
ABSTRACT 

This paper presents and experimentally verifies a method for identification of 
structural  damage.  The  work  is  focused  on  such  damage  types  as  cracks, 
delamination  or excessive allowances,  which may not  cause significant  stiffness 
degradation  but  induce  noticeable  additional  damping.  Damaged  elements  are 
located and the damage is assessed in terms of the damage-induced damping and 
also the stiffness degradation. The Virtual Distortion Method (VDM) is used for 
modeling of the modifications.

INTRODUCTION

This  work is  focused on identification  of  such damage patterns  that  can be 
poorly correlated with stiffness degradation levels of the damaged elements,  but 
induce noticeable additional damping [1,2]. In such cases, it is not effective to base 
the identification process solely on monitoring of the related stiffness modifications. 
Other approaches have been proposed that focus on more sensitive features like the 
sub- and superharmonic resonances [3] or the adaptive likehood ratio [4]. However, 
the sensitivity of these features is strongly related to the level of damping present in 
the system and induced by the damage [4,5]. The methodology proposed here aims 
at  detecting  the  damaged  elements  and  assessing  the  damage  scopes  via 
identification  of  the  damage-induced  material  damping,  besides  the  stiffness 
degradation.

According  to  the  excellent  survey  of  damping  identification  methods  by 
Srikantha Phani and Woodhouse [6], the method proposed here can be classified as 
a “matrix method” of damping identification. However, it seems to be more general, 
as it allows for a reduced-size local identification (full FRF matrix and response 
vectors of the damaged structure are then not required), a more flexible treatment of 
damping parameters  of various origins,  and unlike as in  [7],  for a simultaneous 
identification of modifications of stiffness. Moreover, if all the degrees of freedom 
(DOFs) related to  the potentially damaged elements are measured, the (essentially 
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nonlinear) identification problem can be effectively reduced into a simple linear 
problem.

The damping model  assumed here is a generalized Rayleigh damping model 
which allows for separate modifications of damping coefficients in each element. 
The Virtual Distortion Method (VDM) [8] is used as a convenient methodology that 
allows for modeling of concurrent modifications of damping and stiffness at the 
element level. Moreover, as it is an essentially local approach, which models the 
structure in terms of so-called influence matrices, there is no need to formulate and 
solve the full equation of motion of the damaged structure. The structural response 
to an external excitation is composed of the response of the undamaged structure 
and of the residual, which is the responses of the intact system to a certain field of 
virtual distortions, which model the damage in chosen structural elements in terms 
of the related modifications of the material damping and stiffness. The effects of the 
distortions on the response are computed quickly via the VDM-specific influence 
matrix.

A preliminary experimental verification of the proposed method is performed 
using a cantilever beam with a single suspension element. The damage is modeled 
by  including  an  additional  damping  element  that  modifies  the  suspension 
characteristics of the beam.

DAMPING MODEL

A generalized  Rayleigh  damping  model  is  used.  In the  standard  model,  the 
damping matrix  is a weighted sum of the mass matrix  and the stiffness matrix 

, which are used to represent respectively the environmental and material damping 
factors,  .  The  present  work  focuses  on  the  material  factors  and 
generalizes  the  standard  model  to  allow  for  independent  modeling  of  material 
damping in separate structural elements. For notational simplicity it is assumed here 
that  the  considered  structure  is  a  truss;  however,  the  approach  can  be 
straightforwardly  applied  also  for  other  structures.  In  the  case  of  a  truss,  the 
stiffness  matrix  can  be  directly  related  to  the  diagonal  matrix   of  element 
stiffnesses  by

, (1)

where   is  the  diagonal  matrix  of  element  lengths   and   is  the  geometric 
(displacement-strain) matrix, which transforms the global displacements  to local 
element strains, that is  . Independent modifications of material damping at 
the element  level  is  possible  by expressing the damping matrix  of the damaged 
structure in the following form:

, (2)

where   represents  the total  damping of  the original  undamaged structure and 
 is  a  diagonal  matrix  of  the  modifications  to  the  material 

damping factors of the elements of the undamaged structure.



VDM-BASED REMODELING OF DAMPING AND STIFFNESS

Concurrent modifications of material damping and of stiffness are modeled at 
the element level by a single field of virtual distortions imposed on the original 
undamaged structure. The response of the damaged structure is thus modeled as the 
response of the unmodified structure distorted by the virtual distortions.

The analysis is performed in the frequency domain. A harmonic excitation  
is  considered,  where   is  a  vector  of  the  complex  excitation  amplitudes.  The 
harmonic response of the original structure is denoted by  (displacements) and  
(strains), which are assumed to be known. They can be found by solving the linear 
equation  of motion  of the undamaged structure,  which yields  the following two 
quasi-static formulations, which are equivalent by (1):

,
. (3)

Assume  that  some  of  the  elements  are  damaged  and  that  the  damage  is 
represented  by  two  diagonal  matrices:   of  the  modifications  to  the  original 
material damping factors and  to the original matrix of element stiffnesses . The 
quasi-static equation of motion of the damaged structure is thus

, (4)

which could be directly solved to obtain the response of the damaged structure. 
However, it involves all DOFs and thus requires a solution of the full system, which 
is  impractical  in case of a large structure and localized damages.  Moreover, the 
response is related to the modifications  and  in an essentially nonlinear way, 
and hence any direct solution of the corresponding full inverse problem would be 
numerically costly. The VDM models the damage locally (at the element level) by 
imposing response-coupled harmonic virtual distortions on the affected elements. 
Let  denote the global vector of their complex amplitudes. Since they distort the 
unmodified structure, the equation of motion of the modeled structure is

. (5)

A comparison of (4) and (5) yields 

,          or          . (6)

In (6), ,  is the identity matrix and , where 
 is the stiffness reduction ratio of the th element. As the system matrix  

is diagonal, each virtual distortion is proportional to the response of the involved 
element, and vanish if the element is non-damaged. Moreover, with respect to the 
response, it  can be decomposed into the in-phase component,  which models  the 
stiffness modification, and the quadrature component, which models the damping 
modification. The original structure is linear and the response depends linearly on 
the virtual distortions,



,
,

(7a)
(7b)

where   and   are called the influence matrices  and have to  be pre-computed. 
Therefore,  given  the  modification  coefficients,  the  virtual  distortions  can  be 
computed by

, (8)

which involves only the damaged elements and thus can be a much smaller system 
than (4). Given the distortions, the response of the damaged structure can be found 
by (7).

DAMAGE IDENTIFICATION

The  damage  identification  problem,  as  defined  in  this  work,  is  an  inverse 
problem of identification of the modifications of material damping and stiffness at 
the element level,  based on the response of the damaged structure (  and/or  ), 
which is  measured in certain points.  A straightforward solution would require a 
minimization of the residual of (4) with respect to all coefficients  and , which 
is a nonlinear problem that can be numerically costly, especially in case of a large 
structure and a localized damage. In this section, two alternative and significantly 
simpler approaches are proposed.

The first approach can be used if all the degrees of freedom (DOFs) that are 
related to the potentially damaged elements are measured, so that their (idealized) 
strain  response   is  known.  The  identification  problem can  be  then  effectively 
reduced into a simple linear problem. First, the virtual distortions that result in the 
known response are computed by solving (7), which is reduced before to include 
only the measurement points and the potentially damaged elements. Notice that, in 
order  to  guarantee  that  it  is  uniquely  solvable,  enough  many  independent 
measurements  have to  be provided (with  respect  to  the number of  the potential 
damages). Then, given the distortions, the element-specific coefficients of damping 
and stiffness modifications can be computed directly by (6).

However, equation (6) can be used this way only if all the (idealized) strain 
responses   of  the  potentially  damaged  elements  are  known.  If  they  are  not 
measured, the more general second approach has to be used, which uses (8) and (7) 
to  compute  the  response  and  amounts  to  the  minimization  of  the  following 
objective function:

(9)

which measures the discrepancy between the measured and the computed responses 
of the damaged structure.



EXPERIMENTAL VERIFICATION

A  preliminary  experimental  verification  of  the  proposed  approach  was 
performed using a 0.4 m long cantilever beam with a single suspension element, see 
Figure  1.  The  damage  of  the  suspension  element  was  simulated  by  mounting 
additionally a small damper with the identified damping coefficient. A numerical 
model of the undamaged structure was prepared and used to determine the influence 
matrices  as  well  as  the  velocity  responses  to  the  external  excitation  and  the 
harmonic virtual distortion.

The  identification  was  performed  in  a  range  of  frequencies  from 72  Hz  to 
110 Hz. Since the strain of the damper was not measured, the second approach was 
used. Figure 2 compares the identified and the actual values of the coefficient  . 
The identification error depends on the frequency and ranges from 10% to 40%. 
The discrepancies can be caused by the crudeness of the numerical model of the 
undamaged  structure  used  in  computations,  which  will  be  improved.  In further 
steps, more complex structures will be investigated, including a larger number of 
structural damages. Besides damping modifications,  stiffness degradation will  be 
also taken into account in further experimental work.

Figure 1. Experimental test stand: damaged structure

Figure 2. Identified and actual values of the damping coefficient 



CONCLUSIONS

This  paper  presents  and experimentally verifies  a  method  for  modeling  and 
identification of structural damage. It is focused on such damage types that may not 
cause significant  stiffness degradation but induce noticeable additional  damping. 
Concurrent modifications of damping and stiffness are modeled at the element level 
using the Virtual Distortion Method (VDM). The method is essentially local, so that 
there is no need to formulate and solve the full equation of motion of the damaged 
structure.
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