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ABSTRACT
We consider a kinase auto-activation model in which the number of activated kinases follows the time-
continuous Markov process. In the deterministic approximation the process is described by the single non-
linear ordinary differential equation, which may have two stable steady states. We found that for sufficiently
large number of kinases, the stationary probability distribution given by the Markov process concentrates in
the vicinity of the two stable steady states of the deterministic approximation. However, if the number of
kinases diverges to the infinity (zero noise limit), the stationary probability distribution concentrates (generi-
cally) in only one of the two steady states.

INTRODUCTION

Kinases are the key proteins mediating intracellular signalling. They are activated by receptors or
other kinases due to phosphorylation at serine, theorine or tyrosine residues, and inactivated (de-
phosphorylated) by the enzymes called phosphatases. Relevant to the considered model, kinases
can form dimers and can be auto-activated - i.e. activated by the same kinase species.

In this study we consider a simple kinase activation model with bistable behavior and analyze
the three "variants" of probability distribution (PD):

(1) stationary probability distribution (SPD),
(2) cumulative probability distribution (CPD) corresponding to the Markov process with given

initial condition K(0) lasting from time 0 to T .
(3) population probability distribution (PPD), which is the CPD but with the random initial

condition.

We analyze the correspondence between these three variants of the PD, focusing on the conver-
gence of the SPD in the "zero noise limit". The zero noise limit will be analyzed numerically by
introduction of a class of models with a growing number of kinase molecules.



Figure 1. Kinase activation model with auto-regulation.

MODEL

The kinase activation model is illustrated on Fig. (1).
The model defines a time continuous Markov process which has N + 1 states, were N is the

total number of kinases. States will be indexed by the number of active kinases molecules K.
We assume that kinases are inactivated with constant rate b > 0 and activated with rate f(K,N).
Thus the transition propensities are{

K → K + 1 f(K,N)(N −K),
K → K − 1 bK.

(1)

We will consider two cases: without and with auto-regulation. In the former we set f(K,N) =
c > 0, in the latter we set

f(K,N) = c+
c2K

2

N2
, c2 > 0. (2)

The first case corresponds to kinase activation by other kinase species present at a constant
level. In the second case the auto-activation by the same kinase species is considered. The qua-
dratic dependence may result either when the activatory unit of the kinase is a dimer or when
the double phosphorylation is needed to activate the kinase - both situations are fairly common
in cell signalling [1,2]. We scale the activation coefficient with the total number of kinases N in
order to have the same deterministic approximation of systems with different N ; and so, in the
deterministic limit, the system can be described by the nonlinear ordinary differential equation:

dK

dt
= (N −K)f(N,K)− bK, (3)

which in scaled variable k = K/N takes the form independent on N ,

dk

dt
= (1− k)f(k)− bk. (4)

The system without auto-regulation, f(k) = c, has the unique steady state k0 = c/(c+ b). In the
auto-regulatory case, f(k) = c+ c2k

2, fixed points are real roots of the third order polynomial

W = −c2k3 + c2k
2 − (c+ b)k + c = 0. (5)

Here, we focus on the bistable case when W has 3 real roots such that 0 < k1 < k2 < k3 < 1.
Steady states k1 and k3 are stable, while k2 is unstable. Due to the fact that W has the same
coefficient at third and second power, its roots satisfy

k1 + k2 + k3 = 1. (6)
For further analysis we use roots k1, k2, k3, rather than the original coefficients b, c, c2, which may
be recovered from roots, using Vieta formulas, by the following relations:

c =
bk1k2k3

(k1 + k2)(1 + k1k2 − k1 − k2)
, c2 =

b

(k1 + k2)(1 + k1k2 − k1 − k2)
. (7)



Let us notice, that if c and c2 are expressed as a functions of b, the last coefficient determines only
the time scale of the process τ = 1/b. Due to relation (6) the (k1, k2, k3) parameter space may be
reduced to domain D = (k1, k2) in which k1 < k2 and 1− k1 − k2 = k3 > k2, see Fig. (5).

RESULTS

The SPD PK corresponding to considered Markov process may be calculated analytically as fol-
lows. From Eq. (1) we get

dP0

dt = bP1 −Nf(0, N)P0,
dPK

dt = bPK+1 + f(K − 1, N)(N + 1−K)PK−1−
−(b+ f(K,N)(N −K))PK for 0 < K < N,

dPN

dt = f(N − 1, N)PN−1 − bPN .

(8)

Now, for dPK

dt = 0 we can calculate PK using the recurrence formula
P1 = Nf(0, N)P0/b,
PK+1 = ((b+ f(K,N)(N −K))PK − f(K − 1, N)(N + 1−K)PK−1)/b for 0 < K < N.

PN = f(N−1,N)
b PN−1

(9)
Since the recurrence (9) is linear with respect to P0, we can set P0 = 1, calculate all the PK , and
then normalize them by dividing by

∑
PK . Although, we have analytical recurrence formula, we

were able to analyze it only numerically.
To analyze time dependent CPD we performed the Gillespie algorithm simulations of the sys-

tem (1) with varied initial conditions K(0) and collect total time t(K) which system spends in
each state K. Then, we calculate PK(T,K(0)) = t(K)/T , where T is the total simulation time.
Since the system is ergodic for the fixed N the CPD PK(T,K(0)) must converge to the SPD PK

for all initial conditions K(0). As shown in Fig. (2), in the case without auto-regulation, i.e. when
the system is monostable, this convergence is relatively fast even for big N . For N = 100 and
N = 5000 the CPD for T = 2000τ is almost indistinguishable from the SPD which concen-
trates around Nk0, where, recall, k0 = c/(c+ b) is the unique fixed point for the system without
auto-regulation.

The much different situation is when system is bistable. In this case, the required time T
at which CPD PK(T,K(0)) approaches the stationary probability PK sharply grows with the
system size N . As shown in Fig. (3), for N = 2000 and T = 1.5× 105τ the CPD PK(T,K(0))
obtained in Gillespie simulation is not sensitive to the initial condition K(0) and is very close to
the SPD PK calculated by the recurrence formula. However, for the same simulation time T and
N = 5000, PK(T,K(0) = 0) differs from PK(T,K(0) = N) and they both differ from the
SPD. For the initial condition K(0) = 0 the CPD concentrates around k1N , and for K(0) = N
it concentrates around k3N . This shows that although the system remains ergodic for all finite N ,
the characteristic "communication time" between states k1N and k3N sharply grows with N .

The recurrence (9) calculation were performed using double precision in C++ and GNU Multi-
precision Library, which enables us for analysis of systems of size up to N = 20000 kinases,
however for bigger N this method fails due to the huge differences between PK , for exam-
ple for N = 18000, in the case depicted in Fig. (4) (second column) PK1/P0 ∼ 10900 where
K1 = round(k1N).

Performing numerous calculations for different set of roots k1, k2 we found that for large N
the probability distribution generically concentrates around only one of the two stable states. This
is illustrated in Fig. (4), where the SDP is calculated for three values of N and three sets of roots
SL = {k1− ε, k2 + ε}, S0 = {k1, k2}, SR = {k1 + ε, k2− ε}. The set S0 = {k1 = 0.1782, k2 =
0.3218} is chosen so that for N = 18000 the probability density splits almost equally into two



Figure 2. Probability distribution in monostable case with steady state in k0 = 0.5,
which refers to c = b. Left column: cumulative probability distribution obtained in
Gillespie simulations for T = 2000τ and initial conditions K(0) = 0. Right column:
steady state probability distribution calculated by the recurrence Eq. (9). Upper row
N = 100, lower row N = 5000

Figure 3. Probability distribution in bistable case with roots k1 = 0.1787, k2 = 0.3213,
k3 = 0.5. First and second column Monte Carlo simulations for T = 1.5 × 105; Intial
conditions for the first and second column are K(0) = 0 and K(0) = N respectivelly.
Last column steady state probality distribution calculated by the recurrence Eq. (9).
Upper row N = 2000, lower row N = 5000.

basins of attraction. The "shift" ε = 0.0012 is chosen in such a way that 90% of probability
concentrates either in left, or right basin of attraction. This shows, that for large N, the values
of k1, k2 have to be very precisely tuned in order to get SDP concentrated evenly around two
stable steady states. In Fig. (5A) we show that, ε is a function of N and ε(N) ∼= 1/N for large
N . Since this analysis suggests that lim ε(N) = 0 for N → ∞, we may draw the following
hypothesis; The two-dimensional parameter space D = (k1, k2) can be split by line L = k2(k1)
into two subdomains D1, D3, such that in limit of N →∞, for {k1, k2} ∈ D1 SPD concentrates
around k1, while for {k1, k2} ∈ D3 SPD concentrates around third steady state k3. Our analysis,
however, gives no suggestion about the convergence of SPD (for N →∞) for the points lying on
the line L.



Figure 4. Stationary probability distributions calculated for three values of N : 500,
6000, 18000 (upper to lower row) and three different polynomials W of roots; mid-
dle column k̄1 = 0.1782, k̄2 = 0.3218, k̄3 = 0.5, right column: k̄1 − ε, k̄2 + ε, k̄3, left
column: k̄1 + ε, k̄2 − ε, k̄3, where ε = 0.012.

Figure 5. Left panel: numerically calculated ε(N) showed on log-log plot with the best
fits log(ε) = α log(N) that gave α = −1.00 for k1 = 0.1, k2 ≈ 0.303, α = −1.00
for k1 = 0.15, k2 ≈ 0.316 and α = −1.06 for k1 = 0.25, k2 ≈ 0.321; Right panel:
the two-dimensional parameter space D = (k1, k2) with line separating subdomains D1

and D3 for which stationary probability distribution concentrates in k1 or k3 in the limit
of N →∞.

Finally, we investigated the population probability distribution PK(T ) defined as the probabil-
ity that the system of random initial condition (PK(0) = 1/N ) is in stateK in time interval (0, T ).
Analysis of PK(T ) revealed existence of three time scales; (see Fig. (6))

• Short, where the PPD remains almost uniform
• Intermediate, where PPD is concentrated around stable steady states k1 and k3 in such a

way that PPD concentrated around ki is proportional to the basin of attraction of ki
• Long, where PPD is close to the SPD.

The CPD and PPD for the intermediate time scales can be more relevant to the real biolog-
ical process than the stationary distribution, as the time to reach SPD can be extremely long -



much longer than cell cycle. As showed in Fig. (6), in bistable system, the PPD for intermedi-
ate times is qualitatively different from SPD. As one may expect in monostable system (without
auto-regulation) the convergence of PPD to SPD is much faster - data not shown.

Figure 6. The population probability distribution PK(T ) for steady states k1 = 0.162,
k2 = 0.338, k3 = 0.5, N = 2000 and 5 different times T compared to the stationary
probability distribution given by the recurrence (9).

CONCLUSIONS
The correspondence between the saddle-node bifurcation diagram and probability density func-
tion have been analyzed recently by Song et al. [3]. The authors considered bistable galactose
utilization network in S. cerevisiae, in which cell population splits into two subpopulations with
high and low Gal10 gene expression. In bistable range, the ratio of two subpopulations was found
to be a function galactose level - considered as bifurcation parameter.

Here, based on numerical analysis we found that, generically, in the zero noise limit (N →∞)
stationary probability distribution in bistable case concentrates in the one of the two stable steady
states. We showed also, that in such a case, there is a significant difference between the stationary
probability distribution and time dependent probability distributions: CPD and PPD, which –
although in the limit of T →∞ converge to SPD – for intermediate times differ qualitatively from
the latter.
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