
EPJ E
Soft Matter and 
Biological Physics

your physics journal

EPJ .org

Eur. Phys. J. E (2013) 36: 31 DOI 10.1140/epje/i2013-13031-2

Lateral migration of flexible fibers in Poiseuille
flow between two parallel planar solid walls

Agnieszka M. S�lowicka, Eligiusz Wajnryb and Maria L. Ekiel-Jeżewska
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Abstract. Dynamics of non-Brownian flexible fibers in Poiseuille flow between two parallel planar solid
walls is evaluated from the Stokes equations which are solved numerically by the multipole method. Fibers
migrate towards a critical distance from the wall zc, which depends significantly on the fiber length N and
bending stiffness A. This effect can be used to sort fibers. Three types of accumulation are found, depending
on a shear-to-bending parameter Γ . In the first type, stiff fibers deform only a little and accumulate close
to the wall, where their tendency to drift away from the channel is balanced by the repulsive hydrodynamic
interaction with the wall. In the second type, flexible fibers deform significantly and accumulate far from the
wall. In both types, the fiber shapes at the accumulation positions are repeatable, while in the third type,
they are very compact and non-repeatable. The difference between the second and third accumulation types
is a special case of the difference between the regular and irregular modes for the dynamics of migrating
fibers. At the regular mode, far from walls, the fiber tumbling frequency satisfies Jeffery’s expression, with
the local shear rate and the aspect ratio close to N .

1 Introduction

Dynamics of flexible fibers in simple shear and Poiseuille
flows has been analyzed theoretically, numerically and ex-
perimentally in numerous publications [1–12]. Migration
of fibers or vesicles in Poiseuille flow [13–19] is the fun-
damental problem of modern lab-on-chip hydrodynam-
ics, important in various biological, medical and indus-
trial contexts, such as Brownian dynamics of proteins,
actins, DNA or biological polymers, cell motion, swim-
ming of microorganisms, drug delivery, transport of mi-
croparticles [20–22].

For significant pressure differences, corresponding to
large maximal flow velocities, migration is caused by fluid
inertia [23]. However, fluid flows in microchannel devices
often take place at low-Reynolds-numbers. In such sys-
tems, Brownian rigid rods migrate towards the wall [13,
14], and flexible fibers to an off-center position [24–27].

For non-Brownian systems, the key question is un-
der what conditions there exist off-center distances from
microchannel walls where flexible fibers tend to accumu-
late, what are their values, and how they depend on the
fiber size, aspect ratio and flexibility. The importance of
this problem is straightforward. Focusing of micro and
nanoparticles is essential for their counting, detecting, and
sorting [28,29].

a e-mail: mekiel@ippt.pan.pl

The dynamics of flexible fibers is also interesting from
the fundamental point of view [30]. Evolution of their non-
straight shapes is related to the existence of a family of
modes, which are activated if the characteristic parameter
exceeds subsequent threshold values. The parameter is de-
termined as the ratio of the viscous forces to the bending
ones [9–12].

In this paper, we study both practical and fundamen-
tal aspects of the fiber dynamics. We investigate where
the fibers accumulate, using the bead model and the mul-
tipole method [31] of solving the Stokes equations, imple-
mented in a very accurate, well-tested hydromultipole

numerical code [32]. The goal is to determine how position
of accumulation planes depends on the the fiber bending
stiffness and its length, and to relate the findings to the
characteristic parameter and its thresholds. In sect. 2, we
specify the system and theoretical model. The results are
presented in sect. 3. In sect. 4 we conclude, discussing dif-
ferent modes of the fiber dynamics and thresholds of the
characteristic parameter.

2 System

2.1 Fluid flow

We analyze motion and shape deformation of a single non-
Brownian flexible fiber, moving freely in Poiseuille flow
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Fig. 1. A flexible fiber entrained by Poiseuille flow between
two parallel solid walls.
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Fig. 2. Reference system: a flexible fiber entrained by un-
bounded Poiseuille flow (without walls).

inside a channel made of two parallel solid walls, as illus-
trated in fig. 1. The fluid velocity v and pressure p satisfy
the stationary Stokes equations [33,34]

η∇
2
v − ∇p = 0 and ∇ · v = 0, (1)

where η is the fluid dynamic shear viscosity.
The fluid is confined between two parallel infinite solid

walls at z = 0 and z = h, with the Poiseuille flow velocity

v0 = 4z(h − z)/h2
x̂. (2)

The stick boundary conditions are satisfied at the surface
of the fiber and at the solid walls, which confine the fluid.
At infinity, the fluid velocity v = v0.

Distances are normalized by the fiber thickness d, ve-
locities by the maximal velocity vm of the Poiseuille flow,
forces by f0 = πηdvm, and time by t0 = d/vm.

The system defined above is important for practical ap-
plications, but complex to be studied theoretically. First,
the shear rate depends on the position z across the chan-
nel, and second, the hydrodynamic interaction of the fiber
with the walls is significant. To separate these two effects,
we also study a reference system (see fig. 2), with the
Poiseuille flow given by the same eq. (2), but not bounded
by the walls, and extending beyond 0 ≤ z ≤ h.

2.2 Fiber dynamics

A single fiber consists of N solid spherical beads of di-
ameter d equal to the fiber thickness [35]. Owing to non-
hydrodynamic constraints, the beads do not move apart.
There are no non-hydrodynamic torques, and the non-
hydrodynamic force exerted on each bead i = 1, . . . , N

by its neighbors is the sum of the elastic and bending
forces [20], Fi = F e

i + F b
i , with

F e
i = −k(li − l0)t̂i + k(ll+1 − l0)t̂i+1, (3)

F b
i = −

A

2l0
∇i

N−1
∑

n=2

(

t̂n+1 − t̂n

)2
, (4)

where k is the ratio of Hooke’s constant to f0/d and A is
the ratio of the bending stiffness to f0d

2 (in the follow-
ing just called the bending stiffness). In the above equa-
tion, l0 and li denote the equilibrium and time-dependent
distances between the centers of the consecutive beads,
respectively, with li = |ti|, where ti = ri − ri−1 is the dif-
ference between the positions rk of the consecutive bead
centers k = i − 1, i. Here, t̂i = ti/li and ∇i is the deriva-
tive with respect to ri. The total non-hydrodynamic force

applied to all the fiber beads vanishes,
∑N

i=1
Fi = 0.

Translational and rotational velocities of the fiber
beads, U = (U1, . . . ,UN ) and Ω = (Ω1, . . . ,ΩN ), are
linear combinations of the non-hydrodynamic forces F =
(F1, . . . ,FN ) exerted on them all, and the multipoles of
the ambient velocity field (2), with the coefficients deter-
mined by the elements of the grand mobility matrix [36].
All the terms related to the ambient flow can be inter-
preted as resulting from the hydrodynamic forces F0 =
(F01, . . . ,F0N ) and torques T0 = (T01, . . . ,T0N ), exerted
by the same ambient flow (2) on motionless beads fixed
at the same instantaneous positions as the fiber beads.
Therefore

(

U

Ω

)

= µ ·

(

F + F0

T0

)

, (5)

with the mobility matrix µ dependent on the instanta-
neous positions of all the bead centers, r = (r1, . . . , rN ).

For a given configuration, values of F0, T0 and µ

are determined by the multipole expansion of the Stokes
equations [31,37], with the wall effects evaluated by the
single-wall superposition [38,39]. The computations are
performed with the use of the hydromultipole numer-
ical code [32]. Then, the adaptive fourth-order Runge-
Kutta method is applied to determine the fiber dynamics,

dr/dt = U. (6)

Initially, the fiber is aligned with the flow (i.e. along
the x axis), with the bead centers located at

ri(t = 0) = (il0, 0, z0), for i = 1, . . . , N. (7)

Owing to symmetry, the fiber moves in the xz plane. The
computations are three-dimensional, and no deformation
of the fiber out of the plane is observed.

2.3 Parameters

In the numerical simulations, we have used single values of
the dimensionless channel width h, Hooke’s constant k and
equilibrium distance between the consecutive beads l0,

h = 50, k = 80, l0 = 1.01. (8)
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Fig. 3. Evolution of the distance zm(t) from the fiber center of mass to the wall, for fibers initially aligned with the flow. Here,
z = 0 and z = 25 correspond to the wall and the central plane of the channel, respectively. Black circles denote flipping instants.

Table 1. The fiber length L = N/h as a fraction of the channel
width for the fiber aspect ratio N used in the simulations.

N 5 10 20

L 0.1 0.2 0.4

A large value of k and small gap size (l0 − 1) between the
beads are chosen to model compact fibers which practi-
cally do not change their length while bending.

Three different numbers of beads N have been consid-
ered, with the corresponding fiber aspect ratio (or length),
(N − 1)l0 + 1, practically equal to N . The corresponding
fraction of the channel width, L = N/h, is explicitly given
in table 1. For clarity of presentation, we focus on dis-
cussing in details the results obtained for N = 10.

Computations have been performed for a wide range of
the initial fiber positions z0 across the channel. The values
of the bending stiffness A ranged from 0.01 ≤ A ≤ 4, and
have been chosen to observe thresholds for different types
of the accumulation and different modes of the dynamics.
It is known [9–12] that the transitions between C, S and
W modes (with the names referring to the corresponding
fiber shapes) are associated with critical values of a di-
mensionless parameter, equal to the ratio of the viscous
forces (proportional to the local shear rate) to the bend-

ing ones. This parameter is widely used to characterize
systems, which are far from interfaces. However, it is clear
that under confinement (as in the system considered in
this work), there are additional wall effects which influ-
ence thresholds of the fiber dynamics. In this paper, we
study these effects, by comparing the systems with (fig. 1)
and without (fig. 2) walls. We use two basic parameters
N and A to describe the fiber evolution. For N = 10,
and given values of A and the distance zm from the fiber
center-of-mass to the closer wall, we evaluate a shear-to-
bending dimensionless number mentioned above,

Γ = (h/2 − zm)/A, (9)

and find out its critical values. We remind that h, zm

and A are dimensionless (normalized by d and πηd3vm,
respectively).

3 Results

3.1 Lateral migration and accumulation positions

In ref. [40], dynamics of fibers in the same system was ana-
lyzed, focusing on the migration towards the central plane
of the channel and its dependence on the fiber stiffness,
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Table 2. The distance zc from the wall where fibers accumulate while flipping inside the channel bounded by two walls.

N \ A 0.025 0.04 0.05 0.06 0.125 0.2 0.25 0.38 0.46 0.5 1.0 2.0 4.0

5 16.81 12.06 9.11 6.58 4.48 4.3 4.19 4.07 4.03 4.02 4.3 4.7

(±0.05) (±0.01) (±0.05) (±0.01) (±0.02) (±0.1) (±0.02) (±0.1) (±0.1) (±0.05) (±0.1) (±0.1)

3.6

(±0.1)

10 22.79 22.26 21.79 17.97 14.47 12.37 8.80 8.25 8.20 7.5 6.4

(±0.05) (±0.05) (±0.05) (±0.03) (±0.02) (±0.02) (±0.05) (±0.05) (±0.05) (±0.1) (±0.1)

11.4 10.2 8.0

(±0.4) (±0.7) (±0.5)

20 21.28 20.1 19.4 19.1 15.9 14.2 13.4

(±0.1) (±0.1) (±0.1) (±0.2) (±0.1) (±0.1) (±0.1)

aspect ratio and distance from the wall. But for certain
values of these parameters, fibers migrate away from the
central plane. In this paper, we determine the critical dis-
tance zc from the wall where fibers accumulate.

Figure 3 shows evolution of the distance zm(t) between
the fiber center of mass and the closer wall, starting from
different values zm(0) = z0. Online, positions of the fibers,
which move towards (away from) the central plane of the
channel are plotted in red (blue).

All fibers tend to an off-center position across the flow.
For N = 5, the migration rate is significantly slower than
for N = 20 (notice the 10 times larger range of times of
the upper plots in fig. 3).

The lateral migration of fibers is superimposed with
oscillations of their center-of-mass position, clearly visible
in fig. 3 for N = 20. These oscillations are related to the
fiber tumbling motion, caused by the local shear of the
flow. A flipping time tf is defined as the instant when the
end-to-end vector (which links the centers of the first and
the last beads of the fiber) becomes perpendicular to the
flow direction. The distance from the fiber center-of-mass
to the wall at time tf will be denoted as zf

zf ≡ zm(tf ). (10)

In fig. 3, consecutive positions zf are marked at four se-
lected simulation runs with N = 20. It is clear that

zf −→ zc when t −→ ∞. (11)

In the following, we will call zc “the accumulation posi-
tion” or “the accumulation distance”. Some of the evalu-
ated values of zc are listed in table 2. Their relative accu-
racy (typically, 0.5–2%), is determined as the maximum of
the oscillation amplitude and the half-a-distance between
the closest decreasing and increasing curves zm(tf ), at the
last flipping instant tf observed in our simulations.

For N = 10, the results are shown in fig. 4. Stiff
fibers (circles, blue online) accumulate close to the wall,
at N/2 < zc < N , and zc only slightly increases with the
decrease of A. However, for flexible fibers (squares, green
online), zc rapidly increases with the decreasing A. For a
sufficiently small value of A, a second accumulation plane
is also observed (diamond, violet purple online).
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Fig. 4. The distance zc from the wall where flipping fibers
accumulate, versus their bending stiffness A. Dashed lines in-
dicate constant values of Γ = (h/2 − zc)/A.

3.2 Comparison with unbounded Poiseuille flow helps
to discriminate between two accumulation mechanisms

It seems that accumulation of stiff fibers close to the chan-
nel boundary is caused by their interaction with the wall,
which prevents them from escaping. Accumulation of flex-
ible fibers far from the wall, however, seems to be caused
by another mechanism — their shape deformation and the
flow curvature. This hypothesis will be now verified.

In table 3, we evaluate accumulation positions zno-wall
c

for the same fibers and the same ambient flow as in the
previous section, but without walls (the system shown in
fig. 2). Comparison with table 2 shows that more flexible
fibers accumulate at similar positions with and without
the walls, zc ∼ zno-wall

c . An example is illustrated in the
left panel of fig. 5 (N = 10 and A = 0.2). However, the
motion of more stiff fibers significantly depends on the
presence or absence of the walls. The difference can be
seen by comparing the top and bottom plots in the right
panel of fig. 5 (N = 10 and A = 2). With walls, the fibers
accumulate at zf = zc inside the channel. Without walls,
the fibers migrate out of the “channel regime” (defined as
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Table 3. The position zno-wall

c where flipping fibers accumulate in the absence of walls. The arrows ց indicate that there is no
accumulation position — all fibers migrate away towards zm < 0.

N \ A 0.025 0.05 0.125 0.2 0.25 0.38 0.46 0.5 2.0 4.0

5 16.8 8.65 ց ց ց ց ց ց ց

(±0.1) (±0.05)

10 22.2 17.85 14.2 11.76 5.49 1.4 ց ց

(±0.05) (±0.05) (±0.1) (±0.02) (±0.05) (±0.1)

5.8

(±0.1)

20 21.4 20.0 19.1 18.6 2.6 ց

(±0.2) (±0.15) (±0.1) (±0.1) (±0.1)
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Fig. 5. Evolution of the distance zm(t) from a fiber center of mass to the closer plane, where the ambient Poiseuille flow
vanishes. Top: the flow bounded by the walls, as in fig. 1. Bottom: the same fiber and the flow, but without walls, as in fig. 2.

0 ≤ zf ≤ h), whatever is their initial position across the
flow; there is no accumulation points in this range of zf .
In table 3, such a behavior is indicated by arrows pointing
down-right.

Clearly, there exist two mechanisms of fiber accumula-
tion inside the channel. The first type of the fiber accumu-
lation is caused by its hydrodynamic interaction with the
wall (blue circles in fig. 4, A ≥ 0.50, Γ ≤ 33.6). The sec-
ond type of the fiber accumulation is caused by its interac-
tion with the flow itself (green squares in fig. 4, A ≤ 0.46,

Γ ≥ 36.4). The parameter Γ is defined by eq. (9), with the
center-of-mass taken at the flipping instant, zm ≡ zf , and
moreover, at the accumulation position, zf = zc. The tran-
sition between these two accumulation types takes place
for critical values of A0, or equivalently, Γ0, such that

0.50 ≥ A0 ≥ 0.46, (12)

33.6 ≤ Γ0 ≤ 36.4. (13)
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Fig. 6. Fiber shapes at the accumulation positions zc of the
first and second types, for a different bending stiffness A.
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versus its bending stiffness A.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
N=10

α

A

Fig. 8. The fiber fractional compression α at the accumulation
position, versus its bending stiffness A.

3.3 Fiber shapes at the accumulation positions zc

We will now investigate if different accumulation types are
correlated with different fiber shapes at the accumulation
positions zc.

In fig. 6, the fiber shapes at the accumulation positions
zc are shown for different values of the bending stiffness
A. The bottom row corresponds to the first accumulation
type (blue online), and the top and middle rows to the
second accumulation type (green online). Clearly, for the
first accumulation type, the fibers are less bent than for
the second one. This stretching effect is caused by the
hydrodynamic interaction of the fiber with the wall near
by.

To quantify the difference of shapes, we introduce two
parameters: the fiber curvature κ (as in ref. [11]) and
its fractional compression α (as in ref. [12]). The time-
dependent fiber curvature,

κ =
1

N − 2

N−1
∑

i=2

1

Ri

, (14)

is the mean inverse radius 1/Ri of the circle determined
by the centers of three consecutive beads.

The fiber fractional compression [12] is defined as

α = 1 − δ(tf )/(N − 1), (15)

where δ(tf ) is the end-to-end distance of a fiber (i.e. the
distance between the centers of its first and last beads) at
the flipping time tf .

In figs. 7 and 8, we present values of κ and α for fibers
made of N = 10 beads, located at the accumulation posi-
tion zc at the flipping instants tf .

From figs. 7 and 8, it is evident that for the first accu-
mulation type (A ≥ 0.5, blue circles), both the curvature
and the fractional compression of the fibers flipping at
the accumulation distance zc are smaller than for the sec-
ond one (A ≤ 0.46, green squares), in agreement with the
previous analysis of shapes at the accumulation positions,
shown in fig. 6.

Comparing figs. 7 and 8 with fig. 6, we conclude that
the fiber curvature is very sensitive to a qualitative change
of its shape, while the fractional compression is not sen-
sitive at all. Indeed, with the decrease of A, α increases
monotonically in the whole range of values, while κ first
increases from almost zero up to a local maximum (which
is attained at A around 0.25), next it falls down a bit,
reaching a local minimum (around A = 0.09), and then it
increases again. These local extrema are correlated with
the qualitative change of the fiber shapes; at the maxi-
mum, from the S-shaped to the ς-shaped, and at the min-
imum, from ς-shaped to C-shaped. The critical value A0,
which separates the first accumulation type from the sec-
ond one, does not coincide with none of these extrema.
This complex behavior results from the combined effects
of the wall, flow curvature and the fiber flexibility.

Until now, only two types of the fiber accumulation
have been discussed. As shown in fig. 4, for a very small
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Fig. 9. Fiber shapes at the accumulation positions zc of the
third type, for A = 0.05 and different flipping times tf .
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Fig. 10. The fiber curvature at the consecutive flipping in-
stants, for the accumulation positions zc of the second (squares,
green online) and third (diamonds, violet purple online) types.

value of the bending stiffness A there appear two accu-
mulation positions. We have not yet discussed this one
which is closer to the wall (diamond, violet purple online
in fig. 4), and belongs to a third type of the accumulation.
This accumulation position (diamond, violet purple online
in figs. 7 and 8) corresponds to a much higher curvature
and fractional compression than the values observed for
the first and second accumulation types.

As illustrated in fig. 9, at the accumulation positions
zc of the third type, the fiber shapes are very compact;
significantly more bent than the fiber shapes for the first
and second accumulation types, shown in fig. 6.

The essential feature of the third type of the accumu-
lation is that for the same value of the bending stiffness
A and the same accumulation position zc, but at different
flipping instants, very different fiber shapes are observed,
which are characterized by different, random values of the
curvature and fractional compression. This irregular be-
havior occurs only for the third accumulation type; for
the other ones, a given value of A uniquely determines
both zc and the fiber shape at zc, for arbitrary flipping
instants tf .

Figure 10 illustrates the difference between the regular
second accumulation type and the irregular third accumu-
lation type. For A = 0.05, there appear two accumulation
positions zc: of the second and third types. In fig. 10, the
fiber curvature at both these accumulation positions zc is
plotted for a large number of the consecutive flipping in-
stants tf . For the accumulation position of the second type

(squares, green online), κ is the same for all tf . However,
for the accumulation position of the third type (diamonds,
violet purple online), κ changes irregularly from one flip-
ping instant to the next one.

In fig. 11, we compare evolution of fiber shapes for
times close to the flipping instants at the accumulation
positions zc of the second and third types. The snapshots
are labeled by the corresponding values of the rescaled
time, t̄/τ , defined by the relations

t̄ = t − tf (2), (16)

τ = tf (3) − tf (2), (17)

where tf (n) is the instant of the n-th flip. Therefore, t̄ = 0
and t̄ = 1 correspond to the second and third flipping
instants, respectively.

At the trajectories of the second type (top and mid-
dle panels in fig. 11), fibers bend in a repeatable way,
changing pattern almost periodically, with the half-period
determined by the tumbling time τ , which is the same be-
tween all the consecutive flips. In contrast, the shapes of
fibers at the third mode (bottom panel) are not repeat-
able. In general, even the tumbling time between different
pairs of the consecutive flips changes irregularly.

3.4 Regular and irregular modes of the fiber dynamics

Until now, we have focused on the fiber accumulation at
the distance zc from the wall. It is also of interest to con-
sider arbitrary positions zm of the fiber center of mass,
and analyze general features of the fiber dynamics. The
fiber shapes shown in fig. 11 indicate that there exist reg-
ular and irregular modes not only of the accumulation,
but also of the entire fiber dynamics.

The essential features of the irregular mode are the
irregular time dependence of the fiber center-of-mass po-
sition zm, or a non-monotonic time dependence of zf , re-
lated to a rapid variation of the tumbling time. In fig. 12,
such irregular fluctuations are visible at the lower trajec-
tories zm(t), which approach the accumulation distance
zc = 10.2, in contrast to the regular oscillations of the fiber
center of mass at the upper trajectories, which tend to
zc = 22.26. Rapid changes of consecutive tumbling times
appear at the bottom part of the lowest trajectory.

The properties described above can be used to de-
termine such a critical value Γ1 of the parameter Γ =
(h/2−zm)/A, which corresponds to the transition between
the irregular (Γ > Γ1) and regular (Γ < Γ1) modes,

259 < Γ1 < 275. (18)

In fig. 13, we compare the time dependence of the fiber
curvature for the regular and irregular modes. The re-
duced time t̄/τ is defined by eqs. (16), (17). The regular
mode (dashed line, green online) and the irregular mode
with a lower curvature (solid line, violet purple online) cor-
respond to the same two examples of the fiber dynamics,
which are shown in the top and bottom panels of fig. 11,
respectively. In both examples, the fiber center of mass is
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Fig. 11. Regular and irregular evolution of fibers with N = 10, flipping around the accumulation positions zc of the second
and third types, respectively. Snapshots from simulations are taken at the indicated values of time t̄/τ .

close to its accumulation position zc, with Γ ≈ 53 and
Γ ≈ 296, respectively. The fiber curvature κ is periodic
and smaller for the regular mode, and quasi-periodic and
larger for the irregular one.

A third example is shown in fig. 13 as the dashed-
dotted curve (violet purple online), which corresponds to
Γ ≈900. The larger value of Γ is related to the larger fiber
curvature, and more irregular zm(t).

In the last part of this section, we focus on the regular
mode, and investigate the corresponding fiber shapes at
different positions zm and for different values of the bend-
ing stiffness A. In fig. 14, we compare evolution of flexible
(A = 0.2) and stiff (A = 1) fibers in vicinity of the flipping
instant, at the accumulation plane and also a bit out of it.

Figure 14 suggests that for stiff fibers, deformation is
smaller than for flexible ones. At approximately the same
distance from the wall, more flexible fibers are more curved
than the stiff ones (compare the third and fourth rows).
When accumulating close to the wall and interacting hy-
drodynamically with it, very stiff fibers are so stretched
at the flipping moment, that their curvature at zc is close
to zero.

Other features of the shape evolution seem to be very
complex. According to fig. 13, during a single tumbling,
the fiber curvature is often the largest at the flipping in-
stant. But not always. In particular, stiff fibers at zc are
almost straight, but they are bent before and after the
flipping instant, see the fifth row.

In fig. 14, qualitatively different fiber shapes are ob-
served - straight, C-shaped, ς-shaped, and S-shaped. We
compare shapes for different positions zf and different val-
ues of A. The corresponding values of the parameter Γ
are listed in fig. 14. For smaller values of Γ , the C-shaped
fibers are observed (rows 1, 4, 5 and 6), for larger ones, the
ς-shaped (row 2), and for even larger ones, the S-shaped
(row 3). Such a transition to shape instability, triggered
by a critical value of the shear-to-bending number (equiv-
alent to a certain value of our parameter Γ ) is known in
the literature, see [9,12] and the references within.
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x 10
4

0

5

10

15

20

25

N=10  A=0.05
z

m

t

central plane

Fig. 12. Regular (top) and irregular (bottom) evolution of the
distance from the fiber center of mass to the wall, zm(t).
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Fig. 13. The time-dependent curvature κ of fibers with N = 10
moving around the following positions zm. Dashed line (green
online): zm ≈ zc = 14.47. Solid line (violet purple online):
zm ≈ zc = 10.2. Dashed-dotted line (violet purple online):
zm ≈ 16.
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Fig. 14. Evolution of a fiber shape (drawn to scale) for N = 10. Top: A = 0.2. Bottom: A = 1. Snapshots from simulations
taken at the indicated times t̄/τ (with t̄ = t − tf (2) and τ = tf (3) − tf (2), where tf (n) is the instant of the n-th flip). The
indicated values of zf and Γ are attained at t̄ = 0 (second flip).

However, at the present stage, we cannot make any
conclusive statements about a universal correlation be-
tween values of Γ and specific shape modes in our system.
For example, notice that the fiber evolution shown in the
top panel of fig. 11, with Γ ≈ 53, is S-shaped, but in the
middle panel, with the larger value Γ ≈ 56, it is C-shaped.
This example indicates that the correlation between the
value of Γ and the shape mode is limited to some values
of the system parameters. Its absence in fig. 11 might be
related to the value of zc = 22.26 very close to the middle
plane of the channel, or other reasons. Also, we should
remember that in our system, there is a significant effect
of the walls on the fiber dynamics, what interferes with
the universal meaning of the parameter Γ , found for the
unbounded systems [9,12].

3.5 Tumbling time

It is interesting to determine how tumbling of fibers de-
pends on their position across the channel. In fig. 15, the
fiber flipping frequency 1/τ is plotted as a function of the
distance zf from the wall at the flipping instant. For the
regular mode, it is a monotonically decreasing function

(except fibers, which are very close to the wall). For a
wide range of larger distances from the wall, 1/τ is a lin-
ear function of zf . Fibers at a larger distance from the
wall tumble at a slower rate. Short fibers tumble more
frequently in comparison to long fibers (notice a different
range on vertical axis of each panel in fig. 15). Both ef-
fects are significant. The tumbling frequency is a bit larger
for a smaller bending stiffness A. The difference is more
pronounced for longer fibers.

Following the idea of Bretherton [41], widely used in
various contexts [1,2], we now compare the tumbling time
τ characteristic for our flexible fibers entrained by the
Poiseuille flow between two walls with the classic result
of Jeffery for the rotation half-period T/2 of rigid ellip-
soids of revolution immersed in a simple shear flow in an
unbounded fluid [42]. Jeffery derived the following relation
between the rotation frequency 2/T and the shear rate γ̇,

2

T
=

γ̇

π(re + 1/re)
, (19)

where re is the aspect ratio for the ellipsoid of revolution.
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Fig. 15. The fiber tumbling frequency 1/τ versus its distance
zf from the wall (solid lines), in comparison to the inverse
half-period of a rigid spheroid with the aspect ratio N (Jeffery,
dashed line). Top: N = 5. Middle: N = 10. Bottom: N = 20.

For the Poiseuille flow, the shear rate depends on the
position z across the channel,

γ̇(z) = 8(h/2 − z)/h2, (20)

where, in our case, the channel width h = 50.

In fig. 15, we compare our numerical results for the
tumbling frequency of flexible fibers, 1/τ , plotted as a
function of zf (solid lines), with the Jeffery’s linear rela-
tion for the half-period γ̇(zf )/π(re + 1/re), which follows
from eqs. (19)-(20). For a wide range of relatively larger
distances from the wall, the linear dependence 1/τ(zf ) is
in a very good agreement with the Jeffery’s expression,
with an appropriately chosen, effective value of re. As the
reference, we plot the dashed line, which corresponds just
to re = N . The surprising effect is that 1/τ(zf ) is quite
well approximated assuming that the effective hydrody-
namic aspect ratio re of flexible fibers is just equal to the
number of beads N ,

re = N. (21)

Unexpectedly, a better agreement is observed for longer
and more flexible fibers which deform significantly during
the tumbling, with the average geometrical aspect ratio
much smaller than N .

For smaller distances from the wall, it is known from
the literature that the Jeffery approximation is not suffi-
cient owing to the hydrodynamic interaction between the
fiber and the wall, see fig. 5 in ref. [2].

The above discussion of fig. 15 has been performed for
the regular mode of the dynamics (black online). The ir-
regular mode (violet purple online) is seen as non-smooth,
rapidly fluctuating lines, in agreement with the discussion
from the previous section.

4 Conclusions

In this work, we have considered dynamics of fibers, which
are immersed in a low-Reynolds-number Poiseuille flow
between two parallel planar solid walls at z = 0 and z = h,
and are initially aligned with the flow. Our key finding is
that fibers with a different length (i.e. a different num-
ber of segments N) and a different ratio A of the bending
stiffness to the flow amplitude, tend to accumulate at a
different critical distance zc from the wall. The differences
are pronounced. The dependence of zc on A and N has
been determined numerically in a wide range of the pa-
rameters, based on more than 600 simulation runs.

There exist two different mechanisms of the fiber accu-
mulation. For stiff fibers, hydrodynamic interaction with
the close wall prevents them from drifting out of the chan-
nel. Therefore, in this case zc is a bit more than half of
the fiber length N , but still less than N . This mechanism
(the first type of the accumulation) has been confirmed
by the simulations performed for the same fiber and the
same Poiseuille flow inside the channel range 0 < z < h,
but in the absence of walls. Without walls, stiff fibers mi-
grate away from the channel range 0 < z < h, whatever
the initial position is. In contrast, flexible fibers tend to
accumulate at larger distances zc > N , with similar values
in the presence and in the absence of the walls. The mech-
anism of the second accumulation type is an interplay of
the flow curvature, the fiber length and the fiber bending
stiffness.
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Fig. 16. Values of the shear-to-bending parameter Γ for N =
10. Symbols: accumulation positions zc of different types. Solid
lines: flipping positions zf of regular and irregular modes.

The comparison with the unbounded flow is in this
paper used as the criterion to discriminate between two
different types of the fiber accumulation. The additional
difference between these two types is that the first one has
a smaller fiber curvature and a smaller fractional compres-
sion at the accumulation position than the second one.

A third accumulation type has been also detected. Its
basic feature is the irregularity of fiber shapes (including
large fluctuations of their curvature and fractional com-
pression) at time-dependent accumulation positions. In
addition, for the third accumulation type, the fiber curva-
ture and its fractional compression are much larger than
for the other accumulation types.

Following the previous literature related to the fiber
transitions to higher modes [9–12,30], for N = 10 we in-
troduced a shear-to-bending parameter Γ = (h/2−zf )/A.
(Similar analysis has been also performed for other values
of the fiber length N .) First, we evaluated values of Γ at
the accumulation positions zf = zc, and found that they
are the smallest for the first accumulation type, larger for
the second one, and the largest for the third one.

Next, we determined values of Γ for all the evaluated
flipping positions zf , and concluded that for the regular
mode of the dynamics, they are smaller than for the ir-
regular one. For the regular mode, a correlation between
smaller values of Γ and the C-shaped fibers, and between
larger values of Γ and the S-shaped fibers has been ob-
served for some cases. This problem will be studied in
details elsewhere.

In fig. 16, the resulting values of Γ are shown. Those
corresponding to the accumulation positions are marked
by symbols, which for each accumulation type are differ-
ent, with the shapes and colors consistent with figs. 4, 7
and 8. There exists a sharp threshold Γ0 = 33.6–36.4 for
activation of the second accumulation type, and a large
gap between values of Γ corresponding to the second and
third types. The values of Γ for the regular and irregu-
lar modes of the dynamics at the flipping positions zf are
indicated by solid lines (black and violet purple online, re-
spectively), with the transition threshold at Γ1 = 259–275.

The results presented in this work can be used to
sort non-Brownian flexible microfibers, depending on their
length and bending stiffness. To this goal, additional mea-
surement of their bending stiffness A is necessary. The
analysis presented here indicates that neither the shape
evolution nor the tumbling time is sufficient to determine
specific value of A.

Time and length scales of a fiber migration are rel-
atively large. For example, in a microchannel of width

h = 250µm, with the maximal Poiseuille flow velocity
vm = 1mm/s, a fiber of thickness 5µm and length 100µm,
initially located at the distance h/4 from the wall, typi-
cally approaches a distance close to zc after 60–300 sec-
onds, translating by 50–200mm.
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parska, T.A. Kowalewski, Int. J. Heat Fluid Fl. 31, 996
(2010).
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