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On the second-order work in plasticity(*) 

H. PETRYK (WARSZAWA) 

THE CLASSICAL concept of the second-order work of deformation is extended to indirect 
strain paths whose complexity is preserved as their length tends to zero. Explicit 
expressions valid for arbitrarily circuitous paths are derived for elastic-plastic materials 
with a discrete set of internal plastic deformation mechanisms which obey the normality 
and symmetry postulates. Classical elastoplas.tic solids are included as a special case. 
For a general time-independent and incrementally nonlinear material, a constitutive 
inequality is formulated in terms of the second-order work corresponding to direct and 
certain indirect paths leading to the same final strain increment. It is shown that 
fundamental qualitative properties of a macroscopic constitutive law can be deduced 
from a second-order work inequality established or postulated at a micro-level. 

Klasyczne poj�ie pracy drugiego rz�u rozszerzonp na Sc:iezki nieproporcjonalnego 
odksztalcania, kt6rych zlozonosc pozostaje zachowana gdy ich dlugosc d�y do zera. 
Dfa material6w spr(;:Zysto-plastycznych z dyskretnym zbiorem wewn(;trznych mechaniz
m6w deformacji plastycznych spelniaj�cych postulaty stowarzyszonosci i symetrii, 
wyprowadzono jawne wyra:Zcnia na prac(; drugiego rz�u sluszne dla dowolnie 
skomplikowanych dr6g odksztalcenia. Klasyczne materialy spr(;:Zysto-plastyczne 
uwzgl(;dniono jako szczeg6lny przypadek. Dia og61nego, przyrostowo-nieliniowego 
materialu niewra:iliwego na zmiany skali czasu sformulowano nier6wnosc konstytutyw
n�, por6wnujllc prac(; drugiego rz(;du dla prostych i pewnych zlo:Zonych dr6g prowadZ!l
cych do tego samego odksztalcenia koncowego. Pokazano, :Ze podstawowe cechy 
jakoSc:iowe makroskopowego zwillzku konstytutywnego moina wyprowadzic z takiej 
nier6wno8ci obowillZuj!lcej lub postulowanej na poziomie mikroskopowym. 

K.iaCCH'iCCKOC DOHJITHe pa60Tbl BTOporo nOpJJ.!U(a paclllHpeHO WI nyTH Henpo
nopLtHOHIUlbHOro Ae<l>OpMHpOBaH11.11, C..'IOllCHOCTb KOTOpbIX COXpaH.lleTC.11, KOr,IUi HX 
,ltllltHa CTpeMHTC.11 K HyJllO. )];.'I.II ynpyro-IIJlaCTH'ICCKHX MaTepHaJIOB c ,!lHCKpeTHblM 
MHOllCeCTBOM BHyrpeHHHX MeXaHHJMOB llJlaCTH'ieCKOH Ae4>opMalU{H, YAOBJieTBOp.11-
lOlllHX noCTyJiaTaM acCOLtHHpOBaHH.11 H CHMMeTpHH, BblBeAeHbl .llBHble BblpallCeHH.11 .ztJI.11 
pa6oTbl BTOporo nopJJ,!U(a cn}laBCAJIHBble .ztJI.11 npOHJBOJibHO CJIOllCHLIX nyTeii Ae<l>op
MHpOBaHH.11. KJiaCCH'ieCKHe ynpyro-nJiaCTH'ieCKHe MaTepHaJibl y11TeH1>1 KaK 'laCTHblH 
CJiy'laii. )J;JI.11 o6mero, He.'IHHCiiHoro B npHpoc-rax MaTepHaJia He'lyeCTBHTCJibHOro Ha 
HJMeHeHlf.11 llIKa.'lbl epeMeHH, c4>opMyJIHp0BaHO onpeAeJI.lllOlllee HepaeeHCTllO, cpae
HHBa.11 pa60Tbl BTOporo nopJJ,!U(a .ztJI.11 npOCTbIX H HeKOTOpbIX CJIOllCHblX nyTeil:, 
npHBOA.lllllHX K 3TOH CaMOU KOHe'iHOH Ae<l>OpMalU{H. IloKaJaHO, 'iTO OCHOBHble 
Ka 'lecT BeHHble CBOHCT ea MaKpOCKOilH'iCCKOrO onpeAeJI.lllOlllCro COOT HOllieHHH MOllCHO 
BbIBCCTH HJ tuoro llCe CaMoro HepaueHCTBa, KOTOpoe 06.inblBaCT HJIH DOCTYJIHpyeTCH 
Ha: MHKpDCKODH'ieCKOM ypOBHe. 

1. Introduction 

THE SECOND-ORDER WORK of deformation is a classical concept in the theory 
of plasticity. In the so-called small strain theory, or more precisely, when 

(*) Paper presented at Vllth French-Polish Symposium "Recent trends in mechanics of 
elasto-plastic materials", Radziejowice, 2-7.VIl.1990. 
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geometry changes are disregarded, the second-order work per unit volume 
during proportional application of a small increment �e11 in strain components 

is, by definition, equal to � �aii &11 (or � �a · �£ in the symbolic notation), 

where �ail are the respective small increments of the stress components; the 
summation convention is used for repeated subscripts. That expression plays 
a fundamental role in DRUCK.BR'S [2, 3] definition of work-hardening, 
interpreted as a postulate of stability of the material in a restricted sense. 
A similar expression, integrated over the body volume, appears in HILL'S [ 4, 5] 
condition for stability of equilibrium of an inelastic continuous body under 
dead loading, with geometry changes taken into account. In the most concise 
form of Hill's condition, the second-order work is written down precisely in 
terms of increments of the nominal stress and deformation gradient. It is 
nowadays well known that the actual changes in geometry of the material 
element generally make the value of an expression of the type: (stress 
increment x strain increment) sensitive to the choice of stress and strain 
measures, even if the measures are restricted to be work-conjugate. That effect 
can be of the same order of magnitude as the expression value itself, 
irrespective of whether the strains theselves are ,,small" or not. However, we 
will be primarily concerned here with the comparison of the second-order work 
corresponding to distinct routes leading to the same final strain, and the 
conclusions drawn· from such a comparison ·will be shown to' be measure
-invariant 

The principal difference between the present analysis and the classical 
approach is that the work of deformation is evaluated here not only along 
direct paths of proportional straining, but also along more complicated 
paths whose total length remains small. The ,,second-order" term can be 
specified by scaling down a given path in strain space such that its length tends 
to zero while its complexity is preserved. The idea of examining 
a path-dependent second-order work in inelastic solids appears to be not 
explored in the literature, especially for a generai incrementally nonlinear 
material response, e.g. at a yield-surface vertex whose formation is predicted by 
micromechanical theories of plasticity [7]. Te present discussion is a con
tinuation of the analysis made in the previous paper by the author [18] where 
certain qualitative properties of elastic-plastic models of metal crystals or 
polycrystals were also investigated but without reference to the work of 
deformation. It will be shown below that the comparison of the second-order 
work on direct and certain indirect paths leading to the same final increment of 
strain yields a new and more physical formulation of the constitutive inequality 
derived in [18]. Since the inequality has far-reaching implications for con
stitutive modeling as well as e.g. for the bifurcation theory, this result is of more 
than academic interest. Validity of the constitutive inequality was recently 
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examined in [16] for solids characterized by existence of a thermodynamic 
potential and by the maximum dissipation principle. 

In Sect. 2 the concept of the second-order work is introduced for a general 
class of deformation paths and an arbitrary material. In Sect 3 explicit 
expressions for the second-order work are derived for elastic-plastic materials 
with a discr�te set of internal plastic deformation mechanisms (e.g. single 
crystals deformed by multisilip) which obey the normality and symmetry 
postulates. A general connection between the constitutive inequality mentioned 
above and a second-order work inequality is established in Sect. 4. Certain 
illustrative examples are presented in the last section. 

2. The second-order work 

As a starting point, an infinitesimal increment of the work of deformation 
under current tractions on the material element is expressed in the form [9, 10, 
11] 

(2.1) dro = t11 de11 = t • de per unit reference volume, 

where de is an infinitesimal increment of an arbitrarily chosen strain measure 
e of Lagrangian type and t is the conjugate stress; for simplicity, the tensor 
components are taken on a fixed rectangular basis. The reference configuration 
is arbitrary but fixed, so that a finite work increment per unit reference volume 
is obtained by integration of Eq. (2.1) along a given directed continuous line 
(path) in the strain space, provided the (path-dependent) stress variations along 
the path are defined, at least in principle. We shall examine arbitrarily 
circuitous but piecewise smooth strain paths &', leading from a giyen initial 
strain e to a neighboring final strain e = e +e. A path&' is parameterized by 
the length variable (J = Jjdel, where jdel = (de11 de1/'2• The symbols ( - ), ( = ) 
and (") over a quantity denote its initial and final values on a path &' and their 
difference, respectively; by definition, {j = 0 and {j = 0. One could employ the 
usual prefix � instead of the symbol ( " ) to indicate a small increment, but it 
seems preferable to use another symbol for increments which need not be 
reached on a direct path. 

We introduce a natural assumption (which, however, excludes rigid-plastic 
solids) that a stress increment along any strain path is (at the most) of order of 
the path length increment, viz. 

(2.2) lt(Oi)-t(01)1 �CI02-011 along any path &', 

where C is a constant number, the same for all paths. 
Contrary to a typical asymptotic expansion along a given path, we do not 

require a strain path to be fixed as e-+ e and 0-+ 0. Paths under consideration 
may thus differ substantially from a smooth arc no matter how small 
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6 is. Nevertheless, integration of Eq. (2.1) followed by substitution of (2.2) and 
by the limit transition still yields the standard first-order formula 

(2.3) cl)= I·e + o(O) 
which remains valid for any sequence of paths t1J> whose length 6 tends to zero. 
Here and in the following the classical order symbol o (0 ") is used for 
indicating a scalar quantity e of order higher than 0", i.e. such that e /0" __. 0 as 
6 __. 0. We may rewrite (2.3) as 

(2.4) w = l·e + J2w + o(02). 
The quantity J2w, if defined, is of order 02 (or vanishes) on account of Eq. (2.2) 
and is thus called the second-order work. Henceforth the convention is 
introduced that all equations or inequalities involving J2w are valid to that 
order only, i.e. can be violated by terms of order o (02). For incrementally 
nonlinear and path-dependent solids, the actual expression for .:12 w may depend 
on the class of paths t1J> which are taken into account as the path length 0 tends 
to zero. Typically, J2w will involve e and t as well as other characteristics of the 
considered paths; examples will be discussed in the subsequent sections. 

On integrating Eq. (2.1) along a path t1J> and rearranging, we obtain 

(2.5) w = l • e + j eii (0) (1 ti.;(s) ds) dO 
0 0 3 

= 1. e + � t. e + ! e;io) (l {t;is) - liilOl ds) do 

3 A 

+ (lii/O) J {e;i (0) - e1/0} o dO, 
0 

where a prime denotes differentiation by the function argument along a fixed 
path. A special but important case arises when .:12 w is evaluated for a class 
� of direct paths along which, by definition, increments of the derivatives (with 
respect to the path length) of strain and stress are, at the most, of order of the 
path length increment(1), viz. 

(2.6) 

" l e' (02) - e' (01) 1 � C1 I02 - 01 j, 

lt'(02)- t'(01)\ � C2 I02 - 01 1, 
along any path t1J>E�, where C1 and C2 are positive constants, the same for all 
paths from �.(

2
) No matter how a path from � varies as 0 __. 0, the expressions 

(1) Validity of Eq. (2.7) can be proved under a weaker assumption, namely, that 

le'(O)-e'(O)I =o(0°) and lt'(O)-t'(O)i=o(0°) for all paths from!?}. 

(2) It is clear that Eq. (2.6) can be violated for a sequence of smooth paths, e.g. if their 

"curvature" tends to infinity. 
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in curly brackets in Eq. (2.5) are of order 0, by the Taylor formula, and the 
integrals over [O, OJ are of order 03• By comparison with Eq. (2.4) we arrive at 
the result that within a class � of direct paths, the second-order work is defined 
by the familiar formula 

(2.7) 

it is recalled that e and t are the final increments of stress and strain reached 
along a variable path. If a path is fixed when {j -+ 0 then Eq. (2.7) reduces to 
the "trapezoid rule of quadrature" [10, 11]; cf. also [17]. 

The above considerations might seem to be elementary, in view of 
simplicity of the formulae. However, this is not quite so since a nonstandard 
limit transition for both the variable path and its length is performed. 
A detailed specification of the assumptions was thus necessary. 

Following HILL [9, 11], we discuss now briefly the question of transfor
mation to another work-conjugate pair of stress and strain measures, say 
(t*, e*), where e* is a sufficiently smooth and invertible function of e alone 
(possibly associated with another reference configuration). Components of 
a strain increment defined by geometric variables transform according to the 
standard formula 

(2.8) 

The total work per unit mass must be invariant, so that w transforms to 
w* = (p*/p) w and 

(2.9) 
; (aet) l� = (p*/p) lkl, aek.l ii 

where p and p* stand for the material density in the respective reference 
configurations. On substituting Eqs. (2.8) and (2.9) in Eq. (2.4) it can be seen· 
that decomposition of the work into the first- and second-order terms is itself not an invariant concept. Explicitly, the second-order work per unit mass is not 
measure-invariant but transforms according to the formula 

(2.10) 
1 ... 

* 
1 1 

* 
( a2 et ) ,.. ,.. . 

• L12W ".""" - Ll2W - 2 * 
lt} a a ekleH, p p p ekl eH • 

this is a straightforward extension of the transformation formula obtained by 
HILL [11] for an expression of the type (2.7) above. In particular, it follows that 
the sign of Ll2 ro can depend on a subjective choice of the strain measure. 
However, it still makes sense to compare the second-order work on different 
routes leading to the same strain increment since the contributions from the 
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last expression in Eq. (2.10) then cancel and the conclusions are measure 
invariant. 

3. Elastic-plastic mat erials with a dmerete set of int ernal plastic d eformation 
mechanisms 

3.1. Constitutive framework 

In this Section we assume the known "normality structure" of constitutive 
rate equations for crystals deformed plastically by multislip, or more generally, 
for solids with a finite number N of internal mechanisms of rate-independent 
inelastic deformation. The constitutive framework for such materials at finite 
strain was given by HILL and RICE [12] and SEWELL [19], generalizing earlier 
theories of KOITER [13], MANDEL [14] and HILL [6]. Within that framework, 
we adopt here the set of assumptions as in [18], viz. 

(3.1) i'x ;;;:i: 0, 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

fx � 0, fxi'x = 0 

AK = 8f Kf8e, 

t = E · e - ..lxi'x, 

fx =Ax• e - gKL YL• 
E1j11 = Eklii• 
gKL =OLK• 

(no sum), 

where a dot over a symbol denotes the right-hand rate of change with respect to 
a time-like parameter t. 

The reader is referred to' the papers cited above for a detailed charac
terization of the above assumptions. Briefly, upper case lower indices varying 
from 1 to N refer to quantities related to a specific plastic deformation 
mechanism; the summation convention is adopted here for those indices except 
when an indication ,,no sum" appears. i'x denotes a scalar measure of the rate 
of activity of the K-th mechanism andfx is the respective smooth yield function 
(in strain space), functionally dependent on the deformation history. For 
instance, in crystals i'x may stand for the rate of shearing on K-th slip system, 
with fx = •x - •le, where •ris the generalized resolved shear stress on that 
system and tk is its critical value. If fx = 0 then Eq. (3.1) implies fx � 0 and 
fxix = 0 (no sum) while A.x defined by Eq. (3.2) represents a normal to the 
K-th yield surface in strain space, directed outward from the elastic domain. In 
short, we may say that Eqs. (3.1) + (3.6) characterize elastic-plastic solids 
obeying the postulates of normality (cf. Eq. (3.3)) and symmetry (cf. Eqs. (3.5) 
and (3.6)). The form of evolution, equations for elastic moduli E1111, parameters 
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gKL and lx need not be specified here; it is only assumed that the rates of change 
of these quantities along a strain path are bounded provided e and Yx are 
bounded. 

Since the matrix (gKI) is not required to be positive definite, 'Yx(t) need not 
be uniquely determined from the above equations even if e(t) is given [12]; in 
such cases a path � is understood as a path in strain space specified jointly 
with some Yx(t) compatible with Eqs. (3.1) + (3.6) at every instant. To satisfy 
Eq. (2. 21 we assume that all 'Yx are bounded by 

(3.7) YK � C" lel, 
where C1 is a positive constant. This is a weaker restriction than positive 
definiteness of (gKI); for instance, Eq. (3.7) is implied by gKL � 0 with strict 
inequality for L = K. In particular, Eq. (3.7) ensures that no internal plastic 
rearrangement in the material is possible if e = 0. 

From Eq. (3.7) and.the assumption on bound� rates of lx, E11ll and gKL it 
follows that increments of these quantities along a strain path are of order of 
the path length increment; this property will be essential below. 

3.2. The second-order work 

For a material element as specified above, consider a class of arbitrarily 
circuitous strain paths�- We may identify t with the path length variable 0 and 
replace the time derivative symbol(·) by a prime; a parameter Yx (0) is formally 
defined as a time integral of 'Yx with an initial value Yx(O) = 0. On substituting 
(3.3) and (3.5) into the former work expression in (2.5) and taking into account 
that variations of E11t1 of order 0 cannot affect the first- and second-order 
terms, we obtain 

(3.8) ro = l · e + � e · :E • e - ! ei1 (0) (! (lx)11 (s) yi: (s) ds) dO + o(02). 

Similarly, by using Eq. (3.7) it can be shown that variations oD .. x and !Jn along 
� may be disregarded in Eq. (3,.8), to terms of second-order in 0. Substitution of 
Eq. (3.4) into Eq. (3.8) thus yields 

(3.9) ro = l • e + �e. E· e - j ifx(O) + {jKL y'r,(O))yx(O) d(J + 0 (02). 
0 

On integrating Eq. (3.9) by p� with the use of Eqs. (3.lh and (3.6), we obtain 

(3 10� A 1 A 1 .. E- A 1 _ A A • 1 A (�2, 
• J ro = ·e + 2e· ·e - 2g�L l'K'YL - JKl'K + 0 f1 }> 

where YK = 'YK (0) � 0. From Eq. (3.lh it follows that for 6 sufficiently small we 
have Yx = 0 unless Ke.A, where the set A= {K :fx = O} contains N indices of 
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the so-called potentially active mechanisms at the initial state of all paths 
B' under consideration. The summation in Eq. (3.10) needs thus to be carried 
out only for K, Le A, and the final value i.x in Eq. (3.10) can be replaced 
by the respective increment fx· Henceforth <ff KI) with K, Le A will denote the 
(N x N) submatrix of (gKL) which corresponds to the potentially active systems 
at 0 = 0. 

By comparing Eq. (3.10) with Eq. (2.4), we arrive at the following 
result: 

For a material characterized by Eqs. (3.1) + (3.7) and for arbitrary strain 
paths &', the second-order work is given by 

(3.11) 

Although the underlying constitutive framework is well-known, this formula 
and its consequences discussed below appear to be new. 

Since variations of �x and gKL along any 9 are of order �. Eq. (3.4) 
implies 

(3.12) 

no matter how the path &' varies as 0-+ O; validity of the analogous first-order 
formula for the stress increment t obtained from Eq. (3.3) is also evident. On 
substituting those formulae into Eq. (3.11), we obtain alternative expressions 
for L1 2 w, viz. 

(3.13) 

(3.14) 

equivalent to each other (to second order terms in 0). 
The fo�ula (3.13) shows limitP.d path-independence of the second-order 

work for the materials under consideration: only the final increments of e and 
Yx are relevant, and not how they are reached. From Eq. (3.14) we obtain that 
in a general case the expression in Eq. (2.7) is incorrect for indirect paths (e.g. if 
a zigzag path is scaled down proportionally as 0 -+ 0) and underestimates the 
actual second-order work. For, if Yx > 0 for 0 arbitrarily small then, as 
remarked above, we must have lx. = 0 which in turn implies Jx � 0 on 
account of Eq. (3.1) 2; the latter term in Eq. (3.14) is thus non-negative. In 
particular, the second-order work on closed paths (e = 0) is non-negative for 
the considered materials. 
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3.3. Lower bound to the second-order work 

Consider now the difference between the second-order work on arbitrary 
paths � and on direct paths from !!J which lead to. the same final strain 
increment. Quantities associated with direct paths are distinguished by 
a superscript (D� variations of the derivatives efl'(O) and y�'(O) along a direct 
paths are taken to be, at the most, of order tJD to satisfy Eq. (2.6). Since for 
direct paths we readily have tJD � & andfi y� = 0 (both valid at least to order 
02), from Eqs. (3.13) and (3.11) with e = eD we obtain 

(3 15) .4 .4 D l - A A A -r A l - AD AD • .u2W - .u2W = 2 gKL YKl'L - YK "'K · e + 2 gKL Yx YL· 

By using Eqs. (3.6) and (3.12), we can rearrange this as follows 

(3 16) L1 L1 D l - (A "1>\ (A AD\ tJ>A • 2W - 2W = 2 gKL Yx - YxJ YL - YLJ - Jx Yx· 

The latter term is nonnegative by the same argument as above, and the former 
will be nonnegative if the submatrix (ff KL) is positive definite or at least positive 
semidefinite. We have thus proved the following theorem: 

THEOREM l. For a material characterized by Eqs. (3.1) -:-(3.7) and among all 
paths � initiated at a given state and leading to the same final strain, the 
second-order work is minimized on direct paths, viz. 

(3.17) 

provided that 

(3.18) 

It is recalled that by the convention introduced in Sect. 2, the inequality 
(3.17) concerns the second-order terms only. More precisely, (3.17) is understo
od to hold in the limit as 0 � 0 when both sides of the inequality are divided 
beforehand by 02• 

If the submatrix (gKL) which corresponds to the potentially active mech
anisms at 0 = 0 is positive definite (i.e (3.18) holds with strict inequality unless 
all ax are zero) then (3.7) need not be assumed separately. For, that submatrix is 
then also positive definite for 0 sufficiently small, by the continuity argument. Yx 
is then uniquely defined by e [12] and (3.7) is ensured along any� for sufficiently 
small 0. In that case, by using (3.12) and rearranging, (3.11) can be transformed to 

where 9il denote elements of the (N x N) matrix inverse to (g KL) and L?ikl are 
the so-called ,,total loading" moduli which coincide with the tangent moduli 
along a deformation path associated with YK > 0 for all K e A. 
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The inequality (3.17) derived above is of interest for the theory of stability of 
equilibrium. For, as pointed out by HILL [4, 5], to prove sufficiency of his 
stability condition one needs a lower bound to the deformation work done on 
arbitrarily circuitous paths in a neighborhood of the equilibrium state (see also 
[15]). Te above theorem indicates a fairly wide class of solids for which such 
a bound to the second-order work is available;:. 

4. The constitutive inequality 

4.1. Preliminaries 

It has been shown in [18] that, under the constitutive assumptions 
(3.1) + (3.6) adopted at a micro-level of a heterogeneous aggregate (cf. [10]), the 
inequality 

(4.1) J e* · dt � Ji* · de 

holds for all segments of every piecewise smooth path 8 of macroscopically 
uniform strain e(t) and the associated macroscopic stress path t(t), while the 
starred rates correspond to a macroscopically uniform virtual deformation 
mode which may vary arbitrarily along the path. It is understood that at each 
instant t* is related to e*, similarly as dt to de, by the currently valid 
incremental constitutive law which varies along the considered path in 
a manner unaffected in any way by the starred mode. 

Let a (macroscopic) incremental constitutive law for a time-independent 
solid at a given state be written down symbolically as 

(4.2) 

i = 11(e) = L(e) · e, a,. L=oe 

(or i11 = ,,11 (e) = Li1"' (e) ekJ, LIJ"' = a,,uJaekJ)· 
The oonstitutive function 11 is single-valued, continuous and positively homo
geneous of degree one; the instantaneous "stiffness" moduli I,111 can depend in 
a piecewise-smooth but possibly discontinuous manner on the strain-rate 
direction. The function 11 itself varies along a strain path with possible 
discontinuous changes at a discrete set of points (e.g. at an unloading point). 
However, it is natural to assume that the tangent moduli, which relate the 
actual infinitesimal forward increments of stress and strain along a given path, 
vary along any path in a right-hand continuous manner whenever they are 
well defined. The above assumptions are treated as a part of the constitutive 
law (4.2). It can be seen that the assumptions are not physically restrictive 
so that a very general class of time-independent solids is considered here. 
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For our present purposes we shall introduce in subsection 4.2 an additional 
regularity assumption (4.6) which is likewise plausible. 

The inequality (4.1) may be used as a micromechanically-based restriction 
on a phenomenological constitutive law (4.2), and has then far-reaching 
implications [18]. It has been shown that (4.1) implies the symmetry property 
Lii'" = L,.11J and hence existence of a strain-rate potential W such that 

(4.3) 

Under a reasonable continuity,restriction imposed on the so-called unloading 
cone, (4.1) has been shown to imply also the (generalized) normality flow rule. 
Another consequence of (4.1) is .that at a regular point on a strain path (at 
which, by definition, the actual' stress and strain rates, say (t0, e0), and the 
constitutive function 11 do not change discontinuously), we have 

(4.4) t0 • e* - t* . e0 ;?; 0 for every e*, 
where i:* = 11 (e*). The inequality (4.4), which has the interpretation that no 
abrupt unloading at a micro-level is associated with the actual deformation 
mode, has been discussed in [18] with particular reference to the question of 
uniqueness of a solution to the first-order rate boundary value problem. It has 
been shown that (4.4) provides justification for determining the primary 
bifurcation point on a regular deformation path from the linearized bifurcation 
problem formulated for the tangent moduli, although the actual relationship 
(4.2) may be highly nonlinear and even need not be specified. 

4.2. The second-order work for direct and certain indirect paths 

Consider a regular point P on a given piecewise smooth strain path <I as an 
initial point of a class of short strain paths &' discussed in Sect. 2. Two 
particular families of paths &' are considered (Fig. 1). The first family 
f!} contains straight (direct) paths f/D leading from P to a point Q chosen 
arbitrarily in a neighborhood of P in the strain space. The paths from the 
second family [JI lead from P to the same final strain at Q but on a special 
indirect route P -+ R -+ Q where a straight(3) segment f/* : R -+ Q is prece
ded by a smooth segment f/0 : P -+ R of the path 8. Of course, the f!} c: [JI 
since the segment f/0 may be of zero length. The final increments of strain and 
conjugate stress (evaluated at a fixed reference configuration) on the segments 
f/D, f/0 and f/* are denoted by (e,t� (e0,t0) and (e*.l*), respectively. 

(3) Straight segments P -+ Q and R -+ Q can be replaced by smoothly curved segments 
satisfying (26)1' with no influence on the following considerations; that change is generated e.g. by 
transformation to another strain measure. 
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Fro. �, Schematic representatjon of indirect strain paths from the family di. 

A time-like parameter t is indetified with the path length variable 9; the total 
length of a path from the family· fJI is denoted by 8 while i)D stands for the 
length of a segment fl'D. In the limit as tJ -+ 0, the points Q and R are taken to 
approach pin such a manner that the quotients e/OD, e0/8D, e*/OD and O/OD 
tend to well-defined limits e, a.e0, pe• and a.+ p, respectively, where a.� 0, 
P � 0, a.+ P � 1, and lei =  le01 = le*I = 1. It is evident that the above 
construction can be performed for any choice of e or e• provided that 

(4.5) 

We introduce now the assµmption that for tJ sufficiently small we have 

(4.6) It' (Oz) - t' (91 ) 1 � C2 I 92 - 91 I along each of fl'D, f/'0, ff'* separately, 

where C2 is a positive constant, the same for all such segments (cf. (2.6)z).(4) 
It follows that those segments constitute direct paths to which the formula 
(2.4) with A2ro given by (2.7) can separately be applied. By adding the work 
expressions fo� the segments · f/'0 and ff'* and taking into account that 
the initial stress for a segment ff'* differs from the stress l at P by t0, we 
obtain 

(4.7) 

('') This may be regarded as a natural regularity restriction on (4.21 related also to smoothness 
of the path I in vicinity of P. H P were not a regular point on I then validity of (4.6) could be 
questioned for the segments f/• whose initial state would approach a singular point 
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The second-order work on paths from the family !'JI thus reads 

(4.8) 

while the second-order work ,on direct paths from f) is LI 2(J)D = � t» . e. By 

using the assumed smoothness properties of the segments, the second-o.rder 
work formulae Can be expres� in terms of the limit Strain-rates e, e0 and e* 
and the respective stress-rates l, l0 and t• related by (4.2) at the initial points of 
the segments 9'», 9'0 and 9'*, respectively. We obtain 

(4.9) 

(4.10) Ll2ro8 = (�cx2 t0·e0 + cxpt0·e• + � p2 t•·e•) (b»)2, 

for paths from the families � and di, respectively. By the definition of a regular 
point on a path 8, we have 

(4.11) ftJ = 11� (e*) = r,,1 (e*) + o (�0) 

so that both the expressions (4.9) and (4.10) can be evaluated to second order 
by using the constitutive rate equation (4.2) with the function 17 = ij taken 
precisely at the point P (17R denotes 11 at a point R). The assumption that P is · 

a regular point is essential here and not only formal; for instance, if P were 
a corner point on a strain path then (4.11) would not be true in general. 

4.3. The second-order work ·inequality 

We can now formulate and prove our basic result. 
THEOREM 2. Uruler the regularity assumption ( 4.6) imposed on a constitutive 

law ( 42 ), the following two conditions are equivalent: 
(i) The inequality ( 4.1) holds for all segments of every piecewise smooth 

strain path 8; 
(ii) At any regular point P on every piecewise smooth strain path 8 arul 

among all indirect paths &' E !'JI initiated at P and leading to the same final strain, 
the second-order work is minimized on direct paths, viz. 

(4.12) 

The proof of Theorem 2 is given in Appendix. 
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If the constitutive inequality (4.1) is assumed or derived from the given 
constitutive relations then Theorem 2 provides interpretation for (4.1) in terms 
of the second-order work(5). Conversely, the second-order work inequality 
(4.12) can be adopted as a postulate (which has a physical meaning) or verified 
for some materials, and then (4.1) with all its implications demostrated in [18] 
and briefly recapitulated in the Subsect. 4.1 are obtained as a consequence. This 
is an attractive way of deriving such qualitative properties of a constitutive law 
as symmetry of instantaneous stiffness moduli, the normality flow rule or the 
inequality (4.4). Moreover, the inequality (4.1) transmits from a micro-level to 
the macro-level of constitutive description for a heterogeneous continuum [10, 
18]. It follows that the fundamental qualitative properties of a macroscopic 
constitutive law (4.2) can be deduced from the second-order work inequality (4.12) 
established or postulated at a micro-level. 

The inequalities (4.1) and (4.12) hold for an elastic-plastic material (e.g. 
a model of a metal crystal deformed by mutislip) with a discrete set of internal 
plastic deformation mechanisms characterized by (3.1) + (3.6) if the submatrix 

@KL) for potentially active systems at any P is positive definite(6). In fact, 
a stronger property has been proved in Sect. 3 for such materials (cf. (3.17)) that 
the second-order work is minimized on direct paths among all indirect paths 
which lead to the same strain increment. As a particular case, (4.1) and (4.12) 
hold for the classical elastoplastic solids, discussed below. 

5. Illustrations 

5.1. Classical elastoplasticity 

Consider a particular case of the material described by the constitutive 
relations (3.1) + (3.6) when only one internal mechanism of plastic deformation 
is distinguished, i.e. when N = 1 so that all upper case lower indices can simply 
be omitted (so that (3.6) is trivial). Moreover, assume that the elastic moduli 
tensor E is invertible (if regarded as a linear operator in the space of symmetric 
tensors) and that g > 0. Then the classical elastoplasticity equations (extended 
to finite strain� for a material with a smooth yield surface and the normality 
flow rule are recovered, viz. (cf. [4, 8]) 

(5) One can compare the above interpretation with that for (4.4) obtained in terms of the work 

done on a virtual cycle of strain [10]. 
(6) In [18] it has been shown that the assumption of a positive definite submatrix (g 11.J is not 

needed for validity of (4.1). However, it is this condition which ensures that the constitutive relation 

(4.2) corresponding to the assumptions (3.1) + (3.6) is single-valued [12]; the latter property has 
been used in the proof of Theorem 2. Note also that the transmissibility of the inequality (4.1) 

between micro- and macro-levels need not imply the same for the property (4.12� for, uniqueness of 

the response of a heterogeneous material may be lost after transition to another scale of observation. 
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(5.1) 

where 

(5.2) 

(5.3) 

. _ {(e·A.)/g if f = o 
"I - 0 elsewhere, 

391 

and 

We need not make any distinction here between "softening" and "hardening" 
which themselves are not measure-invariant concepts [8]. H the "hardening" 
parameter h = g - A.· M · ').. is positive then the loading condition at f = 0 
reduces to the more familiar condition i: · (apat) > 0. 

L 
�, 

F10. 2 Decomposition of an arbitrarily circuitous strain path gl for a classical elastic-plastic 
material. 

Consider a point P on the current yield surface and a class of strain paths 
&> of final length 0, initiated at that point (Fig. 2). Let us discuss first a path @R 
such that its final point R lies on the final yield surface; respective increments 
are distinguished by a superscript (R). From (5.2) it can be deduced that (3.7) is 
satisfied and that the final increment of y along @R is given by the following 
first-order formula 

(5.4) 

for arbitrarily circuitous paths &JR, corresponding possibly to temporary 
unloading. Since JR = 0, from (3.14) or (3.11) we find that 



392 H. PETRYK 

where Ifi11 are the (elastic-plastic) moduli from the loading branch. This means 
that within the class of paths terminating on the yield surface, the second-order 
work is path-independent. 

Generally, any path !JI can be decomposed into two segments: a segment 
� just discussed followed by a purely elastic segment R -+ Q (Fig. 2); one of 
those segments may be absent. From (5.5) and in analogy to (4.8), the 
second-order work for arbitrary paths !JI is expressed by the formula 

which can be rearranged as follows: 

This formula can be understood in the following asymptotic sense. As the total 
length � of a path P -+ R -+ Q tends to zero, Jet the points R and Q lie on and 
inside the final yield surface, respectively, and approach a fixed initial point 
P in such a way that the triangles PQR are similar to each other without 
rotation (Fig. 2). Then the work_ of deformation on the path P -+ R -+ Q is 
expressed with accuracy to second-order terms by the formula (2.4) with J2ro 
given by (5.7). 

From (2.7) and the constitutive assumptions it follows that the second-order 
work on a direct path resulting in a final strain increment e is expressed by 

(5.8) __ n 1" - " J2w-=-e·L·e, 
2 

- {If L= 
E 

if e·l� o, 
if e·l� o. 

H e iri (5.7) and (5.8) is the same then 

1 " "R - 2 -
2 (( e - e ) • A.) /ii if e · >.. � o, 

(5.9) J2ro - J2roD = 1 
_ u <.YR)2 

_ (e · 1) .yR if e · l � o. 
2 

Since g has been assumed positive and yR is nonnegative, it is clear that the 
above second-order work difference is always nonnegative. This conclusion 



()N Tim SECOND-ORDBR WORK IN PLASTICITY 393 

provides an illustration to Theorem 1 proved in Sect. 3 under more general 
assumptions. In a particular case when� coincides with a smooth segment 
9° of a loading path, this demonstrates validity of the inequality (4.12) for the 
classical elastic-plastic solids. From Theorem 2 from the preceding section it 
follows that the inequality (4.1) holds for those materials; this result is a special 
case (for N = 1) of that obtained in [18] for the materials obeying (3.1) -:- (3.6) 
with N arbitrary. 

5.l. Two mechanisms of plastic deformation 

Suppose now that the yield surface is not everywhere smooth and discuss 
the second-order work for strain paths initiated at a point P which lies on an 
edge formed by intersection of two smooth yield-surface sections (Fig. 3). 

L 
B·· 
'J 

F10. 3. Four ranges of the incremental constitutive response of a material with two mechanisms of 
plastic deformation. 

Formation of such an edge corresponds to simultaneous activation of two 
different mechanisms of plastic deformation, as e.g. in the double-slip model of 
a single crystal discussed by ASARO [1]. The material response in vicinity of the 
corner point P is assumed to obey the relations (3.1)-:- (3.6) with N = 2 under 
the additional restriction that 

(5.10) (gKL) is positive definite. 

This ensures that the actual rate form of the constitutive law can be written 
down as (4.2) with a single-valued function 11(·); the function 11(·) need not 



394 H. PETRYK 

be invertible unless the matrix of "hardening" coefficients hKL = 9KL -
- lL · M • lK is positive definite [12, 11]. 

The strain-rate space is decomposed into four wedge-shaped sectors 
corresponding to (}'1 = 0, }'2 = 0), (}'1 > 0, }'2 = 0), (}'1 = 0, }'2 > 0) or (}'1 > 0, 
}'2 > 0) as illustrated in the figure. The normals l�, li to hyperplanes bounding 
the "total loading" (}'1 > 0, }'2 > 0) sector at the point P generally do not 
coincide with the yield-surface normals 11, 12 but from the compatibility 
conditions /1 = 0, /2 = 0 are found to be 

(5.11) 

By using (3.11) and applying a similar argument as in the Subsect. 5.1, it is 
not difficult to show that within the class of paths P -+ R which terminate at 
the actual (shifted) corner point on the yield surface, the second-order work is 
path-independent and reads 

note that symmetry and invertibility of @KL) are essential in obtaining this 
result. £811 are the "total loading" moduli which coincide with the tangent 
moduli along a deformation path associated with y1 > 0, y2 > 0. 

For other paths fJ we can directly apply any of the formulae (3.11), 
(3.13), (3.14), (3.19). For instance, within the class of paths P-+ R -+  Q 
terminating on the yield-surface section corresponding to f1 = 0 (Fig. 3), we 
have the formula 

(5.14) 

By the theorem proved in Sect. 3, this expression is not smaller in value (to 
second order) than the expression in (2. 7) evaluated for direct paths which lead 
to the same strain increment e (but to another value of /i). This can be seen 
directly from (5.14) if e/o falls (in the limit as D-+ O) into the sector 
corresponding to (}'1 > 0, }'2 > 0) or to (}'1 = 0, }'2 = 0). Finally, it may be 
remarked that the symmetry conditions (3.5) and (3.6) as well as the normality 
rule implied by (3.3) are necessary for the second-order work to be always 
minimized on direct paths. For, these conditions are necessary for existence of 
a potential (4.3) which, in turn, is a consequence of (4.12) as follows from 
a corollary of Theorem 2. 
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Appendix 

Pr o o f of Theorem 2 
Suppose first that (4.1) is satisfield for all segments of every piecewise 

smooth path 8. Then, as shown in [18], the constitutive rate equation (4.2) 
admits a potential (4.3) and the inequality (4.4) holds at every regular point 
P on 8. Let a regular point P on a path 8 and the strain-rate e be fixed. (/Je*) 
and (/Jl*) can then be found from (4.5) and from the homogeneous equation (4.2) 
as functions of a so that J 2ro8 becomes a function of a and fJD only. From 
(4.lOh (4.5h (4.3), (4.12) and the chain rule of differentation, we obtain 

(A.l) (8/oa)J2ro8 = (oct0·e0 + ocl0·(-e0) + p t0·e* + (-e0)·ij(/Je*)) (0�2 
= p (t0 • e* - i* · e0) (0�2• 

From (A.l), (4.4) and p ;;;i:: 0 it follows that the second-order work J2ro8 does 
not decrease with increasing a when e and {JD are prescribed. This implies (4.12) 
for any a ;;;i:: 0 on account of e* = e and J2ro8 = .d2roD at a =  0. Since the path 
8, the point P and the strain-rate e can be chosen arbitrarily, we have shown 
that (i) implies (ii) as stated in the theorem. 

Conversely, suppose that (4.12) holds at every regular point P on 8. We 
shall prove the following lemma: (4.3) is necessary for (4.12) to be valid for 
p arbitrarily small. Let the point P and e* be fixed, and denote p = e0 • e*. Since 
( 4.5) implies that 1 = oc2 + {J2 + 2 a {J p, it follows that a becomes a well-defined 
function of {J (for {J < l) such that oc-+ l and 8oc/8{J-+ - p as {J decreases to 
zero. From (4.5) we can thus determine e as a function of p, so that .d 'l,..°!.D and 
.d2ro8 become, after substituting (4.2) with 1) = ij, functions of fJ and OU only. 
From (4.9), (4.5), (4.3), (4.12) and the chain rule of differentiation, we obtain 

:{J .d2roDlp=o+ = � (e0·IP·(-pe0 + e*) + t0·(-pe0 + e*)) (D�2 

( ·o ·O l ( fO ·O ·o) "*) (?IJ)\2 = - p tii eii + 2 L.Jt<lii ekl + tiJ eii u 1 

provided the moduli LBkl = (8�1/8ek1) (e0) which satisfy tB = �kl e21 are 
well-defined. Similarly, from (4.10) we obtain 

Since for {J = 0 we have .d 2w8 = J 2wD, for (4.12) to be valid for arbitrarily 
small p it is necessary that 

:p<.d2w8 - .d2wD)jP=O+ = �(t8- l.2111 e21) e� (0�2 ;;;i:: 0. 
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This holds for arbitrary e* if and only if the expression vanishes identically, i.e. 
tB = 1'.:111 eZ1• By the assumed right-hand continuity of the tangent moduli 
along a path, the latter equality must be valid, by the limit transition, also at 
a singular point on 8 provided the tangent moduli at such a singular point are 
themselves well-defined. Since the path 8 is arbitrary, the right-hand rate of 
strain at a singular point is also arbitrary; it follows that (4.12) implies 

t11 = �,u(e)eu 
whenever the moduli 4.111 (e) are well-defined. As shown in [18], this does not 
contradict (4.2) if and only if �111 = 4.111 so that the incremental constitutive 
law can be written down in a potential form (4.3). The lemma has been proved. 

Now, let a regular point P be fixed simultaneously with the strain-rate e. 
Existence of a potential (4.3) just proved implies, as shown above, validity of 
the formula (A.1). From Ll2ro8 = Ll2wD at (X = 0 and from (4.12) it follows that 
the expression in (A.1) must be nonnegative at (X = o+; this is nothing else than 
(4.4) with e* = e. Hence, (4.4) is valid at any regular point, and thus at almost 
every point on 8. By integrating (4.4) along a piecewise smooth path 8 we 
obtain (4.1) since (4.4) can be violated only at a discrete set of singular points 
on 8 which make no contribution to the integral. We have thus shown that (ii) 
implies (i) which completes the proof of Theorem 2. 
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