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Reverberant responses are widely used to characterize acoustic properties of rooms, such as the early
decay time (EDT) and the reverberation times T20 and T30. However, in real conditions a sound decay is
often deformed by background noise, thus a precise evaluation of decay times from noisy room responses
is the main problem. In this paper this issue is examined by means of numerical method where the decay
times are estimated from the decay function that has been determined by nonlinear polynomial regression
from a pressure envelope obtained via the discrete Hilbert transform. In numerical experiment the room
responses were obtained from simulations of a sound decay for two-room coupled system. Calculation
results have shown that background noise slightly affects the evaluation of reverberation times T20 and
T30 as long as the signal-to-noise ratio (SNR) is not smaller than about 25 and 35 dB, respectively.
However, when the SNR is close to about 20 and 30 dB, high overestimation of these times may occur as
a result of bending up of the decay curve during the late decay.

Keywords: room acoustics, reverberation, decay times, room response, background noise, coupled rooms.

1. Introduction

One of the most fundamental aims of room acous-
tics is a prediction of decay times from measure-
ments of a sound pressure decay inside enclosures.
An accurate determination of decay times is pri-
mary for both absorption measurements in reverber-
ation chambers (Barron, Coleman, 2001; Nutter
et al., 2007) and the evaluation of acoustics of per-
formance spaces (Bradley, 2005; Goła, Suder-
Dębska, 2009; Adelman-Larsen et al., 2010; Be-
ranek, 2011) as well as ordinary rooms (D́iaz, Pe-
drero, 2005, 2007). Decay times are evaluated from
a decay curve defined as the graphical representation
of the decay of the sound pressure level in a room
as a function of time after the cut-off of a continu-
ous sound source (ISO 3382, 2012). The estimation of
decay times is achieved by approximation of appropri-
ate parts of the decay curve by fitting lines obtained
by a linear least-squares regression and then a calcu-
lation of the decay times from the slope of these lines.
Another method of determining the decay curve con-
sists in the reverse-time integration of squared impulse
response (Schroeder, 1965). This method results in
exceptionally smooth decay curves, making a determi-

nation of decay times simple and accurate. However,
when the room impulse response is contaminated with
high level background noise the method’s accuracy is
substantially reduced because of a distortion of de-
cay curve slope during the late decay. This problem
has been extensively studied in the past (Chu, 1978;
Lundeby et al., 1995; Xiang, 1995; Morgan, 1997;
Xiang, Goggans, 2001) and different remedial tech-
niques have been proposed (Karjalainen et al., 2002;
Dragonetti et al., 2009).
A subject of this paper is to study an accuracy

of evaluation of decay times from room responses con-
taminated with background noise. The research is ded-
icated to low-frequency range where acoustic modes
excited inside an enclosure are well separated. The re-
verberant response of room, which begins just after
turning off the continuous sound source, is described
theoretically by means of a modal expansion of a sound
pressure for room systems with relatively small sound
damping. The irregular room, which is considered in
the study, has a form of the coupled room system con-
sisting of two rectangular subrooms connected through
an acoustically transparent opening. The choice of such
a system was dictated by the fact that coupled room
systems have the ability to create a nonlinear profile
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of pressure level decay (Xiang, Goggans, 2001, 2003;
Meissner, 2007a, 2008a). The decay times were esti-
mated from a decay function computed by nonlinear
polynomial regression, corresponding to average long-
time changes in a pressure envelope obtained via the
discrete Hilbert transform. The practical issues in us-
ing the discrete Hilbert transform in signal process-
ing were examined recently by the author (Meissner,
2012a, 2012b) and in order to improve an accuracy of
this procedure, a numerical algorithm consisted in the
appropriate modification of a discrete pressure signal,
was proposed.

2. Simulation of reverberant response of room

In low-frequency range, the reverberant behaviour
of room is strongly frequency dependent (Meissner,
2007b, 2008b). Thus, in a theoretical model it was as-
sumed that a room is excited by a a pure-tone sound
source. When a steady-state is achieved, the source is
abruptly switched off and the sound energy accumu-
lated inside the room interior is absorbed on walls and
an acoustic reverberation takes place. This reverbera-
tion consists of carrier waveforms of the decaying enve-
lope that can be described by exponentially decreasing
cosinusoidal functions (Meissner, 2008b)

Pm(r, t) = Am(r)e−rmt cos(Ωmt− βm), (1)

where t ≥ 0 is the time, r = (x, y, z) represents the
receiving position, m = 1, 2, 3, . . . is the mode num-
ber, Am(r) describes the space distribution of mode
amplitude

Am(r) =

c2ωmΦm(r)

∫
V

Q(r′)Φm(r′) dv′
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√[
(ω2

m − ω2)
2
+ 4r2mω2

] , (2)

where c is the sound speed, V is the room volume, ω is
the source frequency, Q(r) is the volume source distri-
bution, Φm(r) is the eigenfunction, ωm is the natural
mode frequency, Ωm =

√
ω2
m − r2m is the mode fre-

quency for damped oscillation, βm is the initial mode
phase

βm = tan−1

[
rm(ω2

m + ω2)

Ωm(ω2
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and rm is the modal damping coefficient

rm =
1

2
ρc2
∫
S

Φ2
m(r′) ds′

Z
, (4)

where ρ is the air density, S is the surface of room
walls and Z is the wall impedance. In real conditions,

the room response is usually deformed by the back-
ground noise, then assuming that the noise has a uni-
form spectral distribution, the formula for the rever-
berant response of room in noisy environment can be
written as

p(r, t) =

M∑
m=1

Pm(r, t) +AN ξ(t), (5)

where AN is the noise amplitude and ξ(t) is the unity-
level random signal. In a computer algorithm, the sig-
nal ξ(t) is created by the function generating random
real numbers from the range (−1, 1). In Eq. (5) the in-
dex M corresponds to the last mode whose frequency
is smaller than the Schroeder frequency

fs = c

√
6

A
, (6)

where A is the equivalent absorption area. As was
proved by Schroeder (1996), below this frequency
the modal density is low and particular modes can be
decomposed from the room response, thus in multi-
mode resonance systems the Schroeder frequency fs
marks the transition from individual, well-separated
resonances to many overlapping modes.
An accuracy of the method of determining the de-

cay times has been investigated for a coupled room sys-
tem consisting of two connected rectangular subrooms.
This was motivated by the fact that such a room is ca-
pable of producing a nonlinear profile of pressure level
decay which may result in significant differences in de-
cay times in the initial and late stages of sound de-
cay. A horizontal cross-section of the room is shown
in Fig. 1. The subrooms have the same height h of
3 m and their lengths and widths are the following:

Fig. 1. Horizontal plan view of analysed room system con-
sisting of two connected rectangular subrooms A and B.
Symbols show positions of sound source and observation

points.
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l1 = 5.7 m, l2 = 4 m, w1 = 8 m and w2 = 5 m. The
coupling between subrooms is realized by the open-
ing having the height h, the width w of 2 m and the
thickness d of 0.3 m. The room system was excited
with the power of 10−3 W by a harmonic source sit-
uated at the point: x = 2 m, y = 5 m, z = 1 m.
The room response was received at two observation
points: x = 3 m, y = 3 m, z = 1.8 m (subroom A) and
x = 8 m, y = 2 m, z = 1.8 m (subroom B). The walls
of subrooms A and B were assumed to be covered by
materials having the random-absorption coefficients α1

and α2. Thus, the equivalent absorption area A is the
following

A = α1S1 + α2S2 , (7)

where S1 and S2 are surfaces of walls in subrooms A
and B. In a numerical simulation the coefficients α1

and α2 were set to 0.04 and 0.185, respectively. There-
fore, in the considered case a sound absorption in sub-
room A was much smaller than in subroom B. Using
Eqs. (6) and (7), and the assumed values α1 and α2,
it is easy to calculate that the Schroeder frequency
is as follows: fs ≈ 174 Hz. Below this frequency 150
eigenmodes were found and for this set of modes the
reverberant responses of room in receiving positions

Fig. 2. Temporal changes in sound pressure p for source frequencies: a), b) 107 Hz and c), d) 151 Hz,
and noise-free conditions. Position of observation point: a), c) subroom A, b), d) subroom B.

were simulated. The eigenfunctions Φm were computed
by a numerical solution of the wave equation where
the finite difference method and the forced oscillator
method were employed (Meissner, 2007b).
A computer reconstruction of room reverberant re-

sponse was performed for two source frequencies: 107
and 151 Hz, which correspond approximately to eigen-
frequencies of 44th and 107th modes. The room re-
sponses computed for these frequencies under noise-
free conditions are shown in Fig. 2. Calculation results
indicate in a clear way that in the analyzed coupled
room system a shape of the room response and an ini-
tial amplitude of a sound decay strongly depend on
the sound frequency and a position of the observation
point. For example, when the source frequency is set
to 107 Hz, a smooth decay of the sound pressure is
observed inside the subroom A in the first receiving
position (Fig. 2a). However, a shift of this position to
the subroom B results in a fundamental change of the
response consisting in a rapid decrease in a pressure
in the initial stage of a sound decay (Fig. 2b). On
the other hand, for the source frequency of 151 Hz
large wave fluctuations in reverberant responses are
noted suggesting that in these cases the beating effect
is present (Figs. 2c, d).



50 Archives of Acoustics – Volume 38, Number 1, 2013

3. Detection of response envelope via discrete
Hilbert transform

The Hilbert transform is an important tool for a
signal analysis because it can be used in a direct exam-
ination of instantaneous properties of the signal such
as an envelope and a phase. An application of this
method to the reverberant response of rooms enables
a detection of the response envelope giving a more ac-
curate prediction of decay times. In continuous time
domain a classical definition of the Hilbert transform
H is as follows (Hahn, 1996)

H[s(t)] =
1

π

∞

−
∫

−∞

s(τ)

t− τ
dτ, (8)

where s(t) is a real-valued signal and the symbol −
∫
de-

notes the principal value integral because of the possi-
ble singularity at τ = t. Of course, the room response
obtained by a numerical simulation is of finite length
and digitally sampled, thus if the pressure p(r, t) from
Eq. (5) is uniformly sampled with the period T , the
discrete-time pressure signal is obtained

p[n] = p(r, t[n]), (9)

Fig. 3. Temporal decay of level L[n] of pressure envelope for signals shown in Fig. 2.

where t[n] = nT , n = 0, 1, . . . , N and on the left side,
the spatial coordinate r is omitted for simplicity of no-
tation. In discrete time case, the Hilbert transform H
is replaced by the discrete Hilbert transform Hd. In
order to improve an exactness of the discrete Hilbert
transform in the prediction of pressure envelope the ex-
tended discrete signal P [n] determined on the basis of
the original pressure signal p[n] is introduced (Meiss-
ner, 2012a)

P [n] =

−p[N − n], n = 0, 1, . . . , N − 1,

p[−N + n], n = N,N + 1, . . . , 2N.
(10)

The new discrete signal is determined in a double-
extended time interval and represents a discrete func-
tion having a rotational symmetry with respect to the
origin of coordinate system. This method of signal pro-
cessing reduces an inaccuracy of the discrete Hilbert
transform generated by a limitation of a signal dura-
tion (end effect) and caused by the fact that for ex-
ponentially decaying harmonic signals the Bedrosian
identity (Bedrosian, 1963) is not satisfied. Using a
definition of the discrete Hilbert transform for non-
periodic signals (Kak, 1970), the Hilbert transform of
the extended signal P [n] is determined by
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Hd{P [n]} =


2

π

∑
m=odd

P [m]

n−m
, n even,

2

π

∑
m=even

P [m]

n−m
, n odd.

(11)

Subsequently, a logarithmic decay of a pressure enve-
lope is found from the equation

L[n] = 20 log(E[n]/E[0]), (12)

where E[n] =
√
P 2[n] +H2

d{P [n]} and E[0] is the en-
velope at a beginning of a sound decay.
Calculation results in Fig. 3 depict temporal

changes in the relative level L[n] of the pressure enve-
lope calculated for the room responses shown in Fig. 2
by applying the method presented above. For the first
room response, the level L[n] in the analysed time do-
main decreases almost linearly with the time showing
that in this case a reverberation process can be de-
scribed by a single decay time. A characteristic prop-
erty of the second room response is a considerable dif-
ference between decay times in the early and late stages
of the decaying sound. In the last two cases significant
fluctuations of the level L[n] are observed and they are
due to a presence of two dominant modes of slightly

Fig. 4. Temporal changes in level L[n] for signals from Fig. 2 with added high level background noise
(LN = 60 dB).

different frequencies in room responses. This causes the
pressure envelope to fluctuate with a frequency equal
to the difference between frequencies of these modes
(the beating effect).
Numerical data in Fig. 4 show changes in the room

responses when the sound decay is deformed by a high
level background noise (AN = 2 × 10−2 Pa, the noise
level LN of 60 dB). Under such very noisy conditions,
the decrease in the relative level L[n] is noted in the
initial stage of reverberation process until the decaying
signal is masked by the noise. A duration of this ini-
tial stage depends directly on the signal-to-noise ratio
(SNR) and of course, it is visibly smaller for low SNRs
as is evident from the comparison of Figs. 2 and 4.

4. Evaluation of decay times

As was shown in the previous section, an appli-
cation of the discrete Hilbert transform method is a
simple way to calculate the relative level L[n] of a pres-
sure envelope in room responses. However, an accuracy
of a direct evaluation of decay times from changes in
the level L[n] is substantially limited by a presence of
background noise and large fluctuations of pressure
in some responses. Therefore, in a numerical procedure
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the function L[n] was employed to construct the de-
cay function Lav describing average long-time changes
in a sound pressure level. This function was calcu-
lated by nonlinear polynomial regression and it was
finally used to predict decay times. Examples of func-
tions Lav computed by this method (solid lines) and
the level L[n] corresponding to these functions (gray
lines) are shown in Fig. 5. The results were obtained
for the sound source of frequency 151 Hz located in
the subroom A and the background noise level LN of
0 and 60 dB.

Fig. 5. Level L[n] of pressure envelope (gray lines) and
decay function Lav calculated by polynomial regres-
sion of 8th order (solid lines) for source frequency of
151 Hz and noise level LN: a) 0 dB, b) 60 dB. Obser-

vation point in subroom A.

The estimation of decay times was based on finding
a fit line to appropriate parts of the function Lav and
it was realized by a linear regression. In order to prop-
erly characterize the reverberation process, three decay
times were computed: the early decay time (EDT) pre-
dicted on the basis of a drop of Lav from 0 to −10 dB
and the reverberation times T20 and T30 estimated
from a decrease in Lav from −5 to −25 and −35 dB, re-
spectively. The early decay time is always determined
from measurements because the initial decay is impor-
tant from the subjective viewpoint. The decay time
T30 is a standard measure of the reverberation time
under low-noise conditions. However, when the decay
curve does not have sufficient dynamic range due to
the presence of high level background noise, the de-

cay time T20 is used as appropriate measures of the
reverberation time (ISO 3382, 2012).
Results of evaluation of the decay times EDT, T20

and T30 are summarized in Tables 1 and 2. They illus-
trate changes in the decay times with the background
noise level LN increasing from 0 to 60 dB in 10 dB
steps and show variations of these times with corre-
sponding SNRs. In addition to these data, in Tables 1
and 2 dimensionless parameters ∆EDT, ∆T20 and ∆T30

are also collected. These quantities are defended as

∆EDT =
|EDT(LN)− EDT(0)|

EDT(0)
, (13)

∆T20 =
|T20(LN)− T20(0)|

T20(0)
, (14)

∆T30 =
|T30(LN)− T30(0)|

T30(0)
, (15)

where EDT(0), T20(0) and T30(0) are values of decay
times for the background noise level LN equal to zero
(AN = 2×10−5 Pa), thus they represent relative errors
in the evaluation of decay times due to the presence of
background noise.
Simulation data collected in upper part of Table 1

were obtained in the receiving position located in the
subroom A for the source frequency of 107 Hz. In this
case the room response is characterized by large and
moderate SNRs (37–97 dB) resulting in a good ac-
curacy in determination of decay times. Since the re-
sponse is dominated by one acoustic mode all decay
times are very similar (3.012–3.050 s). For the same
source frequency and the observation point located in
subroom B, the decay function exhibits a “sagging”
appearance in an initial stage of decay (Fig. 3) causing
that the early decay time is approximately three times
smaller than the reverberation times T20 and T30 eval-
uated from the late decay. Horizontal lines in Table 1
denote the case when the SNR is below 30 dB making
it impossible to determine the reverberation time T30.
Calculation results in Table 2 were obtained for the

source frequency of 151 Hz. They confirm that decay
functions created on the basis of signals received at
both observation points are highly nonlinear because
the decay times considerably differ. For example, if the
observation point is located in the subroom A and the
background noise level LN is zero, the early decay time
is approximately 1.9 times smaller than T20 and 2.2
times smaller than T30. On the other hand, when this
point is located in the subroom B, the ratios T20/EDT
and T30/EDT are respectively equal to 2.6 and 2.3 for
LN = 0. Because of smaller signal dynamics, the ef-
fect of background noise on the reverberation process
manifests itself through high increase in reverberation
times T20 and T30 for the lowest SNRs (observation
point in subroom A) or a total impossibility of deter-
mining these reverberation times for a number of cases
(observation point in subroom B).
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Table 1. Decay times EDT, T20, T30 and relative errors ∆EDT, ∆T20 , ∆T30 versus background noise level
LN and signal-to-noise ratio. Source frequency of 107 Hz. Observation point in subroom A (upper part of

table) and subroom B (bottom part of table).

LN [dB] SNR [dB] EDT [s] ∆EDT [%] T20 [s] ∆T20 [%] T30 [s] ∆T30 [%]

0 97 3.050 0 3.012 0 3.028 0
10 87 3.050 0.006 3.012 0.002 3.028 0
20 77 3.049 0.024 3.012 0.009 3.028 0.001
30 67 3.047 0.080 3.012 0.031 3.028 0.003
40 57 3.048 0.071 3.013 0.052 3.028 0.007
50 47 3.026 0.782 3.015 0.107 3.033 0.179
60 37 3.035 0.497 3.025 0.456 3.029 0.047

0 88 1.086 0 3.498 0 3.260 0
10 78 1.089 0.237 3.498 0.013 3.260 0.007
20 68 1.097 0.959 3.498 0.024 3.260 0.026
30 58 1.105 1.712 3.497 0.055 3.258 0.057
40 48 1.117 2.861 3.495 0.109 3.259 0.016
50 38 1.186 9.179 3.490 0.236 3.245 0.463
60 28 1.240 14.12 3.460 1.099 – –

Table 2. Decay times EDT, T20, T30 and relative errors ∆EDT, ∆T20 , ∆T30 versus background noise level
LN and signal-to-noise ratio. Source frequency of 151 Hz. Observation point in subroom A (upper part of

table) and subroom B (bottom part of table).

LN [dB] SNR [dB] EDT [s] ∆EDT [%] T20 [s] ∆T20 [%] T30 [s] ∆T30 [%]

0 81 1.554 0 2.889 0 3.451 0
10 71 1.554 0.041 2.888 0.055 3.451 0.003
20 61 1.554 0.008 2.890 0.011 3.452 0.024
30 51 1.569 0.949 2.942 1.830 3.463 0.352
40 41 1.584 1.907 3.002 3.909 3.490 1.123
50 31 1.604 3.175 3.118 7.926 6.655 92.84
60 21 1.537 1.080 5.501 90.38 – –

0 72 1.631 0 4.246 0 3.818 0
10 62 1.631 0.041 4.249 0.070 3.818 0.012
20 52 1.630 0.050 4.255 0.199 3.823 0.153
30 42 1.613 1.070 4.276 0.693 3.863 1.192
40 32 1.589 2.527 4.334 2.071 – –
50 22 1.687 3.478 – – – –
60 12 2.003 22.84 – – – –

5. Summary and conclusions

Reverberation is the most basic and easily per-
ceived acoustical property of enclosures, therefore one
of the most important objectives of room acoustics is
an evaluation of decay times from room reverberant re-
sponses. However, in real measurements a late sound
decay is usually contaminated with background noise,
thus an accurate prediction of reverberation times from
noisy room responses is the main concern. The problem
was examined using a numerical technique where the
decay times are estimated from the best straight line fit
to the decay function that has been calculated by non-
linear polynomial regression from a pressure envelope
obtained via the discrete Hilbert transform. A choice

of such a procedure was a consequence of large fluc-
tuations of the pressure envelope arising from noise
disturbances and modal interactions which cause the
beating effect.
Room responses exploited in a numerical experi-

ment were adopted from sound decay simulations, per-
formed for a coupled room system consisting of two
connected rectangular subrooms. As a result of com-
plex room shape and irregular distribution of absorb-
ing material, a nonlinear behaviour of a pressure level
decay was noted. The numerical experiment indicated
that the background noise only slightly influences the
evaluation of reverberation times T20 and T30 as long
as the SNR is not smaller than about 25 and 35 dB,
respectively. This implies that the proposed method
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tolerates clearly smaller dynamic ranges for evaluation
of the reverberation times T20 and T30 than is required
by the ISO 3382 standard.
In the past, several method were applied for es-

timating decay times. A nonlinear iterative regres-
sion method for evaluating reverberation times from
Schroeder’s decay curves was proposed by Xiang
(1995). He found that the SNR of 35 dB is a sufficient
dynamic range for accurate prediction of the reverber-
ation time T30 and this result is in accordance with
the finding of this study. The method of Xiang was
extended by Xiang and Goggans (2001) to multirate
decay functions using Bayesian probability theory and,
as was demonstrated, for two coupled rooms Bayesian
decay time estimation yields a reliable value when the
SNR is higher than 41 dB.
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