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In the paper, an accuracy of the discrete Hilbert transform method in a detection of amplitude and frequency
of vibration signals has been examined. This issue was studied for sinusoidal damped vibrations often encountered
in practical applications. It has been shown that an inexactness of the Hilbert transform generates �ctitious
oscillations of amplitude and frequency. For small damping of vibrations these oscillations were signi�cant only
at both ends of a discrete signal. An error induced by a numerical algorithm was especially severe for strongly
damped vibrations because it manifested itself by a large overestimation of amplitude and erroneous jumps of
frequency. To reduce the error generated by the Hilbert transform method, the appropriate modi�cation of
discrete signal was proposed.
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1. Introduction

The Hilbert transform and the associated concept of
analytic signal representation, introduced by Gabor [1],
have been widely adopted in signal analysis and were im-
portant tools in vibration-based machine fault diagnosis
[2] as well as in many other practical applications [3]. In
room acoustics, this transform was used in low-frequency
range, where modal vibrations generated in enclosures
are well separated, and it is employed to calculate an en-
velope of decaying acoustic pressure [4, 5]. It allows to
predict decay times more accurately, which is especially
important for room systems producing a non-exponential
sound decay [6�8]. As was shown in Ref. [4], the Hilbert
transform method gives meaningful numerical data only
for restrictive class of decaying vibration signals. The
accurate results are obtained for small damping of vi-
brations because in this case a product of exponentially
decaying signal and a harmonic signal satis�es approxi-
mately the Bedrosian identity [9]. In practice, real signals
have a �nite length, therefore, they are processed by the
discrete Hilbert transform resulting in an additional inac-
curacy of the numerical method because of the end e�ect
and the time discretization [10].
The paper is organized as follows. In the �rst part,

the most important properties of the Hilbert transform
method are shortly discussed. Then, the study is focused
on accuracy issues of this methodology in a detection of
amplitude and frequency for free damped vibrations. Fi-
nally, a simple procedure of signal modi�cation is pro-
posed to reduce an enormous error of the method for
strongly damped vibrations.

2. Theoretical background

The Hilbert transform plays an important role in a sig-
nal analysis because it can be used for a direct examina-
tion of instantaneous amplitude and frequency of vibra-
tion signals. In the continuous time domain, the Hilbert
transform H of the real signal x(t) is de�ned as [11]:

H[x(t)] =
1

π

∫ ∞

−∞

x(τ)

t− τ
dτ, (1)

where the integral is considered as a Cauchy principal
value because of the possible singularity at τ = t. In
practice, signals which can be analysed via the Hilbert
transform are of �nite length and digitally sampled, thus
having the signal x(t) de�ned in the time interval [0, T ]
and using the uniform sampling with the period Ts, we
obtain the discrete-time signal x[n]:

x[n] = x(nTs), n = 0, 1, . . . , N. (2)

In discrete time case, the Hilbert transform H is re-
placed by the discrete Hilbert transform Hd which for
non-periodic discrete signals is determined by [12]:

Hd{x[n]} =

{
2
π

∑
m=odd

x[m]
n−m , n even,

2
π

∑
m=even

x[m]
n−m , n odd.

(3)

The signal x[n] and its Hilbert transform Hd{x[n]} are
related to each other in such a way that they together
create the so-called analytic discrete-time signal z[n] de-
�ned as:

z[n] = x[n] + jHd{x[n]} = A[n]e jϕ[n], (4)
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A[n] =
√
x2[n] +H2

d{x[n]}, (5)

ϕ[n] = tan−1

(
Hd{x[n]}

x[n]

)
, (6)

where A[n] and ϕ[n] are the instantaneous amplitude and
phase of the signal x[n], respectively. In discrete time,
the instantaneous frequency ω[n] of signal is a derivative
of the phase ϕ[n] with respect to n, thus denoting this
derivative as the prime we obtain

ω[n] = ϕ′[n] =
x[n]H′

d{x[n]} − x′[n]Hd{x[n]}
A2[n]

. (7)

The above way of determining the instantaneous ampli-
tude and frequency of a signal via the Hilbert transform
is called the analytic signal method.
In engineering analysis, the analytic representation of

discrete signals has been found very useful for many types
of signals, especially for the amplitude-modulated ones,
modelled as a product of two functions. A simple method
for computing such a product was found by Bedrosian [9].
If two functions, say x1[n] and x2[n], represent discrete
signals with non-overlapping spectra and the spectrum
of x1[n] is lower than that of x2[n], then

Hd{x1[n]x2[n]} = x1[n]Hd{x2[n]}, (8)

thus, to compute the Hilbert transform of the product
of a low-pass signal with a high-pass signal, only the
high-pass signal needs to be transformed. This result
is known in the literature as the Bedrosian theorem and
the formula (8) is called the Bedrosian identity.

3. Application of Hilbert transform method

to free damped vibrations

Free damped vibrations are encountered in many me-
chanical and structural applications such as mechanisms,
machines, buildings and bridges. In acoustics, the excita-
tion of this kind of vibrations takes place during processes
of a sound build-up and a sound decay in rooms [13]. The
elementary mechanical system, which is capable to free
damped vibrations, is modelled by the mass-spring cir-
cuit with added damper that simulates a viscous dissipa-
tion [14]. In such a system, the oscillatory displacement
of the mass is determined by

x(t) = e−ηΩ0t

[
x′(0) + ηΩ0x(0)

ω0
sin(ω0t)

+x(0) cos(ω0t)

]
, (9)

where η is the damping ratio, Ω0 is the natural frequency,

ω0 = Ω0

√
1− η2 is the natural frequency for damped vi-

brations, x(0) and x′(0) represent initial conditions. For
many practical cases the damping ratio η is relatively
small, hence the di�erence between natural frequencies
for damped and undamped vibrations is negligible. The
accuracy of the Hilbert transform method was examined
for the simplest case of free damped vibration, that is
when the initial displacement x(0) is set to zero. Thus,

a simulated discrete signal has the form

s[n] = A0[n] sin(ω0t[n]), (10)

where A0[n] = e−ηΩ0t[n] is the signal amplitude, t[n] =
nTs is the discrete time and n = 0, 1, . . . , N . The nu-
merical tests were performed for the natural frequency
Ω0 of 200 rad/s, the sampling period Ts of 2.5× 10−4 s,
N = 2 × 104 and the damping ratio η possessing two
values: 5× 10−4 and 0.01, corresponding to the cases of
small and large damping of vibrations. Shapes of simu-
lated discrete signal are shown in Fig. 1.

Fig. 1. Shapes of simulated discrete signal for damping
ratio η: (a) 5× 10−4, (b) 0.01.

In general, errors in calculating the discrete Hilbert
transform of the signal s[n] are due to three main rea-
sons. The �rst one is the end e�ect resulting from a
�nite duration of the signal. The second one is a time
discretization through the sampling process. The third
one stems from the fact that the Bedrosian identity (8)
for the signal s[n] is not satis�ed because the exponen-
tial function has an unbounded spectrum. Thus, using a
general error model, a formula for the Hilbert transform
of the signal s[n] can be written as

Hd{s[n]} = (1 + ϵ1[n])A0[n] cos(ω0t[n]) + ϵ2[n], (11)

where ϵ1[n] and ϵ2[n] are the multiplicative and addi-
tive errors, respectively. As may be noted, the additive
term represents non-oscillating component of the error.
Substituting Eq. (11) into Eqs. (5) and (7) it is easy to
�nd that errors in calculating the discrete Hilbert trans-
form cause erroneous oscillations of instantaneous ampli-
tude and frequency. It is con�rmed by calculation data
depicted in Fig. 2a, b showing substantial oscillations of
the amplitude ratio A[n]/A0[n] and the non-dimensional
frequency ω[n]/ω0 near lower and upper limits of a sim-
ulation time interval for the damping ratio η = 5× 10−4.
Therefore, a �nite time duration of a signal considerably
a�ects a quality of a reconstruction of instantaneous sig-
nal parameters even at a small damping of vibrations.
An inexactness of the analytic signal method in the whole
time interval is better illustrated by the relative errors,
which due to oscillations of amplitude and frequency, are
de�ned as follows:

∆1[n] = E
∣∣∣∣A[n]−A0[n]

A0[n]

∣∣∣∣, ∆2[n] = E
∣∣∣∣ω[n]− ω0

ω0

∣∣∣∣, (12)
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where E(·) denotes the upper envelope of a positive oscil-
latory function describing a relative error in a considered
time interval. Calculation results shown in Fig. 2c, d in-
dicate that for the damping ratio η equal to 5×10−4 the
errors ∆1[n] and ∆2[n] are very close in value. In the
middle of time interval both of these errors are relatively
small, the order of 0.001, but they grow rapidly to values
close to unity at ends of a discrete signal.

Fig. 2. Calculation results for damping ratio η =
5 × 10−4: (a) amplitude ratio A[n]/A0[n], (b) non-
-dimensional frequency ω[n]/ω0 and (c, d) relative errors
∆1[n] and ∆2[n] for signal s[n].

An exactness of a numerical algorithm in a detection of
amplitude and frequency can be improved by calculating
A[n] and ω[n] for the extended discrete signal se[n] given
by

se[n] = e−ηΩ0|t[n]| sin(ω0t[n]), (13)

where t[n] = (n−N)Ts and n = 0, 1, . . . , 2N . Thus, the
new discrete signal is determined in a double-extended
time interval and represents a discrete function having
a rotational symmetry with respect to the origin of co-
ordinate system. As shown in Fig. 3a, b, the proposed
signal modi�cation signi�cantly reduces erroneous oscil-
lations of amplitude and frequency. This is particularly
evident when comparing the errors ∆1[n] and ∆2[n] ob-
tained for discrete signals s[n] and se[n] because it ap-
pears that this modi�cation causes about a thousandfold
reduction of these errors at the lower limit of a time in-
terval (Fig. 3c, d).
Calculation results obtained for a large damping of vi-

brations are depicted in Fig. 4. From these data it follows
that in this case the method of calculating the amplitude
and the frequency via the Hilbert transform completely
fails. Now �ctitious oscillations generated by a numerical
procedure are so large that they cause a total deforma-
tion of the signal amplitude at ends of a discrete sig-
nal and abnormal positive and negative frequency jumps
(Fig. 4a, b). Fortunately, as before, the inexactness of
amplitude and frequency predictions can be greatly re-
duced by applying the proposed modi�cation of a dis-

Fig. 3. Calculation results for damping ratio η =
5 × 10−4: (a) amplitude ratio A[n]/A0[n] and (b)
non-dimensional frequency ω[n]/ω0 for extended signal
se[n], (c, d) relative errors∆1[n] and∆2[n] for signal s[n]
(dashed lines) and extended signal se[n] (solid lines).

crete signal (Fig. 4c, d). However, in this case the great-
est reduction of the relative errors ∆1[n] and ∆2[n] are
observed in the middle of a time interval (Fig. 4e, f).

Fig. 4. Calculation results for damping ratio η =
0.01: (a, c) amplitude ratio A[n]/A0[n] and (b, d) non-
-dimensional frequency ω[n]/ω0 for signals s[n] and
se[n], (e, f) relative errors ∆1[n] and ∆2[n] for signal
s[n] (dashed lines) and signal se[n] (solid lines), relative
errors ∆1(t) and ∆2(t) calculated from Eqs. (20) and
(21) (dashed-dotted lines).

The error produced by the Hilbert transform method
due to an unbounded spectrum of the exponential func-
tion can be determined exactly in the continuous time
domain. In this case a signal equivalent to the extended
discrete signal se[n] is of the form
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se(t) = e−ηΩ0|t| sin(ω0t). (14)

According to Ref. [4], the Hilbert transform of this signal
is determined by

H[se(t)] = −e−ηΩ0|t| cos(ω0t) + f(t), (15)

f(t) =
4η

√
1− η2

π

∫ ∞

0

se−sΩ0|t|ds

(s2 + 2ηs+ 1)(s2 − 2ηs+ 1)
.

(16)

Since an application of the Hilbert transform to the pure
sinusoidal signal gives [11]:

H[sin(ω0t)] = − cos(ω0t), (17)

the function f(t) represents the error in a numerical
method caused by the fact that spectra of signals in a
product on the right side of Eq. (14) overlap. Using the
analytic signal method it is easy to �nd that the ampli-
tude and frequency of the signal se(t) are given by

A(t)/A0(t) =
√
1− 2ϵ(t) cos(ω0t) + ϵ2(t), (18)

ω(t)/ω0 = (19)

1 + ξ(t) sin(ω0t)/ω0 − ϵ(t)[cos(ω0t)− ηΩ0 sin(ω0t)/ω0]

1− 2ϵ(t) cos(ω0t) + ϵ2(t)
,

where A0(t) = e−ηΩ0|t|, ϵ(t) = f(t)/A0(t) and ξ(t) =
f ′(t)/A0(t). As it results from these equations, the error
described by the function f(t) leads to erroneous oscilla-
tions of amplitude and frequency. Since this function is
positive for the damping ratio η < 1, the relative errors
corresponding to the maximal inaccuracy of the method
are determined by

∆1(t) = E
∣∣∣∣A(t)−A0(t)

A0(t)

∣∣∣∣ = ϵ(t), (20)

∆2(t) = E
∣∣∣∣ω(t)− ω0

ω0

∣∣∣∣ = ϵ(t)

1 + ϵ(t)
, (21)

thus for ϵ(t) much smaller than unity values of ∆1(t) and
∆2(t) are almost identical.
In Fig. 4e, f the errors ∆1(t) and ∆2(t) calculated for

the vibration frequency Ω0 of 200 rad/s and the damping
ratio η of 0.01 are indicated by dashed-dotted lines. From
these �gures it follows that for the extended discrete sig-
nal an inexactness produced by the Hilbert transform
method becomes a dominant reason of errors in ampli-
tude and frequency predictions in the middle of the time
interval, whereas an error generated by the end e�ect is
prevailing only in close proximity of its upper limit.

4. Conclusions

The Hilbert transform has been recognized as a useful
tool for an identi�cation of instantaneous signal param-
eters in di�erent branches of science and technology. In

the paper, some of issues encountered when applying the
discrete Hilbert transform to a reconstruction of ampli-
tude and frequency of vibration signals have been dis-
cussed. The problem was examined via numerical simu-
lations carried out for sinusoidal damped vibrations often
encountered in engineering practice.
An inexactness of the Hilbert transform method was

modelled by additive and multiplicative approaches
which showed that the error produced by a numerical
algorithm generates �ctitious amplitude and frequency
oscillations. Calculation results have demonstrated that
for a small value of the damping ratio, these oscillations
are substantial at both ends of a discrete signal. Thus,
the end e�ect resulting from a �nite signal duration in�u-
ences a quality of a reconstruction of signal parameters
even at a small damping. Huge erroneous amplitude and
frequency oscillations noted for a large damping cause
the Hilbert transform method to be totally unusable for
fast decaying vibration signals.
In order to improve an accuracy of the Hilbert trans-

form method, a numerical algorithm consisting in the ap-
propriate modi�cation of a discrete signal, was proposed.
Although this algorithm is simple and easy to implement,
for a small damping it visibly decreased the end error at
the lower limit of time interval and more importantly,
it greatly suppressed amplitude and frequency errors for
strongly damped vibrations. As was found, in this case
for the extended discrete signal, a main cause of the er-
ror is that for the product of exponential and sinusoidal
functions the Bedrosian identity is not satis�ed.
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