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A study into the application of the Hilbert transform in numerical simulations of
reverberant sound decay in irregularly shaped enclosures is presented. It is shown
that there are some limitations in the use of this integral transform to exponentially
decaying harmonic signals because the integration result consists not only of a signal,
which differs from the original one by a phase shift of π/2, but also of a decaying non-
oscillating signal occurring due to the fact that a spectrum of exponential function
is unbounded. An initial amplitude of this signal is directly proportional to the ratio
between a damping coefficient and a mode frequency, thus for lightly damped rooms,
where this ratio is much smaller than unity, it can be neglected. Results of numerical
simulation carried out for L-shaped enclosure indicate that the Hilbert transform is
a useful tool in calculating instantaneous properties of reverberant sound, especially
an envelope of the sound pressure level. It is of special importance in the case of
irregularly shaped rooms, where a deviation from the exponential sound decay often
occurs because of differences between reverberant responses for particular modes.

Keywords: Hilbert transform, analytic signal, irregularly shaped enclosures, rever-
berant room response, reverberation time, early and late decay times.

1. Introduction

Over the last few decades, the Hilbert transform found several practical ap-
plications for the analysis and identification of vibration signals in a time do-
main [1, 2]. An appropriate use of the Hilbert transform to a vibration signal
provides some additional information about amplitude, instantaneous phase and
vibration frequency. This information is valid when employed to the study of
non-linear vibrations [3]. The Hilbert transform-based techniques are a conve-
nient tool to use in dealing with bandlimited signals and in this situation, they
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offer new methods for a damage diagnosis [4, 5] and time-varying vibration de-
composition [6, 7]. In room acoustics, a utility of Hilbert transform is manifested
in low-frequency range, where acoustic modes are well separated, and in this case
it is used to obtain a smooth decay curve for noisy single and multi-mode rever-
berant room responses [8]. In a numerical modelling of temporal sound decay in
enclosures, an application of Hilbert transform is a simple way to get information
about an envelope and the phase of a decaying acoustic signal. It is especially
important in a simulation of reverberant response of coupled spaces or rooms
having irregular shape because differences between modal responses, observed in
these cases, can lead to nonlinear profiles of pressure level decay [9] or double
slope sound decay [10, 11].

In the first part of this paper, the most important properties of Hilbert trans-
form are shortly discussed. Then, the study is focused on an application of the
transform to exponentially decaying cosine and sine functions that model the
reverberation behaviour of a single mode. It is revealed that a use of the Hilbert
transform is limited to decaying signals for which the ratio between a damping
coefficient and a mode frequency is much smaller than unity. In the last part,
a utility of Hilbert transform is demonstrated using sound decay simulations
performed for the enclosure having a shape resembling the capital letter L.

2. Theoretical background

The Hilbert transform plays an important role in a signal analysis because it
can be used in a direct examination of instantaneous properties of the signal such
as: an amplitude, a phase and a frequency. The Hilbert transform H of a real
function f(t) is defined as

H[f(t)] = f̂(t) =
1
π

∞∫

−∞

f(t)
t− τ

dτ =
1
π

∞∫

−∞

f(t− τ)
τ

dτ, (1)

where the integral is considered as a Cauchy principal value because of the possi-
ble singularity at τ = t or τ = 0. As it results from Eq. (1), the Hilbert transform
represents a convolution between the transformer 1/πt and the function f(t),
which may be written as f̂(t) = (1/πt) ∗ f(t). The double use of the Hilbert
transform yields the function f(t) with an opposite sign, hence it carries out
the phase shift of π from the initial signal. Thus, the Hilbert transform is often
interpreted as the π/2 phase shift operator.

The signal f(t) and its Hilbert transform f̂(t) are related to each other in
such a way that they together create the so-called analytic signal a(t) defined as

a(t) = f(t) + j f̂(t) = E(t)ejψ(t), (2)

where E(t) =
√

f2(t) + f̂2(t) is the amplitude (envelope, magnitude) of the an-
alytic signal and ψ(t) = tan−1[f̂(t)/f(t)] is the phase of a(t). The instantaneous
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angular frequency of a(t) is defined as: ω(t) = dψu/ dt, where ψu(t) is the con-
tinuous, unwrapped phase, i.e.

ψu(t) = ψ(t) + Γ (t), (3)

where Γ (t) is an integer multiple of π-valued function designed to ensure a contin-
uous phase function. Accurately computed, the derivatives of the discontinuities
in Γ (t) and ψ(t) cancel. Note that if the Γ (t) is omitted, there will be δ functions
at various t in ω(t).

The analytic representation of real signals has been found very useful for
many types of signals, especially for the amplitude-modulated ones, modeled as
a product of the bandlimited signal g(t) and the high-pass oscillating signal u(t).
If the Fourier transform of g(t) satisfies the condition F [g(t)] = 0 for |ω| ≥ ωc,
where ωc is the so-called cutoff frequency, and u(t) is a signal with the Fourier
transform equal to zero for |ω| < ωc, then [12]

H[g(t)u(t)] = g(t)H[u(t)], (4)

thus, to compute the Hilbert transform of the product of a low-pass signal with
a high-pass signal, only the high-pass signal needs to be transformed.

3. Hilbert transform in room acoustics

In room acoustics the Hilbert transform is found to be a useful tool in a signal
analysis in a frequency range bounded from above by the so-called “Schroeder
frequency” given by [13]

ωs = 2πc
√

6/A, (5)

where c is the sound speed and A is the total room absorption. Below this fre-
quency the mode density is low and particular modes can be decomposed from
a room response to an acoustic excitation, thus in multi-mode resonance systems
the "Schroeder frequency" marks the transition from individual, well-separated
resonances to many overlapping modes. Consequently, in low-frequency range, the
room behaves like a resonance system, with specific acoustic modes, whose char-
acteristics such as: an amplitude distribution, a mode frequency and a damping
factor, depend on the room shape and absorption properties of room walls.

If a sound source located inside the room operates with constant power, energy
losses on the absorbing walls are covered by the source and in the steady-state,
which is usually reached during short time after a source start, the absorptive
power is equal to that produced by the source. When the sound source is switched
off, the acoustic energy accumulated inside the room is dissipated on walls and
a reverberation due to the common decaying of modes occurs. In the case of
a single mode, a temporal decay of a sound pressure can be described simply by
the exponentially decaying harmonic function [14]

pm(t) = Ame−rmt cos(Ωmt− βm), (6)
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where t ≥ 0 is the time, m = 1, 2, 3... is the mode number, Am is the initial
mode amplitude, rm > 0 is the damping coefficient, Ωm is the mode frequency
for oscillations with a damping

Ωm =
√

ω2
m − r2

m, (7)

where ωm is the mode frequency, βm is the initial phase of modal response

βm = tan−1

[
rm(ω2

m + ω2)
Ωm(ω2

m − ω2)

]
, (8)

where ω is the sound source frequency. Unfortunately, in the analysed case the
property (4) of Hilbert transform can not be applied, because the exponentially
decaying signal e−rmt has the Fourier transform [5]

F(e−rmt) =
1√

2π(rm + jω)
, (9)

thus, its spectrum is unbounded. As follows from Eq. (6), the finding of H[pm(t)]
requires a computation of the Hilbert transform of two harmonic functions:
cm(t) = e−rmt cos(Ωmt) and sm(t) = e−rmt sin(Ωmt). Applying the second ex-
pression for the Hilbert transform from Eq. (1) to the first function, we obtain
the integral

ĉm(t) =
1
π

∞∫

−∞

e−rm|t−τ | cos[Ωm(t− τ)]
τ

dτ, (10)

where an absolute value in the exponent assures the boundedness of the expo-
nential function. In a method for evaluation of the integral in Eq. (10), we use
the following substitution

1
τ

=

∞∫

0

e−qτ dq, (11)

and the final result, after some transformations, is given by

ĉm(t) = e−rmt sin(Ωmt) + f1(t), (12)

f1(t) =
2γm

π

∞∫

0

(1− s2)e−ωmst ds

(s2 + 2γms + 1)(s2 − 2γms + 1)
, (13)

where γm = rm/ωm. An application of a similar integration method to the second
harmonic function yields

ŝm(t) = −e−rmt cos(Ωmt) + f2(t), (14)

f2(t) =
4γm

√
1− γ2

m

π

∞∫

0

se−ωmst ds

(s2 + 2γms + 1)(s2 − 2γms + 1)
. (15)



Application of Hilbert Transform-Based Methodology. . . 495

Since a use of the Hilbert transform to the cosine and sine functions gives

H[cos(Ωmt)] = sin(Ωmt),

H[sin(Ωmt)] = − cos(Ωmt),
(16)

the functions f1 and f2 on right-hand sides of Eqs. (12) and (14) may be inter-
preted as corrections of Eq. (4) due to the fact that a spectrum of exponentially
decaying signal is unbounded. For the parameter γm equal to zero, the correction
functions f1 and f2 vanish and Eqs. (12) and (14) reduce to Eqs. (16). In order
to investigate behaviours of f1 and f2 for non-zero values of γm, it is necessary
to determine first the limit values of rm and ωm.

In a low-frequency range, typical materials covering room walls are charac-
terized by low sound absorption, thus the case studied is a hard-walled, lightly
damped room with a reverberation time of the order of one second at mid and
high frequencies, but much longer decay times at low modal frequencies. The
modal reverberation time Tm, defined as that for which the pressure level de-
cays by 60 dB in a mode, is related to the damping coefficient by the expres-
sion [16]

Tm =
3 ln(10)

rm
, (17)

thus, it is inversely proportional to rm. Now, if we assume that a low limit of Tm

is of the order of two seconds, we easily find: (rm)max ' 3.45 s−1. Since a mini-
mum value of ωm corresponds to the lowest audible frequency, the parameter γm

has the upper limit (γm)max ' 0.028.
In the case of a decay of single acoustic mode, the reverberation time Tm

determines a time limit above which temporal variations in the sound pressure
have a very small influence on perceived sound. Thus, an analysis of temporal
behaviour of the functions f1 and f2 may be limited to the time interval from
zero to Tm. To evaluate contributions of f1 and f2 in ĉm and ŝm, respectively, we
consider the relative correction functions: fr1 = f1/e−rmt and fr2 = f2/e−rmt.
Figure 1 shows dependences of these functions on the non-dimensional time pa-
rameter t/Tm for different values of γm. The graphs in Fig. 1a indicate that the
function f1 contributes to ĉm significantly, especially for t/Tm close to unity,
and in the range of t/Tm from 0.1 to 1, values of the relative function fr1 drop
four times with a double decrease in the parameter γm. In the case of the func-
tion fr2 a situation is much more favourable, because for (γm)max its values
for t/Tm from the interval 0.05–1 do not exceed 0.001 and for t/Tm from the
range 0.1–1, values of fr2 fall down eight times with a double decrease in γm

(Fig. 1b). The function fr2 appears visibly larger for the smallest values of t/Tm

and for t/Tm equal to zero it has the maximum value given by 2γm

√
1− γ2

m/π,
because
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Fig. 1. Changes in relative correction functions fr1 and fr2 with non-dimensional time para-
meter t/Tm for different values of γm.

∞∫

0

s ds

(s2 + 2γms + 1)(s2 − 2γms + 1)
'

∞∫

0

s ds

(s2 + 1)2
=

1
2

(18)

for the parameter γm much smaller than unity.
In real conditions, when there are multiple modes in the room system, a re-

verberant room response for non-overlapping modes is of the form [14]

p(r, t) =
√

V

M∑

m=1

Ame−rmt cos(Ωmt− βm)Φm(r), (19)

where Φm(r) are orthogonal eigenfunctions normalized in the room volume V ,
r = (x, y, z) is the position vector and the mode M is the last mode whose
frequency is smaller than the “Schroeder frequency” ωs. In Eq. (19) the Helmholtz
mode A0e

−r0t representing a trivial solution of the wave equation was omitted
because it is not perceived as a sound.

For lightly damped rooms the modal amplitude Am hardly depends on the
sound source frequency [14]. Moreover, the absolute value of Am reaches a max-
imum when the frequency ωm is very close to ω. A reverberant room response
to a harmonic excitation is then dominated by modes with frequencies lying in
the nearest vicinity of ω. As it results from Eq. (8), when the condition ωm ' ω
is satisfied, the phase βm is equal to π/2, approximately, thus for the dominant
mode a temporal decay of sound pressure is

pm(t) ' Ame−rmt sin(Ωmt). (20)

Using Eq. (14) it is easily found that the amplitude and the phase of this func-
tion are

E1 = Am

√
e−2rmt − f2(t)e−rmt cos(Ωmt) + f2

2 (t),

ψ1 = tan−1
[− cot(Ωmt) + f2(t)ermt/ sin(Ωmt)

]
.

(21)
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Figure 2 depicts changes in ∆Er = |(E1 − E)/E| and ∆ψr = |(ψ1 − ψ)/ψ|
with the non-dimensional time parameter t/Tm, where E = Ame−rmt and ψ =
Ωmt − π/2. Thus, the quantities ∆Er and ∆ψr may be interpreted as relative
errors in predictions of amplitude and phase for decaying dominant modes, when
the Hilbert transform-based methodology is used. The data presented in Fig. 2
was obtained for the most unfavourable case when the parameter γm is maximal.
Due to the occurrence of cosine and sine functions in expressions for E1 and ψ1,
the parameters ∆Er and ∆ψr are oscillatory in character and the frequency of
oscillation corresponds to the mode frequency ωm.

Fig. 2. Relative errors ∆Er and ∆ψr in predictions of amplitude and phase for dominant
modes versus non-dimensional time parameter t/Tm for maximum value of γm. Calculation

parameters: rm = 4 s−1, ωm = 142.9 rad/s.

The graphs in Fig. 2 show that the relative errors ∆Er and ∆ψr are visibly
smaller than unity in a range of t/Tm from 0 to 0.01 and they appear to be
sufficiently small for the remaining values of t/Tm. From a viewpoint of room
acoustics, this is a very important property because it enables us to avoid sig-
nificant errors in prediction of the reverberation time or decay times in a late
stage of sound decay. Note, that the upper envelope of the function describing
changes in ∆Er with t/Tm has a shape of function fr2 for the maximum value of
γm (Fig. 1b).

Another kind of modes are the so-called non-dominant modes. For the consid-
ered case of lightly damped enclosures, they have slight influence on reverberant
room response. Non-dominant modes can be defined as these for which the sound
source frequency ω is considerably smaller or considerably larger than the mode
frequency ωm. In such a case, the expression (8) for the phase βm can be simplified
to the form

βm = ± tan−1(γm/
√

1− γ2
m), (22)

where the plus and minus signs correspond to the cases: ω ¿ ωm and ω À ωm,
respectively. Since the parameter γm is assumed to be much smaller than unity,
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a temporal decay of sound pressure for non-dominant modes can be approxi-
mately determined by

pm(t) ' Ame−rmt cos(Ωmt). (23)
Applying Eq. (12), relative errors in predictions of amplitude and phase were
found. Calculation results shown in Fig. 3 prove that for non-dominant modes
the errors ∆Er and ∆ψr are visibly larger as compared to the dominant modes.
Moreover, similarly as before, the upper envelope of the function describing vari-
ations in ∆Er with t/Tm corresponds to the function fr1 determined for the
maximum value of γm (Fig. 1a).

Fig. 3. Relative errors ∆Er and ∆ψr in predictions of amplitude and phase for non-dominant
modes versus non-dimensional time parameter t/Tm for maximum value of γm. Calculation

parameters: rm = 4 s−1, ωm = 142.9 rad/s.

4. Numerical simulation

A primary objective of a numerical simulation was to demonstrate the utility
of the Hilbert transform technique in computational predictions of a reverberant
sound decay in rooms of complex geometry. In the present study, an enclosure
having shape resembling the capital letter L is considered (Fig. 4). For this room
geometry, a computation of eigenfunctions was possible only through numerical
methods. It was found [17] that for lightly damped rooms, a distribution of modes
amplitude is well approximated by eigenfunctions computed for perfectly rigid
room walls. Thus, using double indexed quantities we can write

Φmn(r) =





Ψn(x, y)/
√

h, m = 0, n > 0,
√

2/h cos(mπz/h)Ψn(x, y), m > 0, n > 0,
(24)

where h is the room height and the eigenfunctions Ψn are normalized over a hor-
izontal section of the room. In this case, the modal frequencies are given by

ωmn =

√(mπc

h

)2
+ ω2

n, (25)
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where ωn is an eigenfrequency for the function Ψn. The functions Ψn and the
frequencies ωn were computed with the aid of numerical technique based on the
forced oscillator method [18] with finite difference algorithm. Determination of
the eigenfunctions Φmn makes possible a calculation of modal amplitudes and
damping coefficients [14]

Amn =
ωmnc2

∫
V

Q(r)Φmn(r)dv

Ωmn

√
V

[
(ω2

mn − ω2)2 + 4r2
mnω2

mn

] , (26)

rmn =
ρc2

∫
S

Φ2
mn(r)ds

2Z
, (27)

where Q(r) is the volume source distribution and Z is the wall impedance.

Fig. 4. Analysed room having the shape resembling a capital letter L.

In the numerical simulation it was assumed that dimensions of a room are the
following (in meters): d1 = d2 = 3, l1 = 4, l2 = 6, h = 3 and the sound source
with the power of 0.1 W was modelled by a point source at the location (in me-
ters): x = 4, y = 4, z = 1. It was also postulated that an absorbing material
with the random-absorption coefficient α of 0.07 was uniformly located on room
walls. The wall impedance Z was assumed to be a real number, i.e., the mass and
stiffness of the absorbing material are neglected. A value of Z was found from the
well-known relationship between the coefficient α and the impedance ratio ξ [19]

α =
8
ξ

[
1 +

1
1 + ξ

− 2
ξ

ln(1 + ξ)
]

, ξ = Z/ρc. (28)

Since the total room absorption A for an uniform distribution of absorbing ma-
terial on room walls is determined by: A = αS, the “Schroeder frequency” cal-
culated from Eq. (5) assumes the value fs = ωs/2π ' 230 Hz. In a frequency
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range bounded from above by the “Schroeder frequency”, 212 eigenmodes were
found. For this set of modes, a reverberant sound decay in an observation point
located at the position (in meters): x = 8, y = 2, z = 1.8, was simulated and
the Hilbert transform-based technique was used to calculate an envelope of this
decay. Allowing for theoretical considerations in Sec. 3, in calculations of the
Hilbert transform the correction function f1 and f2 were omitted.

Results of a numerical simulation presented in Fig. 5 show for two source
frequencies a decay of sound pressure in the time interval corresponding ap-
proximately to the reverberation time (Fig. 5b,d) and illustrate additionally an
evolution of sound pressure in the early stage of sound decay (Fig. 5a,c). In the
initial stage of decay, the acoustic signal together with its upper and lower en-
velopes computed via the Hilbert transform are depicted. The data in Fig. 5b,d
indicate that an excitation of room by a tone of 93 Hz results in almost a smooth
decrease in the sound pressure, whereas a source signal with a frequency of 96 Hz
gives a sound decay with a characteristic wavy envelope. Such a difference be-
tween forms of a sound decay is associated with a great influence of the source

Fig. 5. Temporal decay of sound pressure p for two frequencies of sound source: (a,b) 93 Hz
and (c,d) 96 Hz.
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frequency on the modal amplitude Amn. As it is evident from Fig. 6, for the fre-
quency of 93 Hz there is one strong dominant mode because the mode frequency
fmn corresponds almost exactly to the source frequency. When the source fre-
quency is shifted to 96 Hz there are two significant modes of slightly different
frequencies. In this case an envelope of a sound pressure begins to fluctuate with
a frequency equal to the difference between frequencies of these neighbouring
modes (beating effect).

Fig. 6. Absolute value of modal amplitude Amn versus mode frequency fmn for sound source
frequencies: a) 93 Hz and b) 96 Hz.

An important thing in investigations of reverberant phenomenon is a decay
time estimation which is based in practice on fitting a straight line to the decay
envelope of pressure level L = 20 log(|p|/p0). The reference pressure p0 is selected
in such a way that for t = 0 the level L is equal to zero. The linear fitting is realized
by the least-squares method (linear regression) and it gives good results when
decay times of dominant modes are very similar. If it is not satisfied, a difference
between the early decay time (EDT) and the late decay time (LDT) may occur,
where LDT is the 60 dB decay time calculated by a line fit to the portion of
a decay curve between −50 and −60 dB [10].

Calculation results presented in Fig. 7a show that the envelope LE of pres-
sure level found for the source frequency of 93 Hz appears to be smooth enough
and a fitting line matches the envelope reasonably well. It is obviously a con-
sequence of a strong dominance of one acoustic mode in a reverberant room
response. In this case the estimation of a reverberation time from a slope of
the fitting line gives a result T60 ' 2.27 s. For the second source frequency,
the envelope LE is deformed by fluctuations due to the beating effect, but the
mean trend in a decrease of the pressure level is well reproduced by the straight
line (Fig. 7b). A reverberation time calculated from a slope of fitting line is
T60 ' 2.24 s, thus it is almost the same result as in the case of the first source
frequency.
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Fig. 7. Envelope LE of the pressure level for source frequencies: a) 93 Hz and b) 96 Hz. Straight
lines correspond to best-fit lines determined by regression method.

In the last numerical example, a reverberant sound decay in the observa-
tion point for the source frequency of 144 Hz will be examined. Simulation data
depicted in Fig. 8 present temporal changes in the sound pressure p and the inter-
esting thing to note is that a sound pressure appears to grow, instead of decrease,
in the initial stage of reverberation process. This behaviour of sound pressure re-
sults in untypical temporal changes in the pressure level because its envelope LE

exhibits “ballooned” appearance with a slow initial decay and a visibly faster late
decay (Fig. 9a). The opposite of this manner of sound decay is a reverberation
process with a rapid early decay and a shallow late decay. In such a situation
a decay curve possesses the so-called “sagging” appearance which occurs more
frequently in practice [20].

Fig. 8. Temporal decay of sound pressure p for source frequency of 144 Hz.

In Fig. 9a a smooth curve described by the function F (t) represents a best-fit
curve determined by a polynomial regression. A “ballooned” shape of pressure
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Fig. 9. (a) Envelope LE of pressure level for source frequency of 144 Hz. Function F (t) cor-
responds to best-fit curve calculated by polynomial regression. (b) Reverberation time T60

estimated from slope of fitting curve.

level decay can be quantified by estimating the early and late decay times from
a slope of the best-fit curve. Applying a classical linear fitting to appropriate
portions of this curve we obtain: EDT = 4.02 s and LDT = 2.05 s. Because
of high nonlinearity of the function F (t) in the early stage of sound decay, an
estimation of EDT from a temporal dependence of the reverberation time T60

seems to be more accurate. This time is determined from a slope of the best-fit
curve, i.e.

T60 = − 60
dF (t)/dt

(29)

and changes in T60 with the time t are shown in Fig. 9b. In this approach EDT is
thought as the mean value of T60 in a time interval corresponding to a decrease in
F (t) from 0 to −10 dB. The early decay time computed by this method is 4.64 s,
thus it differs visibly from the value of EDT estimated by a linear regression.
A use of this calculation technique to an estimation of late decay time gives the
same result as in the case of linear fitting.

5. Conclusions

In room acoustics, the usefulness of Hilbert transform is evinced in a frequency
range bounded from above by the “Schroeder frequency”, which represents a limit
between well separated room modes below it and many overlapping modes above
it. When a sound decay in reverberant enclosures is studied, an application of
Hilbert transform is a simple way to get information about the envelope and
phase of a decaying acoustic signal. This is of great significance in the case of
irregularly shaped rooms where deviations from the exponential sound decay,
leading to non-linear profile of decay curve, often occur because of differences
between reverberant responses for particular modes.
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The important result of this study is finding that there are some limitations in
a use of the Hilbert transform to exponentially decaying harmonic signals, because
a transformation result consists not only of a signal, which differs from the original
one by a phase shift of π/2, but also of a decaying non-oscillating signal occurring
due to the fact that a spectrum of exponential function is unbounded. It was
found that an initial amplitude of this signal is directly proportional to the ratio
between a damping coefficient and a mode frequency, thus for lightly damped
rooms, where this ratio is much smaller than unity, it can be neglected.

A utility of Hilbert transform in a numerical modelling of reverberant room
responses was examined using sound decay simulations, performed for the irregu-
lar enclosure having a shape resembling the capital letter L. The L-shaped rooms
are a special kind of coupled-room systems because they consist of two rectan-
gular rooms connected through an opening having an infinitely small thickness.
In a theoretical model, a room response was described in terms of its normal
eigenmodes. Spatial distributions of modes and the corresponding eigenfrequen-
cies were computed numerically via an application of the forced oscillator method
with a finite difference algorithm. Calculation results revealed that the Hilbert
transform-based methodology provides a precise information about the envelope
of a decaying sound pressure. More importantly, it is a useful tool for smoothing
the profile of decaying pressure level before an application of a regression method
for an estimation of decay times. As it was shown, this is very important for irreg-
ular sound decays occurring, for example, for a decay deformed by fluctuations
because of two significant modes close in frequency (beating effect) or in the case
of reverberant room response, with a slow initial decay and a visibly faster late
decay (“ballooned” shape of a pressure level decay).
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