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MAREK SKŁODOWSKI*

ACCOUNTING FOR LODE ANGLE IN THE FAILURE CRITERION OF ROCKS

UWZGLĘDNIENIE KĄTA LODEGO W WARUNKU ZNISZCZENIA SKAŁ

Paper presents general hypothesis of the relationship between the strength of rocks and the third in-
variant of the stress tensor deviator at failure. It has been assumed that the normal and tangential stresses 
acting on the strictly determined planes defined by the directional cosines depending on the three invariants 
of the stress state should be taken into account in the calculation of the rock strength. The hypothesis is 
the extension of the former Burzyński’s work. Geometrical interpretation of the hypothesis has been given 
and its  verification for Sandstone and Dunham Dolomite, on the basis of experimental data known from 
the relevant literature, has been presented.
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Artykuł przedstawia ogólną hipotezę związku pomiędzy wytrzymałością skał, a trzecim niezmienni-
kiem dewiatora tensora naprężenia. Założono, że przy obliczeniach wytrzymałości skał należy wziąć pod 
uwagę naprężenia normalne i styczne działające na ściśle określonych płaszczyznach zdefiniowanych przez 
cosinusy kierunkowe zależne od trzech niezmienników stanu naprężenia. Hipoteza stanowi rozwinięcie 
wcześniejszych prac Burzyńskiego. Podano interpretację geometryczną hipotezy oraz jej weryfikację dla 
Piaskowca i Dunham Dolomite na podstawie danych eksperymentalnych z literatury.

Słowa kluczowe: wytrzymałość skał, hipoteza zniszczenia, płaszczyzny charakterystyczne

1. Introduction 

The existing failure criteria take into account various stresses which are assumed to char-
acterize the state of stress essential for rock failure. Among them are Mohr envelope with its 
linear Coulomb criterion form (the most commonly used one) and parabolic form of Griffith 
criterion. Although they are based on quite different physical concepts they both take into account 
exclusively the greatest and the least principal stresses (Jaeger & Cook, 1976). It is well known 
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from the literature (Jaeger & Cook, 1976; Paterson, 1978) that laboratory investigations which 
show that failure of rocks is influenced also by the intermediate principal stress do not confirm 
these hypotheses. Hence another group of failure hypotheses has been developed which take into 
account volumetric and distortional strain energy at failure (Schleicher, 1926; Burzyński, 1928, 
1929, 1929a) and they are sometimes referred to as the extended Mises criteria (Mogi, 1967), or 
the extended Griffith criterion (Jaeger & Cook, 1976; Murrell, 1963).

Another attempt has also been made to explain the differences between the distortional strain 
energy at failure for various states of stress at the same mean pressure (Burzyński, 1928; Akai 
& Mori, 1970; Bishop, 1966). It has been shown that, in order to obtain a better agreement with 
experimental results, it is usually necessary to introduce some additional correction in mathemati-
cal forms of the above mentioned failure criteria. This has been done either by introducing into 
mathematical forms of failure criterion an additional parameter which modifies the value of the 
internal friction coefficient of rock according to the relationship between the intermediate- and 
maximum-, minimum-principal stresses (in (Akai & Mori, 1970; Bishop, 1966) this is referred 
to as the extended Coulomb criterion), or by introducing into this expressions an additional func-
tion, of the third invariant of the stress tensor deviator, which multiplies octahedral shear stress 
at failure or by changing “the calculation plane”1 (Burzyński, 1928, 1929, 1929a) to suitably 
modify both, normal and shear, octahedral stresses. 

In these types of criteria the stresses taken into account are from one “calculation plane” 
(e.g. octahedral one), independently of the state of stress at failure and independently of the 
real physical failure plane and the correction is made because stresses on the primarily chosen 
“calculation plane” do not characterize adequately the strength of rocks. Burzyński criterion 
(Burzyński, 1928, 1929) is the only one which goes beyond these limits. In this criterion there is 
also used a single calculation plane but its choice depends on material properties. Questioning the 
idea of using the same calculation plane to describe material strength in compression, tension or 
shear (i.e. the idea that always the same combination of principal stresses should be responsible 
for material disintegration) the attempt was made to extend Burzyński’s idea  by introducing 
calculation planes which depend both on the material properties and on the state of stress.

The aim of this paper is to present a hypothesis of failure based on the assumption that the 
stresses  acting on the single, a priori chosen “calculation plane” are not adequate for defining 
the whole failure surface. As a consequence, in the presented failure hypothesis the set of “cal-
culation planes” is defined. The sections II, III and the Appendix deal with the presented theory 
and section IV with its verification on the basis of multiaxial strength tests of Sandstone (Akai 
& Mori, 1970) and Dunham Dolomite (Mogi, 1967).

2. Characteristic planes

For the state of stress given by principal stresses σ1, σ2, σ3 one can calculate the normal 
σ and tangential τ components of the stress vector v acting on any plane in a stressed material, 
according to the following formulae:

 σ = σ2 j2 + σ2k2 + σ3l2 (1)

1 We note that the idea of a „calculation plane“ depending on the material properties and independent of the state of 
stress has been suggested by Włodzimierz BURZYŃSKI in (Burzyński, 1928).
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 τ2 = (σ1 – σ2)2j2k2 + (σ2 – σ3)2k2l2 + (σ3 – σ1)2l2j2 (2)

if only the directional cosines j, k, l of the normal n to this plane, in the space of the principal 
stresses are known.

Now we assume, that for any state of stress it is possible to find such a plane that the normal 
(1) and tangential (2) stresses acting on it can be effectively used for the calculations of rock 
strength. We shall define this plane in terms of the invariants of the state of stress at failure, i.e. 
the octahedral stresses σoct, τoct and the Lode angle ω
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where J3 is the third invariant of the stress tensor deviator.2 

The plane with normal np (σ1, σ2, σ3) the directional cosines of which are equal to 
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is called a characteristic plane and the number P is assumed to be a constant for a given rock.

It can be easily seen that for P ≠ 0 equations (4)-(6) characterize the various planes for dif-
ferent stress states at failure. Hence for further calculations the set of characteristic planes will 
be taken into account.

The failure hypothesis based on the idea of characteristic planes is presented in the follow-
ing section.

3. Failure hypothesis

Failure hypotheses can be expressed in terms of normal and tangential stresses acting on 
the plane that is predetermined on the basis of some assumptions concerning a model of a failure 
mechanism, e.g. shear mechanism in the Coulomb hypothesis, Griffith’s minute cracks or the 

2 Further comments, calculations and geometrical interpretation are given in the Appendix.
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dependence of the critical distortional strain energy on the mean pressure, e.g. Burzyński criterion 
(Burzyński, 1929, 1929a).

Thus these hypotheses may be written in a general form as

 τ = f (σ) (7)

which should be understood as the relations 

(e.g. Coulomb and Griffith criteria) |σ1 – σ3| = f (σ1 + σ3) (8)

or

(e.g. Mises-Schleicher) τ = f (σoct) (9)

according to the model of failure mechanism (σ1, σ3 are the greatest and the least principal stresses 
respectively), or

(Burzyński criterion)  τ* = f (σ*) (10)

where 
 σ* = [λ σ1 + (1 – λ) σ2 + λ σ3] /(1 + λ);
 τ*2 = λ/(1 + λ)2[(1 – λ)(σ1 – σ2)2 + (1 – λ)(σ2 – σ3)2 + λ(σ3 – σ1)2]
and 1/2 ≤ λ ≤ 1 is a number depending on material properties.

It can be seen from equations (8, 9, 10) that directional cosines of the “calculation plane” in 
the case of Mohr, Coulomb and Griffith criteria are equal to j2 = l2 = 1/2; k2 = 0, for the extended 
Mises criteria they are equal to j2 = k2 = l2 = 1/3 and for Burzyński criterion j2 = l2 = λ/(1 + λ); 
k2 = (1 – λ)/(1 + λ). So, the directional cosines of “calculation planes” are predetermined and 
independent of the state of stress at failure.

The proposed idea of characteristic planes enables to formulate a new criterion of rock failure. 
The great advantage of such a criterion is that we are not predetermining the stress components 
which should be accounted for in the criterion. The more general rule allowing to calculate the 
directional cosines of the characteristic planes should be found out instead.

The suggested failure hypothesis can be expressed in the way similar to equation (7), 
namely

 τP = f (σP) (11)

where

 σP = σ2 jP
2 + σ2kP

2 + σ3lP
2 (12)

 τP
2 = (σ1 – σ2)2jP

2kP
2 + (σ2 – σ3)2kP

2lP
2 + (σ3 – σ1)2lP

2 jP
2 (13)

and jP
2, kP

2, lP
2 are defined by equations (4)-(6) (P index is used to emphasize that they are de-

pendent not only on the state of stress but also on the constant P) The hypothesis (11) may be 
rewritten in the following form
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 τP(σoct, τoct, ω) = f [σP(σoct, τoct, ω) (14)

and in the case of σoct = const and P = const it becomes a relation between τoct and ω:

 τP(τoct, ω) = f [σP(τoct, ω)  (15)

which, having in mind (3) gives the relation between τoct and the third invariant of the stress 
tensor deviator

 g(τoct, J3) = 0 ; σoct = const, P = const (16)

It can be solved numerically if only a mathematical form of the function f is known, but this 
is not the case under consideration.

Further the presented hypothesis will be called the hypothesis of characteristic planes or, 
simply, the P-hypothesis.

The hypothesis of characteristic planes may now be given in an explicit form as follows: 
“the various states of stress at failure and the material constant P define the set of characteristic 
planes and for each of the planes the relation (11) between the normal and tangential stresses at 
failure is the same for a given material”.

Therefore, in order to verify the P-hypothesis it is necessary to show that the experimental 
data of the rock strength, represented in the σP, τP coordinates, form one line (not necessarily the 
straight one) for the adequate constant P value. Two examples of such a verification are given 
in the next section.

4. Verification of the hypothesis of characteristic planes

It is necessary for the experimental verification of the hypothesis of characteristic planes to 
measure the strength of rock under multiaxial stress conditions. Especially, the angle ω related 
to the third invariant of the stress tensor deviator should be tested in a wide range.

Although the comparison of the experimental results from triaxial compression (ω = 0) 
and triaxial extension (ω = π/3) tests is sufficient for this verification it is preferable to use also 
the results of other laboratory tests to make sure that the number P is really independent of the 
state of stress.

The presented verification of the P-hypothesis is based on the results of the polyaxial com-
pression tests of Sandstone (Akai &  Mori, 1970) and Dunham Dolomite (Mogi, 1967). In both 
experiments the strength of rock was measured for several different values of the angle ω. The 
experimental points are represented in various coordinates, namely, in Mohr, in octahedral and in 
σP, τP coordinates in order to allow the comparison of the hypothesis of characteristic planes with 
the usually used criteria. Figures 1, 2 and 3 relate to the results of the strength tests of Sandstone 
and Figs. 4, 5, 6 and 7 are graphical representations of Dunham Dolomite strength tests. 

The strength of Sandstone (Akai & Mori, 1970) was measured by the polyaxial compressing 
of the cubic specimens with edge length 5.5 cm. It is shown in Fig. 1 that there does not exists 
a single Mohr envelope characterizing the strength of Sandstone. Also, as it is seen in Fig. 2, 
there is no single relation between the normal and tangential octahedral stresses and, hence, no 
one form of Mises-Schleicher criterion can describe the strength of Sandstone. An additional 
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conclusion can be drawn if the P-hypothesis is considered. Namely, an assumption of P = 0 in 
formulae (12, 13) gives the result σP = σoct and τP = τoct but Fig. 2 shows that the octahedral 
plane cannot be the characteristic one. Therefore number P ≠ 0 should be used in calculation of 
the directional cosines of the characteristic planes. 

Fig. 1. The relation between shear stress τmax = ˝(σ1 – σ3) and normal stress σn = ˝(σ1 + σ3) 
in Sandstone – results of tests from (Akai & Mori, 1970)

Fig. 2. Failure stress τoct as a function of the mean stress σoct for Sandstone – results of tests from 
(Akai & Mori, 1970)

If the function τP = f (σP) is not given in an explicit form, as it is in the case of our consid-
eration, it is necessary to make a few calculation steps before the right value of the number P 
will be find.

These calculations give the value P = 0.35 and the corresponding stresses in characteristic 
planes are shown in Fig. 3. The calculated points are not positioned exactly on one line τP = f (σP) 
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due to the scattering of the experimental results. The important result is P = const for the whole 
range of the ω values, and thus P may be assumed to be the material constant.

The strength of Dunham Dolomite (Mogi, 1967) was measured on cylindrical specimens in 
triaxial compression (ω = 0) and triaxial extension (ω = π/3) tests and in tests of biaxial compres-
sion of rectangular prisms (0 ≤ ω ≤ π/3). The results shown in Fig. 4 in Mohr coordinates sug-
gest that one Mohr envelope can be used as an acceptable approximation of the failure criterion 
but it is only an accidental coincidence of the results. Namely Mogi (1967) has shown that the 
intermediate principal stress σ2 in biaxial compression tests (σ3 = 0) has the great influence on 
the strength of Dunham Dolomite – Fig. 5 – so the Mohr theory is not valid.

In Fig. 6 stresses τoct are plotted versus σoct and the influence of the third invariant of the 
stress tensor deviator  on the strength of Dunham Dolomite is easily seen. Much better results for 

Fig. 3. The relation between shear τp and normal σp stresses acting on characteristic planes 
in Sandstone for P = 0,35 – results of tests from (Akai & Mori, 1970)

Fig. 4. The relation between shear stress τmax = ˝(σ1 – σ3) and normal stress σn = ˝(σ1 + σ3) 
for Dunham Dolomite – results of tests from (Mogi, 1967)
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various ω one can get if the P-hypothesis is used. For P = 0.43 the normal and tangential stress 
components on the characteristic planes follow the relation τP = f (σP) with a better accuracy as 
it is shown in Fig. 7. 

Again, as in the case of the strength of Sandstone, the number P may be accepted as the 
material constant.

Analogous verification can be done for other rock materials reported in the relevant litera-
ture (e.g. Carrara Marble, Westerly Granite) but the rock strength is usually measured in triaxial 
extension and compression tests only e.g. in the case of LGOM Sandstone and Dolomite (Cieślik, 
2007) or Flysh Sanstone (Łukaszewski, 2007). Thus the experimental data represent only two ω 
values and can be recognized as incomplete for the verification of the P-hypothesis so they are 
not presented in the paper although the preliminary results of verification are also promising. 
Nowadays research in this field is much wider than previous works thanks to availability of the 

Fig. 6. Failure stress τoct as a function of the mean stress σoct for Dunham Dolomite 
– results of tests from (Mogi, 1967)

Fig. 5. Effect of the intermediate principal stress σ2 on the strength of Dunham Dolomite (Mogi, 1967)
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better testing equipment. However the results are usually presented in the form of elaborated 
graphs and general conclusions with lack of information about the raw measured data of σ1, σ2, 
σ3 (Cieślik, 2007; Kwaśniewski, 2007; Lis & Kijewski, 2007). Without such a raw data further 
verification of the P-hypothesis cannot be done.

5. Conclusions

Presented failure hypothesis follows Burzyński’s idea of variable volumetric-distortional 
strain energy at failure where calculation planes depend on material properties. It also takes into 
account experimental facts that relation between volumetric and distortional strain energy depends 
both on the material properties and on the stress state including Lode angle. The suggested rock 
failure hypothesis τP = f (σP), with an aid of the additional material constant P, quantitatively 
evaluates the influence of the third invariant of the stress tensor deviator on the strength of 
Sandstone and Dunham Dolomite as measured in the laboratory tests.

The main idea of the hypothesis is that of “characteristic planes” i.e. the planes characterized 
by the state of stress at failure and the material properties. 

Although no assumption has been made concerning the phenomenological mechanism 
underlying the failure of rocks e.g. cleavage, slip, the phenomenological model is also given. 
Namely, it is assumed that it is always the same relation between the components of the stress 
vector acting on any characteristic plane. As a consequence, for two different states of stress and 
two adequate characteristic planes with normal stress σP* acting on them, the failure should take 
place under the same tangential stress τP* on the both characteristic planes. For a convenience it 
can be understood as an analogy to the Mohr hypothesis – with the great difference that in this 
case one has a set of planes uniquely determined by the stress tensor invariants instead of the 
only one plane (the plane of the extreme principal stresses).

Fig. 7. The relation between shear τp and normal σp stresses acting on characteristic planes 
in Dunham Dolomite for P = 0,43 – results of tests from (Mogi, 1967)
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The characteristic planes have also a simple geometrical interpretation in the space of prin-
cipal stresses. For the stress vector v(σ1, σ2, σ3) the characteristic plane has its normal vector 
np(σ1, σ2, σ3) always coplanar with the stress vector v and the mean pressure axis.

The general formula of the P-hypothesis used in this paper has been chosen for discussion 
instead of more explicit mathematical forms because it has been intended only to show that the 
system of characteristic planes can be used to describe the strength of rock material. For the 
calculation of the rock strength for engineering applications it would be necessary to specify 
the mathematical form of the criterion (linear or non-linear one) based on the idea of the char-
acteristic planes.

The P-hypothesis should also be regarded as another approach to the failure of rocks rather 
than the solution of the problem of rock failure prediction, although the given examples of its 
experimental verification for more than 50 experimental points for various states of stress yields 
much better results than those for others hypothesis.

Presented verification of the P-hypothesis is based on the experimental data for rock samples 
having, for a given rock, the same geometrical orientation. Thus the measured data cannot reveal 
possible rock anisotropy and hence P-hypothesis was verified under assumption of rock isotropy 
which is not adequate in general case. Recent theoretical studies (Ostrowska-Maciejewska et al., 
2011) on material effort and limit condition for anisotropic materials with asymmetric elastic 
range show that it is possible to use the third invariants of the stress tensor deviator projected onto 
one of energetically orthogonal subspaces of the stress space to make the qualitative distinction 
between various deviators belonging to the same subspace. It is connected with the notion of 
an “abstract angle”, which corresponds to Lode angle in case of isotropic materials. However 
no attempt has been made to generalize the P-hypothesis to anisotropic materials yet. Some 
guidelines how to approach this problem can be found in the papers of Pęcherski et al. (2011) 
and Nowak et al. (2011).
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APPENDIX
Geometrical interpretation of the characteristic planes

In order to introduce the idea of characteristic planes let us consider the geometrical inter-
pretation of the state of stress in the space of the principal stresses. In Fig. A1 the state of stress 
is represented by the stress vector v from the origin O to the point A and its projections onto the 
principal stress axes are equal to:

 σ1 = |v| cosαA (A1)

 σ2 = |v| cosβA (A2)

 σ3 = |v| cosγA (A3)

where σ1, σ2, σ3 denote the values of the greatest, intermediate and the least principal stresses 
respectively and αA, βA, γA are the angles as shown in Fig. A1 (compressive stresses are taken 
as positive).

The stresses σ1, σ2, σ3 can also be expressed in terms of invariants of the stress tensor:
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where:

 I1 = 3σoct = σ1 + σ2 + σ3 (A7)

is the first invariant of the stress tensor,
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is the second invariant of the stress tensor deviator and
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is the third invariant of the stress tensor deviator.

In formulae (A4)-(A6) it is convenient to introduce the octahedral stresses σoct, τoct and the 
Lode angle ω shown in Fig. A1 and given by the following relation: 
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Thus the stresses σ1, σ2, σ3 are equal to:
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and directional cosines of the vector v(σ1, σ2, σ3) are:
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We may find at the point O of the stressed material a plane Pc (Fig. A2) on which the normal 
and tangential stresses σP, τP can be found from the relations:

 σP = σ1cos2α + σ2cos2β + σ3cos2γ (A17)

 τP
2 = (σ1 – σ2)2cos2α cos2β + (σ2 – σ3)2cos2β cos2γ + (σ3 – σ1)2cos2γ cos2α (A18)

where cosα, cosβ, cosγ are the directional cosines of the normal np with respect to the directions 
of the principal stresses. Next we suppose that to characterize the strength of the material the 
stresses σP, τP should be used rather than the stresses σoct, τoct or the stresses σn, τoct. 

Fig. A2. Characteristic plane Pc with the stresses τp, σp 
and normal np

Fig. A1. Geometrical interpretation of the state of 
stress in the principal stress space – plane Po 

is the octahedral one

In order to find the adequate stresses σP, τP we assume that the normal np is coplanar with 
the stress vector v and the mean pressure axis so that:

 ωn = ω + kπ; k = 0.1 (A19)
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where ωn is the angular coordinate of the vector np measured on the octahedral plane in the same 
manner as the Lode angle ω defined by (A10) for the tress vector v (Fig. A3).

For further calculations it is convenient to take advantage of the following formulae:
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where the absolute value |σoct| follows from (A20), and to scale |O’B| in terms of τoct
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where P is the number that is assumed to depend on the rock material (Fig. A4).

Fig. A4. Geometrical interpretation of the vector np 
normal to the characteristic plane and its relation 
to the stress vector v in the principal stress space

Fig. A3. Geometrical interpretation of 
equation (A19)

This allows to calculate the directional cosines of the vector np, collinear with the vector 
OB, as functions of the number P and the invariants of the state of stress. Analogically to the 
expressions (A14)-(A16) the directional cosines of OB are equal to:
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Moreover, taking into account general observations of fracture planes of rocks in various 
laboratory and field tests it has been decided to chose ωn = ω + π. In this case the inclination 
of np with respect to the greatest principal stress direction is similar to the observed analogues 
inclination of the normal to the fracture plane.3

Hence, the directional cosines of the vector np become equal to:

 

( )

( )

2

2 2

2 2 2

cos
cos

3

oct oct

P

oct oct

P
j

P

� � �
�

� �

�
� �

	

2
 (A26)

 ( )

2

2 2

2 2 2

cos
3

cos
3

oct oct

P

oct oct

P

k
P


� � �
�

� �

� �	 	��
��� �

	

�
�
�
�
�
�

2

 (A27)

 ( )

2

2 2

2 2 2

cos
3

cos
3

oct oct

P

oct oct

P

l
P



� � �

�
� �

� �	 ���
��� �

	

�
�
�
�
�
�

2

 (A28)

which is the same as formulae (4)-(6) defining the characteristic planes.

As a consequence of the formulae (A26)-(A28) two important features of the idea of char-
acteristic planes should be pointed out:

1. For standard tests the following relations between the directional cosines of the normal 
to the characteristic plane are true for P ≠ 0

cosα < cosβ < cosγ for polyaxial compression  (σ1 > σ2 > σ3) (A29)

cosα < cosβ + cosγ for the triaxial (and uniaxial) compression (σ1 > σ2 = σ3) (A30)

cosα = cosβ < cosγ for the triaxial (and uniaxial extension) (σ1 = σ2 > σ3) (A31)

–cosα = cosγ ≠ cosβ for pure shear (σ1 = –σ3; σ2 = 0) (A32)

3 Usually fracture surface observed in a macro-scale is called “fracture plane” although it is not necessarily a plane 
one, so we will also follow this convention. Thus, it is not supposed that the vector np is identical with the normal to 
the fracture plane.
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Hence, the phenomenological model implies that if the principal stresses at failure have 
the same value, the inclinations of the vector np with respect to the related principal stress axes 
are identical and that these principal stresses equally contribute to the normal and tangential 
stresses, σP and τP, acting on the characteristic plane. This is the important difference between the  
P-hypothesis and the other failure hypotheses used in rock mechanics, because for example in the 
case of triaxial compression the intermediate principal stress σ2 has exactly the same influence 
on the strength of a rock as the minimum principal stress σ3. This is a reasonable conclusion as 
for the experiment in which σ2 can be replaced by σ3, and vice versa, depending upon the deci-
sion of the experimentalist. 

2. For P = 0 the directional cosines of np become equal

 jP
2 = kP

2 = lP
2 = 1/3 (A33)

and hence the octahedral plane becomes the characteristic one, independently of the state of stress 
and the relation τP = f (σP) becomes the relation τoct = f (σoct) as in the case of Mises-Schleicher 
or Huber-Mises criteria.


