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eived April 10, 2007)Problem of lo
ally disordered atomi
 stru
ture is solved by using a hybrid formulation in whi
h nonlinearelasti
 �nite elements are linked with dis
rete atomi
 intera
tion elements. The 
ontinuum approa
h usesnonlinear hyperelasti
ity based upon the generalized strain while the atomisti
 approa
h employs theTight-Binding Se
ond-Moment Approximation potential to 
reate new type of elements. The mole
ularintera
tions yielding from 
onstitutive models of TB-SMA were turned into intera
tions between nodes tosolve a boundary value problem by means of �nite element solver. In this paper we present a novel way ofmodelling materials behaviour where both dis
rete (mole
ular dynami
s) and 
ontinuum (nonlinear �niteelement) methods are used. As an example, the nanoindentation of a 
opper sample is modelled numeri
allyby applying a hybrid formulation. Here, the 
entral area of the sample subje
t to nanoindentation pro
essis dis
retised by an atomi
 net where the remaining area of the sample far from indenters tip is dis
retisedby the use of a nonlinear �nite element mesh.1. INTRODUCTIONIn re
ent years the numeri
al modelling of large atomi
 systems has been performed using methodsbased on mole
ular dynami
s; see for example [5, 11, 15, 19, 22, 23℄. In these 
al
ulations the systemis typi
ally 
omposed of many millions of atoms. For larger and more 
ompli
ated problems thenumber of freedom degrees in the system dramati
ally in
reases and one qui
kly be
omes inhibitedby time-
onstraints a�ordable for a pra
ti
al 
omputation. In su
h 
ases, for millions of variables,it is 
onvenient to assume a di�erent approa
h based on methods of 
ontinuum me
hani
s. The
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hampion of whi
h is �nite element analysis; see for example [7, 10, 14℄. In �nite element analysisone is less hindered by the s
ale of the system.The most important and 
ommon di�eren
e obtained by 
omparing solutions of atomi
 and
ontinuum methods appears at points where for
es a
ting on the parti
les indu
e signi�
ant rear-rangement of the underlying latti
e stru
ture. Physi
al phenomena in
ited by large ex
ursions ofthe atoms from their initial position in perfe
t 
rystal, have been studied and modelled using a
ombination of atomisti
 and 
ontinuum methods; for example, 
ra
k propagation [2, 17℄, stresswave propagation [20℄, me
hani
al dynami
s of defe
ts and interfa
es [27℄, dislo
ation emission atthe heterostru
ture interfa
e [1, 3℄ and stress-strain distributions in nanostru
tures [12, 18℄. In 
ases
ited above, 
ombined atomisti
 
ontinuum simulations are limited to two-dimensional models or, atthe most, to quasi three-dimensional models with periodi
ity along one 
oordinate. From both, thetheoreti
al and pra
ti
al point-of-view a 
ombination of atomisti
 and 
ontinuum methods seemsto be a natural way forward for modelling large systems. In this way, the 
rystalline stru
ture 
loseto dislo
ation 
ore is modelled with dis
rete mole
ular dynami
s, while 
ontinuum me
hani
s aptlydeals with motions of the stru
ture far from dislo
ations. Thus, in this arti
le we take full advantageof the both formalisms by 
onsidering a hybrid formulation where atomisti
 and 
ontinuum parts
oexist on an equal footing.This arti
le is organised as follows. In Se
tion 2, we give an overview of used numeri
al te
hniques,in parti
ular, on the spe
i�
 form of the potential governing atomi
 dynami
s and prin
iples ofnonlinear �nite element 
al
ulations. Following this, in Se
tion 3, we present and dis
uss our resultsfor hybrid atomisti
-
ontinuum modelling. Finally, in Se
tion 4, we draw 
on
lusions and summarise.2. HYBRID ATOMISTIC-CONTINUUM FINITE ELEMENT MODELLINGTo simulate the indentation pro
ess of nano
rystalline 
opper we have performed a hybrid mole
ular-
ontinuum 
al
ulation. In this way we 
ombine dis
retisation at the atomi
 level near the indenterstip and simulation of the surrounding region with a �nite element mesh (as illustrated in Fig. 1).As sket
hed above, both elasti
 and plasti
 deformations take part in the dynami
s during thenanoindentation pro
ess. In parti
ular, plasti
 deformation appears as a result of the rearrangementof the 
rystal stru
ture on an atomi
 level and this should be taken into a

ount in modelling theindentation pro
ess. This phenomenon is taken into a

ount here by performing a regeneration ofthe list of atomi
 intera
tions at ea
h step of the nanoindentation.

Fig. 1. The initial state of the fra
tional system with mole
ular and 
ontinuum parts (on the left) and a zoomof the interfa
e between atomisti
 and 
ontinuum regions (on the right). Here, red blo
ks denote 
ontinuum�nite elements, while green lines denote atomi
 intera
tion elements.



Hybrid atomisti
-
ontinuum modelling of nanoindentation 39In our simulation the indenter is given by a rigid body with a spheri
al tip of radius 10 nm.Impressed atoms 'sti
k' to its surfa
e during the indentation pro
ess. Pure elasti
 behaviour of the
rystal far from the indenters tip was simulated by the use of 27-node Lagrangian hyper-elasti
 bri
kelements. The 
rystallographi
 orientation was 
hosen to be [110][−110]; see Fig. 1. This orientationassures ideal 
onformity between dis
rete positions of atoms and nodes of the 
ontinuum meshon the interfa
e. The sample was assumed to reside on a rigid base while the side-fa
es remainun
onstrained. This approa
h allows for the 
orre
t dynami
s of the system as a whole and inparti
ular, allows for 
ompression and/or extension of the system in the xy-plane. Furthermore, dueto the four-point rotational symmetry of problem, only a fra
tional (quarter) part of the sample was
al
ulated (as in Fig. 1) after applying a proper boundary 
onditions in the planes of symmetry.The bottom of sample is fully �xed, outer planes possess periodi
 boundary 
ondition and innerplanes of symmetry are 
onstrained in normal dire
tion.The dimension of the 
al
ulated sample was arbitrarily 
hosen to be 40×40×12.5nm, while theatomisti
 region 
overs a volume 15×15×4.5nm within the �nite element mesh. The atomi
 part ofthe system was 
omposed of N ∼ O(104) atoms of 
opper, the intera
tions of whi
h were modelledby a Tight-Binding Se
ond-Moment-Approximation (TB-SMA) potential. In our 
al
ulation weassumed 
opper to be fa
e-
entred-
ubi
 stru
ture with the 
onventional latti
e parameter a =
3.6151Å.2.1. TB-SMA mole
ular potentialIt is re
ognised that empiri
ally based many-body potentials 
an reprodu
e well the stru
turalproperties of most metals. A relatively simple s
heme for taking into a

ount the ele
troni
 andstru
tural properties based on a small set of adjustable parameters, is the Tight-Binding Se
ond-Moment-Approximation (TB-SMA) potential [4℄.The total 
ohesive energy of the system (see Fig. 2) is given by
Ec =

∑

i

(
Ei

R + Ei
B

)
, (1)where the Born-Mayer ion-ion repulsion term Ei

R and 'hopping' term Ei
B are summed over all atomi
positions i, j ∈ {1, . . . , N}, and de�ned by
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. (3)where r0 is the nearest neighbor distan
e and rij is 
urrent distan
e between atoms. The freeparameters A, ξ, p and q are �tted to data determined from experiment and, for 
rystalline 
opperinvestigated here, we assumed the values [4℄: A = 0.0855 eV, ξ = 1.224 eV, p = 10.960 and q = 2.278.The inter-atomi
 for
es are
f i

n = −
∂Ei

∂ri
. (4)In terms of �nite element method the mole
ular intera
tions 
an be treated as two-node `pseudo-elements', so-
alled be
ause there is no shape fun
tion for TB-SMA elements, in 
ontrast to tra-ditional bar �nite elements. On the pseudo-element mesh, ea
h node represents a single atom. By
al
ulating for
es between nodes (atoms) we are able to �nd 
on�guration of a point at whi
h themole
ular region is in self- equilibrium. Constru
ting the model in this manner allows one type ofelement (TB-SMA) to be 
onne
ted with a di�erent type of element (
ontinuum) in a relativelystraight-forward way as illustrated in Fig. 1b. A more detailed des
ription is presented in [5℄.
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Fig. 2. Cohesive, repulsive and band energy2.2. Nonlinear hyper-elasti
 �nite elementsAnisotropi
 hyper-elasti
 models 
ompose a very narrow group among numerous 
ontinuum mod-els des
ribing elasti
 behaviour of a material. Let us emphasise that the most familiar anisotropi
hyperelasti
 models, su
h as the St. Venant�Kir
hho� and the Biot models, 
hange strongly theirinstantaneous sti�ness under large deformation. Moreover, the sti�ness evolution often signi�
antlydi�ers from the behaviour of real materials. Negle
ting anomalous behaviour, we 
an expe
t thatwith respe
t to mole
ular e�e
ts the instantaneous sti�ness of 
rystalline solids in
reases under
ompression and de
reases under extension. This nonlinear elasti
 e�e
t is responsible for manyphenomena observed experimentally. For instan
e, due to the di�erent stress-strain response duringthe extension and 
ompression we 
an observe that around an edge dislo
ation the volume expan-sion of the 
rystal latti
e o

urs, see [8, 21℄. The asymmetry in the elasti
 stress-strain response isdemonstrated also in the form of negative values of third-order elasti
 
onstants measured experi-mentally for many 
rystals, see [24�26℄. Thus, applying elasti
 
onstitutive models whi
h behave just
onversely (i.e. St. Venant�Kir
hho� or Biot model) 
an be the 
ause of many undesirable e�e
tssu
h as improper proportion between stress values, sizes of extended and 
ompressed regions or evenerroneous negative volume expansion indu
ed by intera
tion of dislo
ations in elasti
 
ontinuum.Therefore, the use of a new elasti
 and elasti
-plasti
 
onstitutive models whose behaviour 
ould bemore adjusted to the nonlinear behaviour of real 
rystal stru
tures, is indispensable.A

ording to the polar de
omposition theorem, the deformation gradient F 
an be de
omposedinto the orthogonal rotation tensor R and the right or left stret
h tensor, U or V, respe
tively,
F = RU = VR. The Lagrangian (ε̂) and Eulerian (ε) logarithmi
 strain tensors 
an be de�ned bymeans of the following isotropi
 fun
tions,
ε̂ =df lnui ui ⊗ ui , (5)
ε =df ln vi vi ⊗ vi , (6)where ui , ui , vi , vi denote respe
tively i-th eigenvalues and eigenve
tors of the right and left stret
htensors. It 
an be proved that to balan
e the energy for an arbitrarily 
hosen deformation pro
essthe Cau
hy stress has to be governed by the following equation, see [6℄,
σ = R

(
Â : ρ̂

∂ψ

∂ε̂

)
R

T detF−1, (7)
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-
ontinuum modelling of nanoindentation 41where the fourth-order tensor Â de
omposed in the ve
tor basis {ui} 
omposed of eigenve
tors ofthe right stret
h tensor is represented by the following non-vanishing 
omponents
Âijij = Âijji =






δij ui f
′(ui) for ui = uj ,

uiuj [f(ui)−f(uj)]

u2

i
−u2

j

for ui 6= uj , (8)where ρ̂ = ρdetF, f ′(ui) = df(u)
du

|u=ui
, see [16℄. Let us 
onsider the hyper-elasti
 material governedby the following 
onstitutive equation stated for the spe
i�
 strain energy

ψ =
1

2ρ̂
ε̂ : ĉ : ε̂ , (9)where ĉ is the fourth-order tensor of elasti
 sti�ness. Substitution Eq. (9) into (7) leads to

σ = R

(
Â : ĉ : ε̂

)
R

T detF−1. (10)This 
onstitutive model based on the generalised strain measure takes into a

ount the most of thewell-known anisotropi
 elasti
 models.Our �nite element (FE) algorithm is based on the integration of the equilibrium equation, whi
h
an be equivalently rewritten in relation to the 
urrent and/or referen
e 
on�guration. Writing thisequation in 
urrent 
on�guration we �nd the following lo
al form,
divσ = 0, (11)where the Cau
hy stress is a nonlinear fun
tion of the displa
ement ve
tor a and its gradient ∇a.Applying the virtual work prin
iple we �nd the following nonlinear matrix equation,
P(a) = f , (12)where
P =

∫

v

∇T
Wσ dv, (13)

f =

∫

∂v

Wσ ds. (14)
W denotes here the weighting fun
tion determined in relation to the 
urrent (wanted) 
on�guration.In the interior of �nite elements the distribution of displa
ement �eld is governed by the relation

a(x) =
∑

i=1,27

Nu
i (x)ai , (15)where Nu

i and ai denote the se
ond-order Lagrangian shape fun
tion spanned on 27 nodes of 3Dbri
k element and the nodal displa
ements, respe
tively.3. RESULTS AND DISCUSSIONThe simulation was divided into small displa
ement steps. The indentation depth D is given by�nite steps ∆D = 1.5Å of the indenter tip into the sample. Compared to 
rystallographi
 distan
ebetween nearest 
opper atoms equal 2.55Å, this 
hoi
e of ∆D makes it possible to take into a

ountgradual 
hanges in atomi
 intera
tions. The authors performed a test 
omparing the results of
∆D = 5× 0.3Å and ∆D = 1.5Å for a few �rst steps of the algorithm, the results were exa
tly thesame. After applying proper values of verti
al displa
ement to atoms intera
ting with the indenter,the problem redu
es to the solution of a boundary-value problem. Our results are shown in Figs. 3�5.
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Fig. 3. Mole
ular region after indentation depths of (a) 1.5 Å and (b) 21.0 Å(a) (b)

Fig. 4. Hybrid �nite element atomi
 mesh after indentation depth (a) 1.5Å, (b) 21.0 Å� verti
aldispla
ement
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Hybrid atomisti
-
ontinuum modelling of nanoindentation 43From me
hani
al point of view, simulation of indentation pro
ess 
an be divided into two mainstages. The �rst part of the nanoindentation runs until the indenter rea
hes a depth 4.5−6.0 Å andterminates at the �rst sign of reorganisation of the atomi
 bonds. Until this depth the stru
tureworked wholly elasti
ally and for
e-depth 
urve seems to be linear, however its derivative suggestsmall instantaneous sti�ness drop. The se
ond part of the simulation des
ribes plasti
 deformationof 
opper 
rystal. During this part the plasti
 rearrangement of the 
rystal stru
ture starts and itis revealed in the energy of the system as a deviation from the linear relation energy-depth, seeFig. 5. During this stage of deformation, be
ause of reorganisation of the atomi
 bonds, dislo
ationspropagate through the mole
ular region and shift mole
ular bonds. Rearrangement of the mole
ularmesh at ea
h step of the indentation 
auses a rapid energy 
hange and produ
es further dislo
ation.Finally, we 
omment that following depth D ≥ 12Å, relative to the sample′s thi
kness an inden-tation pro
ess ex
eeds the pres
ribed 10% rule [9℄, and loaded system undergoes 
omplete plasti
deformation leading to an approximate �at for
e-indentation 
urve, typi
al for pure plasti
 materi-als. However near depth D ≥ 18Å one 
an observe plasti
 hardening.4. CONCLUSIONSIn this arti
le we have presented the results of an atomisti
-
ontinuum �nite element modelling ofa nanoindentation pro
ess on 
opper sample. Many 
on
lusion yields from these simulation, amongothers
• By employing a hybrid framework we were able to model elasti
 and elasti
-plasti
 pro
esses anduse atomi
 dis
retisation for this part of the system where atomi
 e�e
ts are important, whilethe remaining part of the system was �lled by nonlinear �nite element mesh.
• Some di�
ulties 
an arise from a possible mismat
h in 
onformity between the natural 
on�g-urations of both stru
ture. In other words, the position of FE nodes situated on the atomi
-
ontinuum border must take the position of atoms to 
onne
t with atomi
 net. This limits theappli
ation of the present method to spe
ial 
rystallographi
 planes of perfe
t latti
e. Otherwise,in the 
ase of use the non-
onformal FE-MD meshes a transient region in whi
h the atomi
 meshoverlaps with the �nite element one must be applied.
• There are other reasons why the transient regions are often used in many 
al
ulations. Forexample, when the nonlinear elasti
 
hara
teristi
s of the 
ontinuous and atomisti
 nets di�ersigni�
antly under loading then some stress 
on
entration manifesting in deformation dis
onti-nuity under loading is observed between the atomisti
 and FE meshes. To avoid this problemthe transient region is helpful. In our previous works we tested how the instantaneous sti�ness
hanges under loading for various nonlinear elasti
 
ontinuum and mole
ular models [5℄. On thebasis of this experien
e and the present simulation we 
on
lude that in this parti
ular 
ase ofapplying the TB-SMA model together with hyperelasti
 anisotropi
 Hooke's law based on thelogarithmi
 strain measure su
h 
on
entrations of stress are not observed. This is be
ause thesti�ness of the two parts 
hanges very similarly in the domain of large elasti
 deformation.
• In the future appli
ations of hybrid FE-MD boundary zone should be automated by use of
omputer prepro
essors adopted to generate simultaneously the 
omplementary parts of themole
ular and 
ontinuum meshes. This will be a new enterprise for prepro
essors available mainlyfor FE method 
oin
iding here with the use of a mole
ular net.
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