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1. Introduction

This research considers off-line reconstruction of spatial and temporal characteristics of dy-

namic loads in linear and elastoplastic systems. The motivation is the need for a technique for efficient

a posteriori identification of the scenario of a sudden load, to be applied in black-box type systems.

There is an ongoing research effort in the field, see e.g. [2] for a relatively recent review. How-

ever, the structures are usually assumed to be linear and the generality of the considered loads is

limited to a single pointwise load with the location known in advance or determined in an additional

nonlinear optimization. Moreover, the reconstruction is often simplified by assuming stationarity of

the load. If a moving force is considered, it has a constant velocity. A number of papers deals with

single pointwise impact loads only and disregards all load characteristics besides the location. Papers

that do consider multiple independent loads, assume superfluous number of sensors.

The approach proposed here is aimed at the fully general case. In the so-called underestimated

case it allows to use a limited number of sensors to reconstruct general dynamic loads of unknown

locations, including simultaneous multiple impacts, freely moving and diffuse loads. However, this

is at the cost of the uniqueness of reconstruction, which can be attained only with additional heuristic

assumptions. This way an equivalent load is identified, which is observationally indistinguishable

from the actual load and optimum in a given sense. Additionally, the problem of optimum sensor

location is discussed.

2. Response to dynamic load and load reconstruction

At zero initial conditions, the discretized response ε of a linear system can be expressed by

means of a simple convolution equation ε = Bp, where the vector p collects the discretized loads

in all load-exposed degrees of freedom (DOF) and B is the system transfer matrix. The elastoplastic

behavior is included by combining the Virtual Distortion Method (VDM) [1] with the return mapping

algorithm. The convolution equation takes into account the effects of the plastic distortions β of the

yielding elements, ε =
[

BB
P
] [

p
T βT

]T
. The distortions β have to satisfy the constitutive law and

are nonlinearly dependent on the unknown load p [3]. Load reconstruction amounts to a deconvo-

lution: compare the measured εM and the modeled ε system responses, and obtain the excitation by

solving the resulting system of equations. For a linear system, it leads to a large and intrinsically

ill-conditioned system of linear equations, while an elastoplastic system yields nonlinear equations.

If the system is linear overdetermined, a unique load can be found relatively easily. In under-

determined linear systems, the unknown load can be split into two complimentary components: the

reconstructible component which can be reconstructed from the measurement, and the unreconstruct-

ible component. All information about the latter is lost in the measurement process, hence it cannot be

reconstructed, but can be assumed using heuristic postulates. In an elastoplastic system, three cases

are possible: strongly overdetermined case, in which there are more sensors than load-exposed DOFs

and yielding elements, overdetermined case and underdetermined case, in which there are fewer equa-

tions than unknowns. In the strongly overdetermined case, the load p and the distortions β can be

treated as uncoupled; the resulting equation can be considered linear and solved directly. The other

two cases lead to nonlinear problems, which can be solved by gradient-based optimization techniques.
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Figure 1. Numerical example: (top left) correlation plot for the two proposed sensor location criteria. Each

dot corresponds to one of 2047 considered locations of 1 to 11 sensors; (top right) assumed actual load evo-

lution; (bottom left) identification result for the linear system, four sensors and 5 % rms noise level; (bottom

right) identification result for the elastoplastic system, five sensors and 5 % rms noise level

3. Optimum sensor location

Optimum sensor location is crucial for the accuracy of the reconstruction. Two sensor location

criteria are proposed, based either on the dimension of the unreconstructible load subspace or on its

coincidence with a given set of expected or typical loads. These criteria tend to be negatively corre-

lated, thus a third, compound criterion is proposed, which can be seen as a single a priori measure of

reconstruction accuracy.

4. Numerical example

In the numerical example a 119 element truss structure is used. There are 100 measurement

time steps (of 0.1 ms) and 110 reconstruction time steps. Since 12 DOFs are load-exposed and four

(or five) sensors are used, the resulting system is a strongly underdetermined (1320 unknowns and

400 or 500 equations). The assumed testing load and the results are shown in Figure 1.
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