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On slipJine field solutions for steady-state anil self-similar
problems with stress-free boundaries

H. PETRYK (WARSZAWA)

IN rrrrs płpBn it is shown that the matrix technique for constructing slipłine field solutions
proposed by ColuNs [6] can be usęd for solving steady-state and self-similar problems with free
bo}ndaries. Boundary ope_rators are proposed which generate the velocity field, automatically
satisfy_ing the conditiol of invariable position or of maintenance of the geometric similarit}
of a,free.boundary. The prese_nted_ examples of slip-line field solutions illustrate a practical
applicability of the proposed free boundary operator .

Pokazano, że macierzowa metoda konstrukcji siatek linii poślizgów zaproponowana przęz
Cou-INsA [6] może być zastosowana do rozwiązywania stacjonarnych i samopodobnych Źgad-
nien ze swobodnym brzegiem. Wyprowadzono postac operatorów macierzowych generująóych
pole prędkoścj spełniające automatycznie warunek stałego położenia linii swobodnego brżigu,
rvzględnie zaclrowania jej geometrycznego podobieństwa. Podano przykłady rozwiązań ilustruJa_
ce możliwości praktycznego zastosowania proponowanych operatorórv.

fioxasano, qro MaTplłtłIrbrr1 łlero,q nocTpoeElłfl cerox nrłłnż cxo;rr>xerrłfi, npe4ło>xerrrłrrń
Kołrrnrcołr [6], mox<et 6lrtr npllmelterr ,qJlfi peluerĘ{ ctalll4ollaprłblx rł aBToMoAeJIbEbrx 3aAaq
co cno6oArroź rparrłqefi. Blrse4erł BIłA łlaTpIłqIIBrx onepaTopoB, renepupyloqlrx IIoJIe c6o_
pocTlł, yAoBJlgrBop.Hloulee aBToMaTIrr:IecRIł yc.lroBrłro llocTorlxlloro no-rlox(eltr4ff ltłrtr4lr cao6og_
rroii rparrrrysr !ilrll coxpol{eHlffI ee reoMeTpl4qecrcoro no4o6za. fiprłne4errr,r Eplłillepbl peurernłft
fiIJ]IocTprłpyroĘle BO3Mor{{I{ocTą fipal(rfiqecKoro npIłMeIIeHIłf IIp Ą1-Io}riell}Iblx onepaTopoB.

t. Introduction

Tgr rrłrony of slipJine fields has been successfully used to analyse a great number of plane
strain metal dęformation problems |1,2,3,4,5]. The results obtained are surprisingly
cJose to experimental observations in spite of the use of a strongly idealized, incompressible
rigid-perfectly plastic model of the material.

The class of solutions available has been remarkably widened by employing the matrix
technique for constructing slipJine field solutions developed by Colrns [ó] and DBw-
HuR.sT and Corr,ms [7]. The matrix technique makes it possible to derive in a relatively
sinrple way the solutions of the so-called indirect type, in which the shape of none of the
slipJines, or their hodograph images (at least in some region), can be deduced in advance.
Irr such cases the base slip-lines must first be found by solving an integral equation in the
case of the analytic formulation. trn the matrix formulation the problem of finding the base
slipJines reduces to solving an algebraic matrix equation ,,vith vector representations
of these slipłines as unknowns. The use of the matrix procedure is, however, limited to,

problems with boundary conditions leading to a iinear integra| equation. This will be the
case when a plastically deforming region is boundęd-by: 1) slipJines constituting rigid-
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plastic boundaries, or 2) rectilinear contours of rigid tools (rotating or not) with constant
shear stress along them [7,8].

In the present paper it is showrr that thę matrix technique can also be used when a plas_

tic region is bounded by 3) a curvi-linear stress-free surface in a steady-state or self-simi_
lar(t) problem. In that case not only the shape of slipJines, but also the position of the
free surface are to bę found. The shape ofthe body must be chosen such that thę solution
of the problenr satisfies the condition of invariability or of rnaintenance of geometric simi-
larity of the body shape during deformation for steady-state or self-similar problelns,
respectively, The boundary conditions to be satisfied by the solutions of steady tatę or
self-similar problems will be discussed later in detaii. Since these cotditions are imposed

along the free boundary of initially unknown position, it would scenr that it is necessar1,

to employ some iterative procedure involving successive changes of geometry of the free

surface until these conditions are satisfied. Such iterative procedure has been in fact used
in some papers [9, 10, 11], not only for the plane strain p,roblems;

However, it is found that these free boundary corrditions can be incorporated in the

matrix procedure 6y introducing respective so-called free boundary operators. One such

operator, which generates the slip-line field between a given slip-line and a stress-free sur-

face of initially unknorvn shape, has been introduced by DnwHunsr and Cor-lnis [7].

The other free boundary operators, which transform the hodograph characteristics accord-
ing to the steady-state or self-similarity requirements for velocities at the free surface, are

proposed in the present paper. Using these free boundary operators within the fralnework

of the matrix technique, we obtain a solution automatically satisfying all the stress and
velocity conditions at the stręss-free boundary, without the need of employing any iter-

ative procedure(2).
The important advantage of this approach, in addition to saving computing time due

to the elimination of an iterative procedure, lies in the fact that it enables us to derive

in a natural way not only one but a c]ass of different possible solutions for the same bound-
ary value problem. This is also important for any other solution method since numęrous
examples show [12, 13, 14, 15, 16] that non-unique solutions do exist. There is no contra-
diction with thę uniqueness theorem due to Hlrl [17] since tlłis theorem cloes not apply
toproblemswithundefinedaprioriboundaries'

Three slip-line field solutions with a stress-free boundary illustrate the practical applic-

ability of the proposed free boundary operators.

2. Stress-free boundary in steady-stnte problems

In steady-state problems the stress and velocity do not vary at any fixed point, In order
to satisfy this condition, the position of a fręe surface must rernain unchanged during the

(1) By self-similał problems rvg understand problems of non-steady rtotion where geometric similarity
of the entirę configuration is maintained during the deformation.

(2) However, in mcst ca e it is necessary to use itęrative procedure to satisfy'other conditions sułh
as g:on:tric or total forc: requiremlnts, applaring in the problem but not covered' by the rnatri.x equa-
tion (see the examples given in Sect. 4).
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deformation. This implies that the free boundary must coincide with a streamJine, i.e.

along this linę we have

(2.|') y,n : 0,

where v is the velocity vector and n dęnotes the lector normal to the free boundary.
Thus, in steady-state problems we have a special type of boundary conditions at the

free boundaries. Not only should the normal and tangential components of stress vanish
there, but the additional condition (2.1) should also be satisfied. Instead, the shape ofthe
stress-free boundary is to be found. Such conditions are particularly difficult to satisfy
rrhen a free surface bounds a plastically deforming region.

Let us consider a plastic region lBC bounded by a concave segment AB of a stress-free
boundary(3) and by slip-lines AC and BC of angular range 0 (Fig. 1a), Assume that the
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configuration of slipJines images in the hodograph diagram abc for this region is as shown
in Fig. lb (the other possibilities will be discussed later). We rvill assume that both the
stress and velocity fields in ABC are described by analytic functions. There is no loss of
generality in so doing since in the opposite case the ABC region could be decomposed
into analytic subregions. The ABC region is sought as a part of a slipJine solution for a
steadystate problem; the shape of l,B is a priori not known.

Let us extend the hodograph net beyond the image ąb of AB up to obtaining the curvi-
linear quadrangleabcd. The hodograph characteristicsform,l as slipJines do, the Hencky-
Prandtl net [18], Thus it is convenient to introduce [1] three pairs of parameters (o, ),
(r,s),(u,w)intermsof whichtherelations describingthegeometryof the hodograph
net take a particłfrarly simple form. The parameters (a, B) constitute the pair of curvilinear
coordinates such that ad and ac are the reference a- and Błines. a and B at a typical point
p are the positive angles turned through to reach that point from the base point at a a|ong
either pair of ą- and B-characteristics. Thus a :0 along ac and :0 along ad. (r,s)
denote the radii of curvature of ą- and BJines taken with a positive sign, and (u, w) are

(3) Ncte that sup:rirnposing a uniformly distribuied hydrostatic pfęssure has no influence on the
folIowing considerations

q
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so-called oomoving coordinates" related to the Cańesian coordinates (a,, o) in the hodo-
graph plane by

(2.2) u: axcosgło"sing, }, : -?xsin E+aycosq,

where g : ał B ł qg, 9o is the angle of inclination of the tangent to the e-line at a to the
positive o*-axis (Fig. 1b).

The geometry of the hodograph net is governed by the equations (compare rvith
Hencky's second theorem)

(2,3) ds|Oa: r, 0r|OB: -r,
or (compare with Geiringer's equations)

(2.4) }wlia - -l1, óulOB : p.

The quantities (r, s) and (u,w) are related by

(2.5) r:óulOa-w, s:OwlO łu.
Now we are ready to examine the influence of thę boundary conditions at the f,ree

boundary AB on the stress and velocity fields in the plastic region l.BC. Since the shape
of AB is not known, it is impossible to determine in this region the shape of any slipJine.
Neither can we determine the shape of any hodograph characteristic from the velocity
conditions at AB alone. However, it is possible to determine the form of the boundary
operators transforming slipJines or hodograph characteristics in such a way that the
boundary conditions at AB are automatically satisfied. The form of the operator F:
AC --, BC which generates the slipJine field in ABC such that AB is stress-free, has been
derived in [7]. Below we will seek for the form of the operator "I1: ac --, bc,acting on the
hodograph plane which generates in ABC the velocity field satisfying automaticall_v the
condition (2.1) at AB.

The hydrostatic pressure does not vary along ,łB. Thus from Hencky's relations we
obtain

(2.6) a: alongab.

Since ,4B is stress-free, all slipJines meet it at 45o. Thus the condition (2.1) may be written
in the form

(2.7) u(a,u):w(a,a), 0<ą<0
or simply: Il: w along ab.

The differentials du: (7ulaa)da+@|aild and dw : (CIwlaa)da+(0wlO )di] atter
substituting Eqs. (2.4) and (2.5) take the form

du: (r+w)da*wdP,

dw: -uda+(s-u)dP.
rn virtue of Eq. (2,7) the differentials &l and dw takęn in the direction da: rfi must be

equal along aó. Thus we have

(2.8) r : s-2(u*w) along ab.
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Equating in turn the differentials of both sides of Eq. (2.8) taken in thę directlon etą: d0
and using the relations (2,3) to (2,7) in a way sinrilar to the one presented above, we obtain

(2,9) Ąrl1e+r : ós!ó -s along ab.

It can be proved by mathematical induction that the steady-state condition (2.1) leads
to a more general, recurrence relationship on higher-order derivatives of the radii of curv-
ature of hodograph characteristics, namely

(2.10) an+lrlaąu+|łó'rf óa" : ó'.1slć. "*'-il"rlćB' along ab (n:0,!,2,...).
Now lęt us introduce the vector representations [6, 7] o. and o3 of the basic hodograph

characteristics ac and ad
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where so,sr,... and fo,f1,... denote the coefficients of the porver series expansions
of the radii of curvature of thę lines ac and bc:

,(0, ): j.r,,P'lr'. r@,a): ,,o'1rl.
,l:0 n:o

From Eq. (2.10) written at the point a it iinmediately follows that

(2.1l) tn.1*l.a: .!n+r -.n, il : a,1 ,2, ,.,.
From Eq. (2.8) we obtain

(2,12) ro : .1-o . ,

where is a parameter introduced for convenience according to the formulae

t2.13) Ś:1-2 1l"Ir:6|s6,

z,o : |ń| : 1T. rł(0, 0) : 1 T. w(0, 0).

The Parameter must be taken from the interval (0, l] in order to satisfy the condi-
tions ro ) 0, o > 0 and ?oż a, but is otherwise at this moment arbitrary. If the shape
of ac is determined, the position of ac referred to the hodograph pole o will be defined
by the value of according to the formulae (2.13).

The relationship (2.1l) together with Eq. (2,12) can be written in the matrix form
(2.14) 63 : Ag61,

where

00
00
l0

_2 1

(2.15) A-



866 H. Prtnyr

The required operator H: ąc,--ł bc can be obtained by using the ręlation

(2,16) c2: Rg{.pf,;-1(o.-Qff Ruo1)

betweentlre vector representation o, of bc aad o1 and s. P,Q, Rin the above relation
are the basic matrix operators introduced by ColllNs [6] and discussed by Drwnunsr
and Cor-r-lNs [7], The equality f2.16] results from the relation (i5), of the paper [7].

Combining Eqs. (2.14) and (2.16) we finally obtain

Q.I7) c2: Hęł 1,

lvhere

(2,18) Hos: RO(pi|-1{A,_Qł Ro\.

From Eq. (2.18) it is evident that the operatof H: ac -* bc has the form of an infinite
matrii with elements dąending only on 0 and 6 as the corresponding subscripts indicate
in the operator symbol. For the fixed values 0 and Ę the operator ,I{ is then iinear and can
be determined independently of the shape of a free boundary AB. So the operator Hmay
be used in the framework of the matrix technique for solvin_e steady-statę problems with
a stress-free surface, As it has been proved above, the relation (2.17) must be satisfied
for the position of the free boundary AB to be fixed during the deformation. On the other
hand, if the velocity field in ABC is such that Eq, (2,1?) is satisfied and the hodograph
pole has a position accordingto Eq. (2.I3), then the steady-statecondition (2,1) is auto-
matically satisfied along AB, no matter rvhat the actual shape of the free boundary is.
This can be shown by inverting the course of argumentation presentęd above and using
the assumption that the velocity field in ABC is describęd by analytic functions.

By using GnEnlł's method [19] it can be sholvn that for the configuration of slipJines
and their hodograph images as il|ustrated in Fig. 1 the rate of plastic work is positive
everywhere in ABC iĘ and only iĘ AB is a trajector_v of the algebraically smaller principal
stress. However, if the boundary AB is subjected to tension, then the hodograph must
take another form. In such a case, as well as when ,4B is convex, the analysis can be carried
out in a way analogous to that presented above. In any case the operator l1 depends on
the relative distance ofthe hodograph net from the hodograph pole, expressed by the par-
ameter . The particular case when one of the hodograph characteristics represents a giv-
ęn circular arc or is reduced to a singular poilrt, lras been examined by Ewnc [20] and
Colr.tN [25] by using a somewhat different approach.

3. Stress-free boundary in self-similar problenrs

In the general problem of non-steady motion the stress and velocity depend on the
ęlemęnt position, defined by the position vector r referred to some fixed point O, as rvell
as on the stage of the deformation defined by a characteristic length c. In self-similar
problems thę stress and velocity are functions only of the single variablę r/c. The anal-
ysis of sęlf-similar problems becomes much easier when using the concept of a unit dia-
gram [21]. An element whose position vector is r in physical space is lepresented irr the
unit diagram by a point whose position vector is r8 : r./c, When geometric similarity
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is preserved the unit diagram is exactly thę same for all stages of the deformation. Thus,
in the unit diagram the curve corresponding to the free boundary must coincide with
a treamJine. Hęre a close resemblance between self-similar and steady-state problems
is apparent [1].

Thus, in self-similar problems along a free boundary we have the additional condition

(3.1) v*.n : 0

analogous to Eq. (2.1); v* : dr* ldc is the velocity vector of an element image in the unit
diagram. Since v* is directed towards the point whose position vector is the non-dimensio-
nalized velocity vector v : d,rldc [1] (see Fig. 2), the condition (3.1) can be written down
in the equivalent form

{3.2) (v-r*).n : 0.

n

free

B

Frc. 2.

It can be slrown [18] that when a segment of a free boundary bounds a rigid and ro-
tating region, then Eq. (3.2) is satisfied if and only if this segment has the form of a loga-
rithmic spiral. It must obviously be straight whęn such a rigid region does not rotate.
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Now we will analyse the most difficult case when a stress-frec surface bounds a plastically
deforming region. This rvill be done in a way simjlar to that presented in the previous
section. However, it can already be seen from Eq. (3.2) that in self-similar problems the
geometr.v of the hodograph net is directly affected by the sh,ape of the free boundary,
contrary to the case of steady-state problems.

Let us consider the problem in tęrms of the unit diagram (Fig. 3). Let the plastic region
ABC bę bounded by a concave segment AB of a stress-fręe boundary and by the slip-lines
AC and BC of the angu|ar range 0 (for simplicity we use the same terminology as in the
physical plane). The corresponding hodograph diagram qbc for non-dimensionalized
velocities a : drldc is superimposed on the unit diagram in such away that the hodograph
pole and the fixed point O coincide. We assume that the configuration of slipłines and
their hodograph images is as shown in (Fig. 3); other possibilities can be examined in an
analogical way. As previously we make the assumption that the functions describing the
stress and velocity fields in ABC arc analytic.

Let us extend the slipJine field from the ABC-region beyond the free boundary lB
up to obtaining the curvi]inear quadrangle ACBD, and repeat such operation for the

hodograph net. The geometry of the hodograph net can be described in terms of para-

meters (a, ), (r,.r) and (a, w) defined in Sect. 2; the corresponding equations (2,3), (2.4}

ancl (2.5) remain unchanged. The same pair of variables (a, B) paramętrize the slip-line
field in ACBD as lvell, and any point P in ACBD can have the same (a, P) coordintites
as its hodograph image p. Denote by R and S the radii of curvature of a- and B- slip-lines
respectively, takerr rvith a positive sign. Introduce also the moving coordinates {"ł;""l)

for points of the slipłine net, related to the Cartesian coordinates (r, y) in the unit diagrarn
plane by formulaes anaiogotts to Eq. (2.2), Then,

(3.3) ćSlaa : -R, aRlóP : S,

(3.4) Eylóa : -x, 1ilaB : y
and
(3.5) R: ailóq-!, S: -arla?+x.

Let us now consider the boundary conditions imposed on the free boundary ,4B.

We remind that the shape of l,B is not known; if the slip-line AC were known it could
be determined uniquely with the help of the operator F: AC --, BC mentioned above"
Now we will seek for the operators, which relate the shape of the hodograph characteris-
tics ac and bc and the slip-line lC in such a way that Eq. (3.2) is automatically satisfied"

Since the pre sure along AB is constant, then by Hencky's relations

(3.6) a:B alongAB.
Moreover, ali slipJines meet tlre free boundary at 45'. Thus R/a : SdP along AB and

(3.7) R(a,a):S(a,a), 0śąś0.
The condition (3.2) expressed in terms of moving coordjnates (x,y) ancl (ł,w) takes

the form

(3.8) u(a, a}-y(a, u) : w(l,, a)+V{u, a), 0 < ą ś 0
or simply: u-! : rł*i alon_e lB.

t
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The differentials d(u- y) and d(w *ł) after substituting Eqs, (2.4), Q.5) (3.4) and (3.5)

take the form

d{"-D : (raxll;g) da*(włi -S)dP,
d(w +i) : (-u t R ł y) da* (s -u + y) dP .

Equating, in virtue of Eq. (3.8), these differentials taken in the direction da : d
and making use of Eqs, (3.7) and (3.8), we obtain

(3.9) r : s-4(w+i) along AB
or, since

YŹlwlu, u)+i(u, a11: y'Ż|u(u, a)-y(a, a)l: lĘl,
(3.10) r : s-Zy'DlĘ1 along AB.

Equating in turn the differentials of both sides of Eq. (3,9) taken in the direction
da : d , we get after some transformations

(3.11) ilr|ilałr : lsló -s-2(R+S) aIong AB.
It can be proved by mathematical induction that tłre condition (3.2) leads to a more

general, recurrence relationship

(3,12) ?t+lrf ad;n+! taorf aa" : ć8+rliiP.a+l -a',si6f"-2(0'RlOa'+i''SliP.\ along AB
(n: a.1,2,...).

l ow let us introduce thę vector representations of the base slipJines and hodograph
char-acteristics, nam,e!v

{lC,-"łGl: ,, AC r-,+ ( .! : ad r-+ s3 : ADs$s_ hc*>s2

lIl [$] llll
l,i: l

L:' l

From Eq- (3.12) it follows that

(3.13) ril+l+rn: n+l-sn-2(R"+S,), n:0,1,2,..,
and from Eq. (3.10) we obtain

(3,14) ro: o.ł,
where

(3.15) a : ]l-z1,Tlńllrn.
The parameter f plays a similar role as ć in steady-state problems and must also be

taken from the interval (0, 1],

Another recurrence relationship follows from Eq. (3.7), namelv L22l

(3,16) .Rn+l+Ril: n*r-&, n:0,1,2,...
(note the formal analogy with Eq. (2.tI)) with Ro:5o.

Using Eq. (3.16) we can write Eq. (3.13) together with Eq. (3.14) in the matrix form

(3.17) o3 : Aętl_Bcu,
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rvhere Ac is clefined by Eq. t2.15), and

(3. 1 8) B:4

0 000
1 000

_1 l 0 0
1 _1 1 0

Substituting Eq. (3.17) into Eq. (2.16) and denoting
(3.19) E0: Ro{.Pii)-lB,
rve finally obtain
(3.20) 62 : H'gcl_Eocł.
The relation (3.20) is equivalent to the condition (3.2) of maintenance of geometric simil-
arity of the lBJine, provided Eq. (3.15) is satisfied (compare the similar equivalenc.v-
of Eq. (2.17) with Eq. (2.1)). The operator .Fl occurring in Eq, (3.20) is identical with the
one for steady-state problems, i.e. is defined by Eq. (2.18). Thus, Eq. (3.20) differs ttom
Eq. (2.16) by the second term which expre ses the influence of the shape of the free bound-
ary AB on the velocity field in ABC. However, since the operator .E is linear and de-
pends on the value of 0 only, as it is seen from Eq. (3.19), it is possible to use the matrix
technique for solving self-similar problems with a stress-free boundary as well.

4. Examples

In order to illustrate the possibilities of using the free boundary operators, three nę\ł,

slipJine field solutions are djscussed. All solutions involve a plastically deforming region
bounded by a stress-free surface of initially unknown shape, all can be determined by
using the matrix technique and all are non-unique. Only the main features of the solu-
tions rvill be discussed here; for a'more detailed analysis see [13, 16,23].

4.1. A solutlon for the śeaily-state problem ofrolllng ofa rlgld cyllnder on a plastic half_space

The slipłine fieid and corresponding hodograph in Fig. 4 represent the steady stage
of roiling of a rigid, perfectly rough cylinder on a rigid-perfectly plastic half-space. Accord-
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ing to the incompressibility condition,,free surface elements before and after deformation
are on the same level. The additiorlal portion of the material which forms a "stationary
B,ave" in front of the cylinder has been bulged out from the half-space during the initial,
non-steady stage of the deformation lvhich is not considered here.

The solution shown in Fig.4 differs from those proposed by other authors |L0,24,25)
mainly on the basis of the stress sin_eularity at B. The region EAD is rigid and rotates
together with the cylinder with the angular speed c,.l. The velocity discontinuity "of the
magnitude rłr occurs across thę BFDE-line. r being the radius of an isolated slipJine arc
DE.The plasticall_v" deforming region ABC is exactly of the same type as that discussecl
in Sect. 2. Thus the results obtained there may now be directly applied.

Let us denote the vector representation of the slipłine AC by o. We can express the
vector representations of subsequent slipłines and hodograph characteristics up to the
ac- and Ócłines by o, using the matrix operators P, Q, R, .F discussed in [7]. Moreover.
in order to satisfy the steady state requirements, thę acJine transformed by the operat-
or fl defined by Eq. (2.18) must give the line be as proved in Sect. 2. From this we obtain
the matrix equation on o, viz,

(4.1) Kc : rLc,

where c is the unit circle vector and

K : MQł (PlpQxF"+ QprQł) _ IIołoB Pą,
L : -MPł,

_791 - Ra+F-HnłQło.

a, P and y are the field angles as shown in Fig, 4 and the parameter 6 has a geometrical
interpretation according to Eq, (2,13}. Three of these parameters are independent since
one geometrical condition oe : oa* must be satisfied. When o is found form Eq. (4.1),

all geometrical parameters of the solution as well as the moment and forces acting on the
cylinder can be conveniently determined by the series method due to Ervxc [22].

We may assume arbitrarily the magnitudes of two components of loading (e.g. the
moment and the vertical component of the pushing force). Since the solution has three
degrees of freedom, then an infinite number of solutions can be constructed each for
a different value of the third component of loading. It should be added that for some
range of parameters the solution is proved to be complete since the statically admissible
extension of the stress field into rigid regions can be constructęd [23].

4.2. A solution for tlre steady-state problem of nrachlnlng

The slipJine field and correspolrding hodograph in Fig. 5 describe the steady plane
florv of material cut by a rigicl wedge-shaped tocl. The slrear stress z along the tool rake
facę FH is assumed to be constant, Tlrus the slip-line field in FGH is generated by the
straight rough boundary operator 6 discussed in [7]. The ABC-region is of the same type
as that discussed in Sect. 2. |ź can be shown that for the slipJirre field to statisfy tlre stress

and velocity boundary conditions (including these at the free boundary AB), the vector
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representations o, and o, d.fining the shape of thę HG- and lCJines must satisfy the
rnatrix equations

(4,2) (Ga"QB"Q"nG,.o-f)cL : fGgoP,l3c,

ę3) (Hrt-QalQy6Fr)cz: fPraCl

where 1is the unit matrix and r is the radius of the isolated slipłine arc ED,
By solving Eqs. (4.2) arrd (4.3) we find o, an<l cr, aftet which the geometry of the whole

solution can be shown to be uniquely defined, The fleld has six degrees offreedom defined
by five field angles a, F, T, ó, i as shown in Fig. 5 and the parameter . Five conditions
only exist to determine the values of these six parameters, namely three conditions of
equilibrium of the chip and trvo conditions resulting from the assumed values of the rake
angle rp and of the shear stress r along "I1F. This indicates that for given values of y and t
an infinite family of solutions may exist. However, numerical analysis suggests [13] that
tlris might be the case only if a chip were not force-free, since the resultant moment and
force acting across ACDEGIł did not simultaneously vanish for a ręmarkably wide range
of the parameters examined(a).

In spite of this, the solution of the type shown in Fig. 5 presents a good exanrple of
the use of the operator fI and confirms that such solutions may be non-unique.

4.3. A solution for the self-similar problern of cutting

The solution presented in Fig. 6 is of a similar type as that given in Fig. 5 but it repre-
sents now the process of indentation of a wedge-shaped tool into a plastic half-space
at some small angle r}. The problem is self-sirnilar; the unit diagram witlr a superimposed
hodograplr is shown in thę figure. The plastic region ABC is of the same type as that
considered in Sect. 3.

(a) Dewhurst [14] considsred the solution which is a special case of that given irr Fig, 5 when Ó : 0
and did not find a solution which satisfied all conditions of equilibrium of the chip, either.
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Two main differences arise when the solution from Fig. 5 is compared with the present
one. Firstly, the free boundaries ofthe (rigid and rotating) chip have now the form of logar-
ithmic spirals instead of circular arcs. Secondly, the vector representation of the AC-linę
according to Eq. (3.20) must now satisfy, instęad of Eq. (4.3), the following equation:

(4.4) (rrr-QorQorrr- + 'rlo, 
: tPy6c,

where o : oąoó is the non-dimensional parameter proportional to the angular speed
of a chip.

The parameter co represents now an additional degree of freedom. Therefore, we have 7

degrees of freedom instead of 6 as in the previous case. Also we now have 6 conditions
(instead of 5 in the previous case) since, additionally, 8 must have the assumed value.
Thus the comments concerning the non-uniquęness of the analogous solution of the
steady-state problem remain valid when the problem becomes self-similar. Unfortunately,
it is also doubtful whether the solution presented in Fig. 6 can satisfy the condition of to-
tal equilibrium of a chip.
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