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Hamiltonian Systems on Matrix Manifolds
and Their Physical Applications
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Abstract. Schridinger equation as a self-adjoint differential equalion of
mathemalical physics is discussed. For simplicily, a finite-level system is con-
sidered. A modified Schridinger equation with the second time derivatives is
described and some direct nonlinearity is admitted. The key of our idea is
the assumption that the scalar product is not fized once for all, bul is a dy-
namical quantity mutually interacling with the state vector. We assumne that
the Lagrangian term describing its dynamics has the large symmetry group,
the total complex linear group. This implies the strong essential nonlinearity.
There is a hope that this geomelrically implied nonlinearity may explain the

decoherence and measurement paradoxes in quantum mechanics.

1 Admitting second derivatives and direct
nonlinearity

It is well-known that the Schrodinger equation is self-adjoint, ie., derivable fron
the variational principle [9, 10, 11]. For simplicity we assume a finite-level quantum
system, i.e., one with the finite-dimensional unitary space of states W. The mor
realistic infinite-dimensional case is ruled by a similar philosophy, although ther:
are, of course, important differences in details. The sesquilinear hermitian form

the scalar product will be denoted by I' € W* @ W=,
I'(u, v) = aputv’. (1
Its hermicity,
[u,v) =T(v,u), 2

implies that the matrix [I'z] is hermitian. As yet, I' is an absolute element
the theory, later on it will become dynamical. Interactions are described by
appropriately chosen sesquilinear Hermitian form of the Hamiltonian, y € W W
or by its D-raised operator representation H € L(W),

H% =T%yy, D%l =485
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The Lagrangian describing Schrodinger dynamics may be given as:

L[1] = ialg (@”\Tﬂ" T !") — hr_;,\l_fatlﬂ"‘ (4)

where «, 7 are real constants. This implies that L[1] is a real-valued function of
the complex quantities ¥, ¥. Obviously, ¥ denotes the time derivative of . If, as
nsual in quantum mechanics, ' is assumed to be positive, then there exists a basis
in which [I'z] = I,,. Where [, is the itentity matrix n x n.

Obviously, the Euler-Lagrange equations for L[1] have the form:

f.]{ 1‘1" & ¥ 7
__ i s —'H”.IJJ'”_ |-
- )

When we put «« = h, v = 2, this becomes the usual finite-dimensional Schrédinger
(uation.

From now on, the Schrodinger equation will be treated formally as a “classical”
self-adjoint equation of mathematical physics [11]. And our search of non-linear
modifications will be based just on this treatment. Before doing any step towards
mtroducing nonlinearity, we shall consider certain lincar modifications suggested by
the mentioned philosophy of analvtical mechanics. First of all. the time-derivatives
of ¥ enter the Lagrangian (4) linearly, although the coeflicients depend algebraically
on W. Because of this, the Legendre transformation is non-invertible, it leads to
primary ) constraints in the phase space, and the generalized Dirac procedure must
be used if we wish to use a modified Hamiltonian formalism. But, let us remind, the
primary attempts by Schridinger were based on the second-order equation with is
known today as the Klein-Gordon equation. Quite independently on the problems
with statistical interpretation, the Klein-Gordon equation postulated by Schridinger
gave results for the atomic spectra incompatible with experiments. But the non-
relativistic version with the first-order time derivatives worked perfectly. Today we
known the reasons: there is no spin in Schrodinger equation, and the spin phenomena
influence the atomic spectra just in the opposite direction to the relativistic effect of
the velocity-dependence of mass. Yes, but there are still some reasons to expect the
appearance of second derivatives, e.g., in connection with the conformal invariance
2. 89, 11], There is also some motivation from nanoscience ’; 6:. In any case
the idea of admitting second derivatives in quantum-mechanical equations, i.c., of
admitting terms quadratic in generalized velocities in Lagrangian, scems attractive
7, 8,9, 10, 11]. The expression for L[1] would be then replaced by

" - iy ) : S, s e
L[1,2] = ials (ux W0 11:”) b AT Y U — gyl ¥ (6)

The resulting “Schrodinger equation” becomes then:
dve BEve oy
82 B H%W°, L
dt 2 ke 2

It is important that the Legendre transformation is then non-degenerate, and the

usual Hamiltonian formalism is applicable. The general structure of (7) is essentially
analogous to the structure of nant-physical equations investigated by [3, 6.
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The last modification of the first- and second-order Schrodinger equations is one
concerning nonlinearity. The simplest way of introducing it is based on nonquadratic
potentials V':

LIL;V|:=L

14V , L[1,%V]:=L[12]+ V. (8)

The whole sophisticated art of playing with V- nonlinearity has been developed. Let
us quote only some of them, e.g.,

V (2.9) = 1 (Ta¥"0") . (9)

where f is an appropriately chosen real function of the one real variable. One of the
frequently used models is based on the quartic form of ¥:

[(x) = s(x —a). (10)

There are various arguments for this expression, taken both from the pure nonlinear
science and from certain models of quantum field theory . Obviously, the nonlincar
Schridinger equations derived from (8), (9) will have the form:

d¥e  JBdvt 4 e ;
GEIRETC. o = —'_ffa.’}lj_f"' . \!\-11”'. |f‘| ‘I ]
Ol 5w par Tl e -

where the symbol f’ denotes the usual derivative of f in the standard sense of
differential calculus. Equation (11) exhausts, when playing with f, a large class of
practically used nonlinearity models in quantum mechanics. Or, to be more honest:
not equation (11), but rather, its infinite-level counterpart. Nonlinearity is contained
in the last term in the right-hand side, because the multiplier "Zj’ depends on V.

So, as said above, we pretend to forget for a moment about quantum problems
and consider the above Schridinger equations as some sclf-adjoint equations in clas-
sical analytical mechanics. So let us review the basic Poisson brackets and the ideas
of the corresponding Hamiltonian mechanics. As usual, we formally consider ¥*
and U* as independent variables. Let us mention, one deals so also in classical field
theory when using it as a primary step to the quantization procedure. Obviously,
one can use as well the 2n-tuple of real generalized coordinates x®, y*, and their
conjugate momenta ug, v,. But it is formally more convenient to use 2n-tuple of
complex generalized coordinates ¥®, ¥" and their conjugate momenta 7, 7. The
relationship is given by

L : | .
l[lf’:' — i {'_J:U. i ?-'_f)l'”} 3 lI! V2 r ‘l.‘a f'{}'r'_] .
V2 V2
L e 1 5 e !
Ta = = (Ug — Uy ,:' . Ma F (Ug 2, ). { ]2}
V2 V2

When doing so, the care must be taken to use real-valued Lagrangians and Hamil-
tonians. And then, deriving the equations of motion, it is sufficient to perform the
variational procedure either with respect to ¥ or with respect to W. The result-
ing equations of motion are evidently dependent, they are complex conjugations of
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each other. But it is more convenient to use the redundant 2n-dimensional complex
language [11].
Equations (12) imply that the usual Poisson bracket,

df dg af dg  df dg of dg

D= Sl ot e g (13)
19} de* du, Oy v,  Ju, drr Ou, Gyt 4
is transformed by the mentioned analytical continuation to
. af g af o af g af dyg .
=2 2 9 78 f 9 9] 9g (14)

e Uﬁu I ()kl_"ﬁ £ Eft (f T (,‘. e {‘EJ (iﬁu -

The vector field generated by the Hamiltonian function I on the complex phase
space W x W x W* x W is given by

ar a aF 48 art o oF o 135)
e PR m e ET ey (La)
O, Ve~ Omz " 0¥ On, G 07

Xip=

One must, remember that in this language of complex extension the quantities ¥,
U are treated as independent coordinates, and so are m,.

For the model (6) of L1, 2: V] regularized by the term quadratic in velocities the
Legendre transformation [11],

N -
- =D, =0 8 i oy
to=taW L + AU T, , Ty iolg U + 050, (16)
is invertible,
: l1ckt o —a ] = Ol—a
o — P e U = _—mhe — tﬁ T (17)
.'I:_-JI 5 8] L 5 i &

The “encrgy function” of analytical mechanics,

2 Al vl
E=V s+ L, (18)
. O
becomes now as follows:
£ = Ala¥ ¥ +yxz T 0 1V (¥,7). (19)

And one can show that the “Hamiltonian”, i.e., “energy”™ expressed by (17) becomes
[11]:

1 ot —ij |
o= < (o, +ia [r,00 -7,
Lt L |

s s (%ra}, =y '\‘,;}{;) WJ‘IIG + V (‘lf: \If) v :_).(JJ

Everything is good here only if 3 # 0, i.c., when we really deal with the second-
order Schrodinger equation. When 3 — 0, then (17), (20) catastrophically become
meaningless, and the Legendre trafisformation (16) leads to constraints in the phase
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space. For 3 # 0 the second-order Schrodinger equation is equivalent to the Hamil-
ton equations:
dv*  GH dr,  OH
ST dt 9o
or to their complex conjugates. It is no longer the case when 3 = (0 and the Dirac
procedure must be applied. But it is true, of course, that (19) behaves correctly

(e, H}, {7 H} | (21)

when 3 approaches zero. We obtain then:

£ = vy ab$ﬁmh 1LV fl_l_jmj , [22'|

i.e., an expression independent on generalized velocities. The expression (16) for the
Legendre transformation is also continuous at 3 = 0 and becomes:

—b ’
Tq=i® Ty, 7= —ilz¥° (23)

a ! )

This gives us the equations of primary constraints M in the phase space. They
are very strong, because no arbitrariness of canonical momenta survives, at any
configuration there is only one admissible momentum. The Dirac procedure must
be used. Equations of primary constraints M have the form:

&, =m, —ials T , Oy = Ty + ialm 0. (24)

EH
The Hamilton function is postulated as:
; a O oy
H=Ho+ A'@, + A oz (25)
where H,; is simply given by (22)

Ho = xm¥ W+ V (0, 7). (26)

The compatibility equation for Xy and M is uniquely solvable at every point of M,

namely:

% i OV g sl o § BV o
A= ——iH P’ — [ —, M= i B + ———I', (27)
2o 200 gy 2w " 2o 0¥

where H% are given by (3), and H;*-by the corresponding I'-shift of the indices.
Therefore, the manifold of secondary constraints is identical with that of primary
ones , M* = M. The Dirac bracket is generated by the following basic rules for the
functions on M*® = M:
s b ' o b - a F-Jl 1 ab (Q
{ge ¢l 0, v =1 e =["%, (28)
1 ! I d M . . ,[ / *

Mo 20
Therefore, on the manifold of Lagrangian constraints the complex conjugate vector
of state becomes proportional to the canonical momentum conjugated to ¥. The
Schrodinger equation without second derivatives becomes formally identical with
the Hamilton cquation in the sense of Dirac bracket generated by (28):
A A AV

1_ -0V
— {9 H e =th——=H% Wt + :—I'”"r’—-.. (29)
dt A dt 2 f')@b

(again we mean here the substitution o = R, v - 2).
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2 Krawietz-type metrics and geometric

nonlinearity

In the above remarks we have treated very seriously the idea about quantum mechan-
ics as ruled by a certain self-adjoint equation of mathematical physics. This equation
was considered as an extremely over-simplified one, namely, in a finite-dimensional
unitary space. Nevertheless, even in this very rough approach some important facts
might. be seen, c.g, the degeneracy of Lagrange-Hamilton structure of the corre-
sponding variational principle. The Dirac procedure of dynamical constraints had
to be used. This also enabled one to suppose that perhaps the term with second
time derivatives in Schrodinger equation should be admitted, although it opens as
well some questions far from being solved. There are also some nano-physical argu-
ments showing that such a modifications may be just desirable. Quite other argu-
ment comes from the gauge-conformal attempts of reformulating gravitation theory.
And finally, the idea of self-adjoint analytical interpretation of Schrodinger equation
opens a wide field of looking for nonlinear corrections to gquantum mechanics. Let
us remind that such corrections are sought for many years in connection with the
well-known quantum paradoxes concerning the measurement theory and decoher-
ence [1]. In all these problems it is linearity of quantum mechanics that seems to
be guilty. Nevertheless, the majority of nonlinearities suggested according to the
above scheme seems to be rather naive and introduced “by hand”. Now we would
like to present another possibility, much more geometric, based on the invariance
aroups, and because of this, we mean, incomparatively deeper. This is the method
of dynamical scalar product. Let us remind that the sesquilinear Hermitian scalar
product I' € W™ @ W* ig fixed once for all in any quantum-mechanical model. One
can ask why really. An interesting motivation against this pattern comes even from
the generally-relativistic gravitation theory. Traditional Maxwell electrodynamics
without changes is linear, although there are also nonlinear modifications like Born-
Infeld theory. Other field theories, ¢.g., gange treatments of physical phenomena are
nonlinear, nevertheless, they are, in a sense, minimally-nonlinear, just only to the
extent one is forced by gauge invariance. But everything changes drastically when
gravitation is introduced into the treatment. It is well-known that the Iilbert action
functional for gravitation is essentially nonlinear and it introduces this nonlinearity
to any system of fields mutually interacting with gravitation. This nonlinearity is
strongly connected with the demand of general covariance, i.e., invariance of any
fundamental theory with respect to the space-time group of diffcomorphisms. The
invariance demand with respect to this huge group introduces the essential dynam-
ical nonlinearity for any svstems of fields mutually interacting with gravitation.
Let us stress that from some point of view quantum mechanics resembles rather
specially-relativistic than the generally-relativist physics. In special relativity the
dynamics of fields and particles is controlled by Minkowskian metric tensor fixed
once for all as an absolute object of the theory. In general relativity the metric
tensor is a dynamical field subject to equations of motion on equal footing with
all other fields; its physical meaning is just the gravitation. Analogy is obvious:



perhaps the scalar product in quantum mechanics is #omething similar to the space-
time metric and should be rather a dynamical field, not a fixed absolute object. But
what has this all to do with nonlinearity, decoherence, etc.? The answer is simple
and has also to do with the physical demand of invariance under a “large” symmetry
group. Let us begin with some introductory examples from a rather long time ago.

One example comes from the mechanics of continuous media, to be more precise
from plasticity. Namely, rather a long time ago A. Krawictz [4] discussed the problem
of natural Riemann metrics on a manifold of Euclidean metric tensors on the real
linear space V. Obviously, the trivial possibility would be to fix some particular
metric tensor gy and to define the arc element by

dsé =T'r ((go_](if;)2) ; (30)

This is unnatural, very artificial in distingnishing the standard reference metric go

The metric corresponding to (30) is evidently flat. But it is possible to define
another, very natural metric which does not distinguish anything. It is given by

ds® = Tr ((g ldr_;)z) = 9" g™ dgapdgea, (31)

where, of course, the upper-case quantity is the contravariant inverse of g. This
is the very natural Riemann metric in the manifold of Euclidecan metrics on V. It
naturallty resembles that of the Killing metric tensor on the Lie group. Let us
observe that no reference metric gg is chosen and the Riemann metric corresponding
to (31) is invariant under the total GL(V) acting in a natural way on the manifold
of Euclidean metrics on V. Unlike this, (30) is invariant only under the action of
O(V, gy), the subgroup of isometries of gy. Let us observe that, as a matter of fact
(31) might be replaced by the metric

WGy dgea + 119" 9 Agupdgea (32)

ds®* = A\g™g
which has the same properties like (31). Obviously, the quantities A, u are arbitrary
real constants. The A-term is the main constituents whereas the singular p-term is
merely a secondary correction.

The metric tensors (31), (32) are used in plasticity theory, first of all in its
incremental methods. One can ask what would be the counterparts of those objects
when instead of symmetric metric tensors in a real vector space V we considered
the manifold of sesquilinear Hermitian forms on a complex linear space W. Let us
assume that the forms are antilinear in the first index and linear in the second one,
so we use the analytical symbols g and g for their contravariant inverses:

9*gep = 0% (33)
Obviously, the counterpart of (32) will be

trx

ds® = \g" g™ dgaydgeq + 19" 9 dgadged; (34)
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(33)

(34)

where again the second term is merely a correction to the first, main one. This arc
element is also GL(W )-invariant and does not assume a choice of anything in W or

W e W

But if so, one can try to think in the following way: perhaps in quantum dynam-
ics two objects participate on the almost equal footing, l.e.: the “wave function”
W € W and scalar product G € W' & W=. Their dynamics in the process of mu-
tnal interaction should be ruled by Lagrangian depending on the pair of variables
(T, G e W x (W @ W*) and given by

L[P, G| = L[L,ZV]+T|G| =
. [aBay =%y AT T T0mh T i
deel g [ WW Yoy b Bl W U° — gy U W (W, )
A perdan 7 B ariep 1 far
f 7]_‘ & Ta_bl",:,f f ?T Ty I‘J.‘_l]

Now all the quantities occurring as arguments of L[¥, (] are dynamical variables
subject to the variational procedure. It is easily seen that the total Lagrangian (35)
corresponds to an effectively nonlinear theory even if the directly nonlinear term
V (W, ¥) is completely absent. Moreover, the scheme with V(¥,¥) = 0 is much
more natural and geometric. The first three terms in (35) correspond to the usual
lincar theory and its only unusuality is the second term which leads to the linear
appearance of second time derivatives of W. The main nonlinearity of the theory
based on (35) is predicted by the last two terms, quadratic in j‘igl—'. but with I'-
dependent coefficients. This structure is very similar to that of generally-relativistic
field theories where the main non-linear term comes from the IHilbert Lagrangian
of the metric field. The metric tensor on the total configuration space, lLe., one
responsible for non-linearity, is just (34) with I" substituted for g.

The attempts of fighting for understanding of the decoherence and measurement
paradoxes are our main motives for introducing this kind of nonlinearity to the
theory. Nevertheless, even if those attempts fail, the structure of dynamical models
following from (35) is interesting in itself. Let us mention, this structure of affinely-
invariant dynamics was discovered by us in early seventies in mechanics of so-called
affinely-rigid bodies, i.e., ones rigid in the sense of affine geometry [12, 13]. Let us
remind the basic ideas. The configuration space of affinely-rigid body moving in the
affine space M with the translation space V may be identified with @Q = M x ['(V),
where F'(V') denotes the manifold of all linear frames in V. In certain applications
one replaces (V) by the connected manifold [7(V)" consisting of frames positively
oriented with respect to some fixed orientation. In any case, configurations are
givenn by pairs (m;ep. ..., e,), where m € M represents the translational position
of the body in M, and ¢ = (e;,...,¢,), or equivalently the dual frame ¢! =
i e™), represents the configuration of internal degrees of freedom. Analytically,
configurations are described by generalized coordinates

where, obviously,




and x* are coordinates of translational degrees of freedom. The usual formula for
the kinetic energy is

mo datdr’ 1 d . d ;
=gt Bk oy [l Yol Sl P T R 38)
9 Gij Al di fou ((ﬂf _‘1) (;H_r H) t int {’ J

where m is the mass, J*P is symmetric and positively definite constant tensor of
inertial momentum, and g;; are components of the spatial metric tensor. Without
any use of variational prineiple, equations of motion are derived via the d’Alembert
procedure as follows

& 8
2 ot AB _ artd (¢
EA——€ JT;-J'r =N 3 l“)
dt? ’
where N¥ is the tensor of affine torques. Its skew-symmetric part is the usual torque
of forces. The contributions T},., T refer to translational and internal kinetic

energies. Unfortunately, neither (38) nor (39) is invariant under the left-acting

(spatial, Eulerian) and right-acting (material, Lagrangian) affine transformations.
In this sense the analogy with the rigid-body mechanics, when

Gii€'A€%s = bap, (40)

is broken and the system is not an invariant (either left- or right- ) system on the
affine or linear group. At the same time, in certain applications, like the collective
affine model of the nuclear droplet, neither the d’Alembert procedure nor the model
(38) seems to be adequate. On the contrary, it seems that affinely-invariant models
of the dynamics are more adequate. To introduce them we have to use so-called
affine velocities, i.e., affine generalization of angular velocity tensor. Affine velocity
in the spatial (Euler) representation is the mixed tensor given by

deis _
(P =Dt (41)
dt - it
its co-moving (Lagrange) representation is obviously given by
oy i & RS ~
Q% = et —e'p = {05 edp. (42)
dl s

They cither transform respectively under the adjoint rule or are invariant under the
action of GL(V) and G'L(n, R):

[F4. 4 o1l i ok —1m A 3 Py,
4] = [Lyels] @ [Q] — [L4Q5, L7, [9%] — %),
(43)
£ 70 Tl Br BT i1 .10l 1OA —14 B¢ 1D 7
|_(i{__._1_ —p |_f_'11r_;1'\ Al b [E]i| — |£2: 4 [i.! }__;J — [Jr'\ (__'S! D -f\j Bl
Because of this the only possible kinetic energy form of internal degrees of freedom,

invariant under all left- and right-acting linear mappings is a combination of two
second-order Casimirs:

—

A o B s A. 7 3 ~\2 .
Tine = 5Tr () + 5 (Tr 9)* = S Tr (522) L (’h-- 52) : (44)

|
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Let us mention that due to the lack of semi-simplicity in the affine group, there
18 neither translational nor total kinetic energy invariant simultaneously under left
and right affine group. There are only models left-affinely and right-metrically in-
variant, and conversely, left-metrically and right-aflinely invariant. They are given
respectively by:

m . A i 3 1 B - 2
T =—Camte? 1 ZiPsieRy 4 = L O ) g 0
I'= 5 Cyv'v! + STr () 4 ; By r;()) z(ﬂ 0)
(45)
. L, TR - - A ety F .
T = ?.(}?:j?"?"'l.f ?—Tz iT{g_}ulﬁ| j[? f£?1' = 2—(.1_.1‘;;'{-"4?.'{-; -+ ?TE(SZJJ i"E |(£ 3"!2_]3. {—]-f))

where C;, G 15 denote respectively the Cauchy and Green deformation tensors and
74 are co-moving components of v,

It is interesting that the internal terms are not. positively definite, besides of
“centrifugal repulsion” betwoen deformation mvariants, they contain also their “cen-
trifugal attraction”. Because of this even in purely geodetic models there exists an
open subset of bounded geodetic vibrations and an open subset, of “above-threshold”
geodetic scattering motion {12, 13]. This application resemblos the Maupertuis prin-
ciple, where the dynamics is described by the metrie tensor of the configuration
space. If there is no potential, those solutions may be expressed by the matrix
exponential function.

Something similar may be done for our “classical-quantum” model. From the
analytical point of view it is also a model of dynamical systems on a matrix manifold.
There are, of course, certain differences between it and the model of affinely-rigid
body. Matrices may describe various geometric objects: mixed tensors (the case of
aflinely-rigid body), twice covariant tensors. e.g., sesquilinear-Hermitian (just the
model described here) and twice contravariant tensors. The geometric structure of
our model is very nice, but it is rather difficult to find any solution. The reason
18 its very strong, geometrically-implied non-perturbative nonlinearity. But some
academic, very particular estimations are possible. If we fix the scalar product to
some constant value, then everything reduces to the Schraodinger equation. perhaps
with non-linearity and second derivatives. In principle those are rather touchable
things. And let us try to think about the opposite possibility: just the dynamies for
the last two terms (35) as a Lagrangian. It turns out that in spite of all differences,
also then therc exist some matrix-exponential solutions. Namely, one can casily
show that there exist for the time-dependence of 7 solutions of the form:

Lan(t) = G exp(Ft)%, (47)
where FF € L(W) >~ W & W* and the initial value I'(0) = G € Herm(W @ W)
is & Hermitian form. Then one can show that ['(f) remains Hermitian for any time
value ¢ € R if the lincar mapping

obar = Gz E5 (48)
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is also Hermitian, of course, in the absolute G-independent sense. Let us observe
that if £ has negative eigenvalues, then pE tends to zero when { — oo. And it
tends to infinity when the eigenvalues are positive. One can suspect this to be
something like the academic model of decoherence and measurement, at least in
some sense. Of course, as usual in the nonlinear interaction problems, there is no
superposition of particular solutions. So, the problem of solving equations following
from the total Lagrangian (35) may be very difficult. Nevertheless, we hope that the
high symmetry G L(W) may be helpful in finding at least some physically interesting
solutions. Let us also state that the last two terms in (35) correspond to the simplest
possibility. The total class of G L(W )-invariant Lagrangians for (¥, &) is much wider
[11]. And let us stress that (48) are solutions of equations obtained by variation of
[-Lagrangian given by the last two terms of (35):

A
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