all the resulting expressions for T automatically are formally
Hermitian.

What concerns (209) itself, this model is spatially and materially in-
variant only under the isometry groups. However, it has a nice structure
because it is a superposition of two affinely-invariant terms and two addi-
tional ones which restrict this symmetry to a weaker one, namely isometric.
Manipulations with phenomenological inertial constants enable one to con-
trol somehow those symmetry properties. After some calculations performed
on (209), we obtain that

Tmetr−metr
int =

1
2α
C(2) +

1
2β
p2 +

1
2µ
‖S‖2 +

1
2ν
‖V ‖2 , (210)

where α, β, µ, ν are some constants built of I1, I2, A, B, in analogy to
(114). It may be also convenient to represent the above expression as

Tmetr−metr
int =

1
2a
CSL(n)(2) +

1
2b
p2 +

1
2c
‖S‖2 +

1
2d
‖V ‖2 , (211)



204 J.J. Sławianowski et al.

where a, b, c, d are some new constants. In any case, the formula (211)
may be also postulated as something primary, without the intermediary
step (209), just as a natural generalisation/unification of (206), (207).

Just as in the classical theory, spin and vorticity operators may be ex-
pressed in terms of their components with respect to bases co-moving with
the L- and R-gyroscopes,

r̂ab = L−1a
iL
j
bS

i
j , t̂

a
b = −R−1a

KR
L
bV

K
L , (212)

the ordering of variables as indicated. Due to the orthogonality of L, R it
is clear that the following holds for the “magnitudes”:

r̂abr̂
b
a = SijS

j
i , t̂

a
bt̂
b
a = V K

LV
L
K . (213)

In geodetic cases, or with potentials V
(
q1, . . . , qn

)
built of deformation in-

variants, Sij , V A
B are quantum constants of motion, i.e., they commute

with the Hamiltonian H = T + V . It is not the case with r, t, however
their squared magnitudes, being equal to those of S, V , are also constants
of motion.

Just like in the classical theory, in certain quantum expressions it is
convenient to use the following operators:

Ma
b = −r̂ab − t̂

a
b , Na

b = r̂ab − t̂
a
b , (214)

which enable one to perform a “partial diagonalization” of the kinetic energy.
It is clear that for all geodetic models or more general dynamical models

with potentials depending only on deformation invariants, the eigenvalues
of orthogonal Casimirs of spin and vorticity

‖S‖2 = ‖r̂‖2 , ‖V ‖2 = ‖t̂‖2 (215)

are “good” quantum numbers. In the physical three-dimensional case they
are given, respectively, by [83–85]

C (S, s) = ~2s(s+ 1) , C (V , j) = ~2j(j + 1) , (216)

where s, j are non-negative integers,

s = 0, 1, 2, . . . , j = 0, 1, 2, . . . (s, j ∈ {0} ∪ N) . (217)

It may be also shown [65,71–73] that s, j may be non-negative integers and
half-integers,

s = 0, 1
2 , 1,

3
2 , . . . , j = 0, 1

2 , 1,
3
2 , . . .

(
s, j ∈ {0} ∪ 1

2 N
)
, (218)
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with the condition, however, that s, j are simultaneously integer or half-
integer, i.e., (j − s) is an integer:

|j − s| = 0, 1, 2, . . . (|j − s| ∈ {0} ∪ N) . (219)

This has to do with admitting some special kind of multivalued wave func-
tions; the procedure suggested among others by Pauli and Reiss [53, 58].
The configuration space of internal degrees of freedom, originally identified
with GL+(3,R), is then replaced by its universal covering manifold, i.e., the
universal covering group GL+(3,R), which, by the way, is not a linear group
(it does not admit any realization in terms of finite-dimensional matrices).

There is an interesting message of formulae (201), (202), (206), (207),
(210), (211), concerning the spectrum of radiation of objects described by
T int as Hamiltonians of internal motion. More generally, this applies also to
Hamiltonians of the following form:

H = T + V
(
q1, . . . , qn

)
, (220)

i.e., ones with potential terms depending only on deformation invariants
(scalar stretchings). Those spectral peculiarities appear, in particular, in
phenomena like the Raman scattering, when the absorbed light gives rise to
the internal excited states which decay through radiation proving the split-
ting of internal energy levels. This splitting is imposed onto some system
of background levels corresponding to the spectra of the first two terms in
(201), (202), (206), (207), (210), (211) and is described by the terms pro-
portional to operators ‖S‖2, ‖V ‖2. As we know, in the three-dimensional
physical space these operators have spectra (216), (217), under certain con-
ditions (218), (219).

In expressions (201), (206) we easily recognise the rotational Raman
splitting controlled by the quantity ~2s(s + 1). These terms correspond
exactly to excitation of rotations in the physical space.

From this point of view the models (202), (207) describe something else,
although the splitting has again the structure ~2j(j+ 1). But this is not the
quantized rotation. Instead, it is some part of the quantized deformative
motion, i.e., some aspect of quantized deformations. The “rotational” ex-
pression ~2j(j+1) is simply due to the rotation of squeezing, rotation of the
deformation tensor. So, in spite of the ~2j(j + 1)-structure this is not any
rotation of the “molecule” in space, this is rather something like the rotation
of some external factors suppressing the “molecule”.

In (210), (211) one deals simultaneously with both aspects: the quan-
tized ~2s(s + 1)-rotation in space and the quantized ~2j(j + 1)-controlled
deformation process. This might be something realistic, because in spectra
of some micro-objects one observes splittings of the ~2j(j + 1)-type which
cannot be interpreted as a quantized rotation in space.



206 J.J. Sławianowski et al.

In nuclear physics there appear terms of the type ~2I(I + 1), where I is
an isospin. It is so even in elementary particles, where the mass formula of
eight-fold way, obtained by Gell-Mann and Okubo for hadrons reads:

M = a+ bY + c
(
I(I + 1)− 1

4Y
2
)
, (221)

where I denotes the isospin quantum number, Y is so-called hypercharge,
and a, b, c are constants. This is particularly remarkable when we consider
the model (150), (151), where GL(n,R) is replaced by U(n) is such a way
that deformation invariants exp (qa) are “compactified” to exp (iqa).

It seems that the invariance structure and symmetry groups are so fun-
damental for dynamics that they may lead to quite similar models in rather
mutually remote areas of physical phenomena.

Incidentally, let us mention that the term linear in Y may have an ana-
logue within our treatment, and namely if we admit in the formula for the
kinetic energy some terms linear in generalized velocities. The only geo-
metrically invariant ones are those proportional to Tr Ω = Tr Ω̂, i.e., pro-
portional to the operator p on the quantum level. Apparently, the terms
proportional to velocities might seem exotic. Let us remind, however, that
they appear in analytical mechanics of charged particles moving in the mag-
netic field. We did not consider above such models with kinetic terms linear
in velocities, nevertheless, it may be easily done.

Let us quote for the sake of completeness some formulae concerning the
quantum description. In n dimensions our wave functions may be expanded
in the series

Ψ(ϕ) = Ψ(L, q,R) =
∑
α,β∈Θ

N(α)∑
m,n=1

N(β)∑
k,l=1

Dαmn(L)fαβnk
ml

(q)Dβkl
(
R−1

)
(222)

with the following meaning of symbols:

• Θ is the set of equivalence classes of unitary irreducible representations
of SO(n,R),

• N(α) is the dimension of the α-th representation class; as SO(n,R) is
compact, N(α) is finite.

This follows from the Peter–Weyl theorem [83,84] applied to SO(n,R).
In the physical case n = 3, Θ is in principle the set of non-negative in-

tegers, α, β are, just as above, denoted by s, j = 0, 1, 2, . . ., N(s) = 2s+ 1,
N(j) = 2j + 1, and the indices (m,n), (k, l) are considered as jumping by
1 from −s to s and from −j to j respectively, and Ds, Dj are standard ex-
pressions for unitary irreducible representations of SO(3,R). As mentioned,
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according to certain ideas by Pauli, it is possible to admit some two-valued
wave functions Ψ , or more rigorously, wave functions defined on the cover-
ing group GL(n,R). This group is nonlinear, i.e., non-realizable in terms of
finite matrices.

As mentioned, α, β (s, j) are “good” quantum numbers, so it is often
convenient to use just the reduced amplitudes

Ψαβml (ϕ) = Ψαβml (L, q,R) =
N(α)∑
n=1

N(β)∑
k=1

Dαmn(L)fαβnk (q)Dβkl
(
R−1

)
. (223)

In the physical case n = 3 this becomes

Ψ sjml(ϕ) = Ψ sjml(L, q,R) =
s∑

n=−s

j∑
k=−j

Dsmn(L)fsjnk(q)D
j
kl

(
R−1

)
. (224)

As mentioned, when two-valued wave functions are admitted, then SO(3,R)
is to be replaced by SU(2) and in the above series only such terms appear
that (j − s) is an integer. Obviously, the following eigenequations hold:

‖S‖2Ψ sjml = ‖r̂‖2Ψ sjml = ~2s(s+ 1)Ψ sjml , (225)

‖V ‖2Ψ sjml = ‖t̂‖2Ψ sjml = ~2j(j + 1)Ψ sjml . (226)

Traditionally one uses the convention thatm, l are related to the eigenvalues
of S3, V 3, the third components of spin and vorticity:

S3Ψ
sj
ml = ~mΨ sjml , V 3Ψ

sj
ml = ~lΨ sjml . (227)

Similarly, when the values n, k in the superposition (224) are kept fixed
and we retain only the corresponding single term, for the resulting reduced
amplitudes we have that

r̂3Ψ
sj
ml
nk

= ~nΨ sjml
nk

, t̂3Ψ
sj
ml
nk

= ~kΨ sjml
nk

. (228)

In three dimensions, when Dsmn are well-known functions found explicitly
by Wigner, this means that the dependence of Ψ on “angular” variables L,
R is in a sense explicitly known. And the action of differential operators
occurring in our formulae is “algebraized”. In the two-dimensional space,
when n = 2, this is just the expansion into Fourier series. In three dimensions
we have

SabΨ
sj = SsabΨ

sj , V A
BΨ

sj = Ψ sjSjAB , (229)
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where Ss, Sj are matrices of angular momenta indexed by s, j. In the
academic general case s, j would have to be replaced by some labels α, β.
If n = 3, then Ss, Sj are standard matrices (2s + 1)× (2s + 1), (2j + 1)×
(2j+1) which are explicitly known and quoted in any textbook on quantum
mechanics, e.g., one by Landau and Lifshitz [39] (cf. also [59,85]).

In explicitly matrix terms we can write that

Ψαβ(L, q,R) = Dα(L)fαβ(q)Dβ
(
R−1

)
. (230)

Differential operators r̂, t̂ are algebraized as follows:

r̂abΨ
αβ = Dα(L)Sαabfαβ(q)Dβ

(
R−1

)
, (231)

t̂
a
bΨ

αβ = Dα(L)fαβ(q)SβabDβ
(
R−1

)
. (232)

In certain formulae it is convenient to use the symbols
−−→
Sαab,

←−−
Sβab, where

−−→
Sαabf

αβ := Sαabf
αβ ,

←−−
Sβabf

αβ := fαβSβab . (233)

The Schrödinger equation reduces then to the infinite system of multicompo-
nent Schrödinger equations for the reduced amplitudes given by the system
of N(α) × N(β), i.e., physically (2s + 1) × (2j + 1), q-dependent matrices
fαβ(q). The scalar product 〈Ψ1|Ψ2〉 for the complete wave functions may be
expressed in the following way through the one for reduced amplitudes:

〈Ψ1|Ψ2〉 =
∑
α,β∈Θ

1
N(α)N(β)

∫
Tr
(
f+αβ

1

(
q1, . . . , qn

)
fαβ2

(
q1, . . . , qn

))
×Pλ

(
q1, . . . , qn

)
dq1 . . . dqn , (234)

where Pλ
(
q1, . . . , qn

)
is given by (184) and N(α), N(β) are dimensions of

irreducible representations α, β ∈ Θ. They are finite because SO(n,R) are
compact groups.

Similarly, for the d’Alembert-type models one uses the representation:

〈Ψ1|Ψ2〉 =
∑
α,β∈Θ

1
N(α)N(β)

∫
Tr
(
f+αβ

1

(
Q1, . . . , Qn

)
fαβ2

(
Q1, . . . , Qn

))
×P`

(
Q1, . . . , Qn

)
dQ1 . . . dQn, (235)

where P`
(
Q1, . . . , Qn

)
is given by (181).

The operator (191) for the doubly invariant kinetic energy may be written
as follows:

T aff−aff
int = − ~2

2A
Dλ +

~2B

2A (A+ nB)
∂2

∂q2

+
1

32A

∑
a,b

(Ma
b)

2

sh2
(
qa−qb

2

) − 1
32A

∑
a,b

(Na
b)

2

ch2
(
qa−qb

2

) , (236)
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where the differential operator Dλ is given by

Dλ =
1
Pλ

∑
a

∂

∂qa
Pλ

∂

∂qa
=

1
2a

∑
a

∂2

∂ (qa)2 +
∑
a

∂ lnPλ
∂qa

∂

∂qa
. (237)

Let us observe that unlike to what might be naively expected, the opera-
torDλ involving differential operators ∂/∂qa is not the usual Rn (physically
R3) Laplace operator. One can reduce it to such a form by modifying the
dependent variable,

Φ :=
√
PλΨ , (238)

but the price is that an artificial amended potential appears:

Ṽ = − ~
2A

1
P 2
λ

+
~2

4A
1
Pλ

∑
a

(
∂Pλ
∂qa

)2

. (239)

As mentioned, the time-independent Schrödinger equation, i.e., eigen-
equation

HΨ = EΨ , (240)

splits into the infinite family of multicomponent amplitudes fαβ
(
q1, . . . , qn

)
involving, however, only n independent variables q1, . . . , qn instead the pri-
mary n2 ones ϕiA,

Hαβfαβ = Eαβfαβ , (241)

where the reduced Hamiltonians Hαβ have the following form:

Hαβfαβ = − ~2

2A
Dλf

αβ

+
1

32A

∑
a,b

(←−−
Sβab−

−−→
Sαab

)2

sh2 qa−qb

2

fαβ− 1
32A

∑
a,b

(←−−
Sβab+

−−→
Sαab

)2

ch2 qa−qb

2

fαβ

+
~2B

2A (A+ nB)
∂2fαβ

∂q2
+ V

(
q1, . . . , qn

)
fαβ , (242)

where the meaning of symbols
−−→
Sαab,

←−−
Sβab is like in (233). The potential

energy is assumed to depend merely on logarithmic deformation invariants
q1, . . . , qn. As mentioned, on the level of incompressible motion, i.e., for
SL(n,R), it is possible to remain on the purely geodetic level. Then it
is sufficient to admit potentials V (q) depending only on the dilatational
parameter q (106). The problem splits then into the geodetic one on SL(n,R)
and one-dimensional quantized oscillations in the q-variable. As usually
one deals with almost incompressible (almost isochoric) motion, as for V (q)
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some simple phenomenological model may be used, e.g., some potential well
or “steep” oscillator. In metric-affine and affine-metric models, (242) is,
respectively, modified by the following terms:

− ~2

2µ
C (α, 2) , − ~2

2µ
C (β, 2) , (243)

based on second-order Casimir invariants for the orthogonal group SO(n,R).
In the physical case n = 3, they become [39]

~2

2µ
s(s+ 1) ,

~2

2µ
j(j + 1) (244)

with the previous meaning of symbols s, j.
In more hypothetical metric–metric models (210), (211), we are dealing

with the following additive correction term:

~2

2c
s(s+ 1) +

~2

2α
j(j + 1) . (245)

Finally, let us quote a rather not very useful, although seemingly “more
familiar”, d’Alembert model:

Hαβfαβ = −~2

2I
D`f

αβ +
1
8I

∑
a,b

(←−−
Sβab −

−−→
Sαab

)2

(Qa −Qb)2 fαβ

+
1
8I

∑
a,b

(←−−
Sβab +

−−→
Sαab

)2

(Qa +Qb)2 fαβ + V
(
Q1, . . . , Qn

)
fαβ , (246)

where

D` =
1
P`

∑
a

∂

∂Qa
P`

∂

∂Qa
=
∑
a

∂2

∂ (Qa)2 +
1
P`

∑
a

(
∂P`
∂Qa

)2

. (247)

Let us note that for (246) both the classical and quantum geodetic models
would be completely non-physical and the use of some relatively general
potential V

(
Q1, . . . , Qn

)
is absolutely unavoidable.

It is worth to mention that in planar problems, when n = 2, there exists
a wide class of models which are both qualitatively physical and integrable
[26–28,47–49,72,73].
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5. Some qualitative remarks

It is well known that for typical complex objects like molecules, the
structure of Raman spectra depends strongly on the mutual positions and
splittings of excited energy levels of internal motion. In molecules a typical
picture is as follows, cf. Figs. 3, 4, 5 below based on [42,66,67]:

Fig. 3.

Fig. 4.

Fig. 5.
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(i) The main background is created by the system of electronic energy
levels. Usually they are analysed and approximately calculated on the
basis of the Born–Oppenheimer approximation [42,66,67]. In principle
the separation of those levels is such that the corresponding quantum
transitions result in radiation of visible light.

(ii) Those levels are, as a matter of fact, bands consisting of systems of
vibrational (deformative) energy levels. The frequencies of radiative
transitions within those bands are placed within the visible light and
near infrared ranges.

(iii) And finally, the vibrational levels split into the rotational ones. Here
the resulting frequencies belong to the far infrared and radio ranges.

This situation is often faced with but there are exceptions, when sep-
arations between energy levels of various types are comparable. Then one
has to do with some resonance phenomena known as the Jahn–Teller ef-
fect [42,66,67].

And even the very Born–Oppenheimer method may be non-applicable
in such exceptional situations.

In our model, when applied to molecules, fullerens and similar objects,
the general picture and structure of energy levels and their splittings is a
bit more complicated and not yet analysed sufficiently in quantitative and
qualitative details. The splitting of electronic levels into vibrational and
rotational ones has some additional peculiarities. Namely, spatial rotations
are controlled by the quantum number s, but quantum deformations are
described by two things: the spectrum of Dλ and the quantum number j
controlling the rotation of squeezing plane of the deformed object.

Moreover, it would be difficult to estimate the structure of splittings
in nuclear dynamics, where, nevertheless, some interesting and nontrivial
applications are expected.

In our model based on the high affine symmetry one may hope that some
partial results may be explicitly obtained. Situation certainly will be much
more difficult for more general models of lower dynamical symmetry. The
next, more difficult step will follow when even on the level of kinematics
we give up the affine model of degrees of freedom and more complicated
deformation modes are admitted.

6. Non-affine modes — some general, rough comments

When dealing with molecular dynamics, it is quite natural to expect that
affine modes of motion, i.e., rotations and homogeneous deformations, are
most relevant for internal phenomena. They are also important in nuclear
dynamics. Of course, on both levels the quantization procedure must be
carried out.
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Nevertheless, any object consisting of more than four material points
((n + 1) in n-dimensional space) has also other degrees of freedom, even if
in a given class of phenomena they are not very important and play a sec-
ondary role. In molecular or nuclear dynamics (and also in some macroscopic
phenomena) it is often reasonable to establish some hierarchy of degrees of
freedom starting from affine ones and then admitting ones more and more
complicated. Degrees of freedom of affine motion are represented by the
formula (1) which expresses the Cartesian Euler (current) coordinates as
first-order polynomials of Cartesian Lagrange (material) coordinates. It is
natural to describe other degrees of freedom in such a way that Euler coor-
dinates are higher-order polynomials of Lagrange variables [74]:

yi (t, a) = 0q
i(t) + 1q

i
A(t)aA + 2q

i
AB(t)aAaB + · · ·

=
k∑
p=0

pq
i
A1...Ap(t)aA1 . . . aAp . (248)

The coefficients pq
i
AB···Z(t) are generalized coordinates; one must remem-

ber however that they are symmetric in material (capital) indices, so to
be more precise, independent generalized coordinates correspond, e.g., to
A ≤ B ≤ · · · ≤ Z. To avoid this redundancy, or rather to reduce it, it
is convenient to use the representation in terms of the radial variable and
spherical functions [74]:

yi (t, a) =
k∑
l=0

l∑
m=−l

qilm(t)|a|lY lm

(
a

|a|

)
, (249)

where, obviously, |a| is the length of the material radius-vector aK and

qilm = qil −m, (250)

because yi are real quantities. Then independent generalized coordinates
correspond to m = 0, 1, . . . , l. If k > 1, then on the surface of the body
more than one deformative waves are formed, cf. Fig. 6.

This procedure is used in so-called method of virial coefficients (widely
used in astrophysics, cf. for instance the book by Chandrasekhar). It was
also applied in nuclear dynamics, where of course, the quantized version of
theory must be used [21].

For continuous bodies, k may be in principle arbitrary (even infinite,
then yi are simply expressed as analytic functions of Lagrange coordinates).
Obviously, for finite systems of material points, k must be finite, because
one deals then with a finite number of degrees of freedom. The higher p
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Fig. 6.

or l , the less collective character of the corresponding degrees of freedom,
although, of course, all of them are “collective” in comparison to individual
one-particle positions.

Substituting (248) into the formula of the kinetic energy, one expresses it
through generalized velocities pq̇iAB...Z(t) or q̇ilm; later on Legendre trans-
formation is performed to reformulate everything in phase-space terms, and
finally the model is subject to the Schrödinger quantization. Obviously,
when using polynomial of the order k > 1 we loose the nice group-theoretical
interpretation; it survives only on the level of affine (k = 1) background phe-
nomena.

Remark: if k > 1, then 0q
i are not coordinates of the centre of mass

any longer. Overlooking this fact may lead to serious mistakes.
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Support Fund in 2007–2010. Authors are greatly indebted to the Ministry
of Science and Higher Education for this financial support. The support
within the framework of Institute internal programme 203 is also greatly
acknowledged.

REFERENCES

[1] E.A. Abbott, Flatland: A Romance of Many Dimensions, Seely and Co., Lon-
don 1884.

[2] R. Abraham, J.E. Marsden, Foundations of Mechanics (2nd edition),
The Benjamin-Cummings Publishing Company, London-Amsterdam-Sydney-
Tokyo 1978.

[3] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer Graduate
Texts in Mathematics, vol. 60, Springer-Verlag, New York 1978.

[4] D. Arsenovič, A.O. Barut, Z. Marić, M. Bǒzić, Nuovo Cim. 110B, 163 (1995).
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