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ABSTRACT. The behaviour of the interface of a pre-cracked bi-material ceramic-
metal structure under static axial loading is an object of interest in the present paper. 
To solve the problem for an interface delamination of the structure and to determine 
the debond length along the interface, own 2D BEM code is created and applied. 
The interface plate is assumed as a very thin plate comparing with others two. The 
parametric (geometric and elastic) analysis of the debond length and interface shear 
stress is done. The obtained numerical results are compared with analytical one from 
1D Shear-lag analysis of considered structure. The respective comparison is 
illustrated in figures and shows a good coincidence. 
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 1. Introduction 
 The boundary element method (BEM) has been demonstrated to be a viable 

alternative to the FEM for many engineering problems, due to its futures of 
boundary-only discretization and high accuracy for stress analysis, especially in 
fracture mechanics [1, 2]. The meshing for the BEM is also much more efficient than 
those in other domain-based methods, especially for problems with changing 
boundaries such as crack propagation problems. Recently, it was shown in [3], both 
analytically and numerically, that the conventional boundary integral equation can be 
                                                 
* Bi-lateral project of BAS/PAS “New composite materials, homogenization and macroscopic behaviour 
of structural elements” (2009-2011), Bulgarian National Science Funds under grant TK01/0185. 



 
 
 
 
 
 

V. Valeva, J. Ivanova, B. Gambin 

applied successfully  to thin structures, such as layered structures, thin films and 
coatings. It has been shown in [4] that very accurate numerical solutions can be 
obtained for thin structures with the thickness to length ratio in the micro- and even 
nano-scales, using the newly developed BEM approach, without seeking refinement 
of the BEM mesh as the thickness decreases. 

The interface strength, toughness and stiffness are important factors affecting 
mechanical response of the multi-material layered structures. A weak interface 
induces loss of structure stiffness and strength. On the other hand, a brittle and strong 
interface may induce excessive cracking of the bonded elements. Interfacial fracture 
of layered composite materials under mechanical loading was analysed in numerous 
papers (see, for example [5]).  

The main idea of the shear-lag analysis is such an assumption which involves 
a simplification of in-plane shear stress and decouples the 2D problem into two 1D 
ones. Hedgepeth [6] was the first who applied shear-lag model to unidirectional 
composites. In the shear-lag models the hypothesis that the load is transferred from 
broken fibres to adjacent ones by the matrix shear force is stated. Hence, the matrix 
shear force is independent of the transverse displacements.  In [7-9] the shear-lag 
approach are applied to the bi-material layered structure with pre-cracked first thin 
layer.  

The present paper is aimed at the behaviour of the interface of bi-material 
ceramic-metal plates under static axial load. The interface plate is assumed as a very 
thin plate comparing with the second one and working only in shear stress. To 
validate the application domain of the shear-lag analysis the problem for a 
delamination of the interface of a bi-material structure own BEM code is created and 
used. The numerical model of the structure is considered in 2D plane-strain state. 
The delamination starts at assumed restrict condition for the value of shear stress of 
interface. The obtained numerical results are compared with analytical one from 1D 
shear lag analysis which can give a clear picture for application of 1D shear-lag 
analysis. 
 2. Shear-lag and BEM formulations 

 Consider two elastic plates A and B with finite lengths L2 , thickness 
BA hh 2,2 , bonded by an interface I and loaded in tension by a strain 0ε  and the zero 

thickness interface in pure shear 
(Fig. 1). The modified shear-lag 
model is applied [7], taking into 
account plasticity and damage 
of the interface. In the shear-lag 
model the neglecting the 
bending effect results on the 
qualitative values of the stress-
strain behavior. The main 
purpose of this study is to 
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compare the simple analytical solutions, helping the design of graded materials with 
the numerical results, obtained using BEM. 

The obtained in [7] analytical expressions for the interfacial displacement 
and shear stress in dimensionless parameters have the form: 
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The debond length el , which gives the magnitude of the brittle cracking 
along the interface is given as: 
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 The following boundary integral equations for two-dimensional elasticity 
problems can be applied in each material domain (index notation is used, where 
repeated subscripts imply summation) [1]: 
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in which )(β
ju  and )(β

jt  are the displacement and traction fields, respectively; 

),( 0
)( PPUij

β  and ),( 0
)( PPTij

β  the displacement and traction kernels (Kelvin’s 

solution), respectively; P  the field point and 0P  the source point; and Γ  the 
boundary of the single domain. )( 0PCij  is a constant coefficient matrix depending on 

the smoothness of the boundary Γ  at the source point 0P . The superscript β  on the 
variables in Eq. (2.4) signifies the dependence of these variables on the individual 
domains IBA ,,=β . 
 In Eq. (2.4) the integral containing the ),( 0

)( PPUij
β  kernel is weakly 

singular, while the one containing ),( 0
)( PPTij

β  is strongly singular and must be 
interpreted in the Cauchy principal value sense. However, when the structure 
becomes thin in shape, such as the interphase, both integrals are difficult to deal with 
when the source point is on the one side and the integration is carried out on the other 
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side of the thin structure. These types of integrals are called nearly singular integrals 
since the distance r  is very small in this case but is still not zero. Recently, several 
techniques, including singularity subtractions, analytical integration, and nonlinear 
coordinate transformations have been developed to calculate the nearly singular 
integrals [4]. The combination of these techniques is found to be extremely effective 
and efficient in computing the nearly singular integrals in two-dimensional boundary 
integral equations, no matter how close the source point is to the element of 
integration. 

The discretization of the BIE (2.4) using boundary elements follows the 
standard BEM procedures, except that the nearly-singular integrals. For multi-
domain (material) problems, the resulting BEM equations for each material domains 
are coupled together by the interface conditions (continuity of both displacements 
and equilibrium of both tractions) and then solved to obtain the displacement and 
traction vectors at each node on the boundary and interfaces. 
 3. Numerical example 

 On the base of the obtained analytical formuli for an assumed interface shear 
stress lows, the stress behavior (especially debond length on the interface) of two 
plates structure with different mechanical and geometric properties under tension 
load 0ε  will be studied. The bending of the structure is avoided by imposed 
boundary condition 0))2(,( =+− thxu BB , where t  is the thickness of the interface. 

The following geometric and mechanical properties (Table 1) are used: 
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 Table 1. Characteristics of the materials [9] 

 Material E  [GPa] ν  

Layer A C84  [Al2O3/Al composites, (C84=84 vol% Al2O3 + 16 vol% Al)] 285 0.28 
Layer A Alumina   [DEGUSSIT Al 23, Friatec.] 380 0.24 
Layer B 100Cr6   [AISI 52100] 210 0.29 
Interphase Polyacrylate thermoplastic glue 2.5 0.50 

  
In Fig.2  the comparison between 1D shear-lag and BEM 2D interface 

debond length predictions is shown. The values of debond length el  versus the 
applied load 0ε  are obtained for two different ratio η  of elastic moduli and for two 
different values of the thickness ratio ξ .  

It can be seen, that geometric characteristics influence much more on the 
debond length than the material characteristics. Considering numerical and analytical 
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results (BEM, shear-lag), bigger the thickness ratio ξ ,  smaller the value of applied 
load cr

0ε needed for full delamination of the interface. The critical load cr
0ε calculated 

using shear-lag at different thickness ratio ξ  is much smaller comparing with cr
0ε  

obtained by BEM. This difference for cr
0ε can be explained with a presence of a 

normal crack which strongly reflects on the stress-strain behavior (BEM) of the first 
plate. On the other hand, the very thin first pre-cracked plate plays a significant role 
for full degradation of bi-material structure, allowing bigger critical load. 
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Fig.2. 

The relative error of comparison between BEM and shear-lag debond length  
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Fig. 3. Plots of the stresses ),(),,( yxyx xyxx σσ  [GPa] for pre-cracked bi-material structure 
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 The investigations show that bigger the load, bigger the relative error. The 
decreasing of the thickness of the first plate also leads to increasing the relative error. 
It is a consequence of negligible thickness of the interface as well as that the 
approximate analytical shear lag model is 1D.  

  In Fig. 3 the numerical BEM results for stresses of bi-material structure for 
31=ξ  and 81.1=η  are shown (as an example). The loading is .0025.00 =ε  

  
 4. Discussion 
 In the paper the comparison between approximate shear-lag 1D method and 
2D BEM for interface delamination of the bi-material structure under static load is 
done. The relative error between analytical and numerical results confirms the 
validity of the shear lag approach. The obtained predictions can be applied to a pre-
cracked by an indentor bi-material structures under static tension for different 
mechanical behaviour and materials of plates. 
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