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A method for the simultaneous identification of moving vehicles and the damages of the supporting structure from measured
responses is presented. A two-axle vehicle model with two degrees of freedom (DOF) is adopted.The extent of the damage and the
vehicle parameters were chosen as the optimisation variables, which allow ill conditioning to be avoided and decrease the number
of sensors required.The identification is performed byminimising the distance between themeasured responses and the computed
responses to given optimisation variables. The virtual distortion method (VDM) was used, such that the response of the damaged
structure can be computed from comparison with the intact structure subjected to the same vehicle excitation and to the response-
coupled virtual distortions.These are related to the optimisation variables by the system impulse response matrix and are expressed
by a linear system, which allowed both types of optimisation variables to be treated in a unified way.The numerical cost is reduced
by using a moving influence matrix.The adjoint variable method is used for fast sensitivity analysis. A three-span bridge numerical
example is presented, where the identification was verified with 5% root mean square (RMS)measurement, andmodel, error whilst
also considering the surface roughness of the road.

1. Introduction

In structural health monitoring, accurate load and dam-
age identification are indispensable to the maintenance of
structural integrity, as well as providing the evidence for
forensic engineering. Particularly, moving loads or moving
vehicle parameter identification is important not only for
prediction and analysis of the dynamic responses of bridges,
but also in traffic studies, in design code calibration, for traffic
control, and so forth. In recent decades, many investigations
have been performed on either load identification or damage
identification. However, in practice, both unknown system
damage and unknown (moving) excitations usually coexist
and together influence the system response in a coupled
way. Therefore, their simultaneous identification is worthy of
further exploration.

As opposed to local, high-frequency ultrasonic scanning,
this paper considers only global or low-frequency damage

identification methods which are based on the structural
vibrations. These methods are mainly categorised into two
groups: frequency domainmethods or timedomainmethods.
In the frequency domain, damage is detected, located, and
identified through measured changes in the related modal
parameters or dynamic signature [1] such as natural fre-
quency and mode shape. However, the modal parameters are
obtained from the responses to a certain kind of excitation
and these methods are limited to time-invariant systems.
Under the action of a moving vehicle, a coupled bridge-
vehicle system is time variant, and the system parameters
are changing as the vehicles move [2]. The vibration caused
by traffic is a nonstationary process that strengthens with
decreasing span [3]. In this case, the analysis is most often
performed in the time domain by the direct comparison of
the simulated and measured responses [4]. However, this
usually requires a known moving load or other such vehicle
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parameters. Sieniawska et al. [5] identify parameters of a
linear structure from its responses to a moving load using
a static substitution of the equation of motion, where the
moving load is a known constant magnitude. Chang et al.
[3, 6] present, and experimentally verify, a methodology
for damage identification in bridges using a pseudostatic
formulation based on coupling vibration with a moving
vehicle, where the moving force is provided as a vector
or calculated using the measured acceleration responses of
the axles. Ling and Haldar [7] propose a linear system
identification approachwith unknown input, but they require
a known dynamic response of all the degrees of freedoms; this
is hard to perform on real-life, complex structures.

Moving load identification has been studied extensively
in the past two decades [8]. Techniques of indirect identifi-
cation from measured responses have been investigated and
can be performed more easily and at lower cost compared
to methods requiring direct measurements of moving loads.
Chan et al. and Law et al. have proposed four methods for
indirect identification: the time-domain method (TDM) [9],
the frequency-time domain method (FTDM) [10], interpre-
tive method I (IM-I) [11], and interpretive method II (IM-II)
[12]. All of them require, a priori, known model parameters
for the bridge. Each method has its merits and limitations,
which are compared elsewhere [13]. Load identification is
an inverse problem, and numerical ill-conditioning seems
to be the main factor that influences the accuracy of the
identification results. The accuracy can be improved by some
regularisationmethods, such as Tikhonov regularisation [14].
However, the determination of the optimal value of the
regularisation parameter is numerically costly and requires
lengthy computation. Pinkaew and Asnachinda [15, 16] point
out that the regularisation parameter turns out to be sensitive
to properties of both the vehicle and bridge and is difficult
to be precisely assigned: they propose, and experimentally
verify, an iterative regularisation method called the updated
static component (USC) technique to decrease the sensitivity
of the regularisation parameter. Moving forces are usually
treated as unknown quantities to be identified. This requires
a number of sensors equal to or exceeding the number of
unknown moving forces to obtain a unique solution. Jiang
et al. [17] present a moving vehicle parameter identification
method based on genetic algorithms, where each moving
vehicle is modelled as a two-DOF system that comprises
mass, spring stiffness, and damping. Zhang et al. [18] provide
an approach of identifying moving vehicle parameters based
on VDM using a dynamic influence matrix. In general,
the identification of moving forces or vehicle(s) requires a
known, well-defined, bridge model to establish the relation-
ship between load and response.

For unknown coexistent load and structural damage, it
is generally difficult to decouple the related identification
problems and solve any one of them independently. Since the
two factors have essentially different natures, Zhang et al. [19]
present amethod to identify load and damage simultaneously
using Chebyshev polynomials to parameterise the unknown
force, and thus all parameters related to the damage and exci-
tation can be updated simultaneously in each iteration. Zhang
et al. [20] present, and experimentally verify, a method for

the simultaneous identification of nonmoving excitations and
damage, which uses a VDM [21] to model structural damage
and thus improve the identification efficiency thereof. In case
of unknown moving loads, the vehicle-bridge system is a
coupled time-varying system. Zhu and Law [22] present a
two-step iteration procedure to simultaneously identify the
moving loads and the damage caused to an Euler-Bernoulli
simply supported beam; the number of the sensors is one less
than the number of the beam elements.

Zhang et al. [23] present a method for the simultaneous
identification of structural damage andmovingmasses; mov-
ing masses and damage extents are used as its optimisation
variables, which avoids the ill-conditioning problem present
in traditional moving force identification and decreases the
number of sensors required; damage ismodelled using virtual
distortions, and a dynamic influence matrix is introduced
to reduce numerical analysis cost. This paper simulates the
vehicle using a two-axle, two-DOF, vehicle model, and the
related parameters includingmass, rotary inertia, spring stiff-
ness, and damping are treated as unknowns together with the
structural damage induced. The damaged bridge is assumed
to be modelled by the decay of its mechanical properties and
is often represented as a decreasing stiffness [24]. Based on
VDM, the response of the damaged structure is modelled by
the intact structure subjected to the same vehicle excitation
and to the response-coupled virtual distortions. Through the
related system impulse response matrix (dynamic influence
matrix in the terminology of VDM), the moving loads
and virtual distortions are connected with the optimisation
variables in a linear system. In this way, the optimisation
variables related to the vehicle parameter, and to the damage,
are treated in a unifiedway.Then, they can be optimised using
any standard optimisation algorithm. The numerical cost
is reduced by using the moving dynamic influence matrix.
Moreover, rapid sensitivity analysis is performed using the
adjoint variable method.

Sections 2 and 3 discuss the equation of motion of the
system and simulation of the system dynamic response by
moving vehicle and virtual distortions; Section 4 discusses
the inverse identification problem. Section 5 verifies the
proposed approach using a numerical example of a three-
span frame structure considering road surface roughness.
The approach and the results are discussed in Section 6.

2. Dynamic Analysis of a Coupled
Vehicle-Beam System

2.1. Equation of Motion for a Moving Vehicle on a Bridge. A
popular two-axle, two-DOF, vehicle model [3] was adopted;
see Figure 1, where 𝑢V and 𝜃V, respectively, denote the bounce
and pitching motions of the vehicle. Exactly speaking, 𝑢V is
the vertical displacement of the vehicle, which is measured
vertically upwards from its vertical static equilibrium posi-
tion before the vehicle reached the bridge and 𝜃V

𝑖
are its

rotary displacement relative to the static position. Denoted
by 𝑚 and 𝐽, respectively, are the vehicle mass and the rotary
inertia; denoted by 𝑘 and 𝑐, respectively, are the spring
constant and damping coefficient of the vehicle.
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Figure 1: A coupled vehicle-bridge system.

Figure 2: Forces of the 𝑖th moving vehicle.

For the 𝑖th moving vehicle on the bridge, the additional
elongation of the left and right spring except the elongation
caused by the weight is respectively denoted by Δ

𝑖𝑙
and Δ

𝑖𝑟
,

then

Δ
𝑖𝑙
= 𝑢

V
𝑖
+ 𝜃
𝑖1
𝑒
𝑖𝑙
− 𝑥
𝑖𝑙
− 𝑟
𝑖𝑙
;

Δ
𝑖𝑟
= 𝑢

V
𝑖
− 𝜃
𝑖1
𝑒
𝑖𝑟
− 𝑥
𝑖𝑟
− 𝑟
𝑖𝑟
,

(1)

where 𝑒
𝑖𝑙
, 𝑒
𝑖𝑟
denote, respectively, the distance from the

left and right axle to the vehicle’s centre of mass; 𝑥
𝑖𝑙
, 𝑥
𝑖𝑟
,

respectively, denote the vertical displacements of the bridge
at the current position of the vehicle’s left and right
axle; 𝑟

𝑖𝑙
, 𝑟
𝑖𝑟
denote the roadway surface roughness at the

current respective position, which is also measured vertically
upwards with reference to the deck level.

The forces of the 𝑖th moving vehicle are shown in
Figure 2, which includes the inertial forces. Based on the
dynamic balance, the equation of motion of the 𝑖th moving
vehicle can be formulated as

mV
𝑖
�̈�
V
𝑖
(𝑡) + 𝑐𝑖

e
𝑖𝑘
�̇�
V
𝑖
(𝑡) + 𝑘𝑖

e
𝑖𝑘
𝑌
V
𝑖
(𝑡)

= 𝑘
𝑖
𝑆
𝑖
(𝑥
𝑖 (
𝑡) + 𝑟𝑖 (

𝑡)) + 𝑐𝑖
𝑆
𝑖
(�̇�
𝑖 (
𝑡) + ̇𝑟
𝑖 (
𝑡)) ,

(2)

where mV
𝑖
= [
𝑚𝑖 0

0 𝐽𝑖
], 𝑌V
𝑖
(𝑡) = [

𝑢
V
𝑖
(𝑡)

𝜃
V
𝑖
(𝑡)
], 𝑟
𝑖
(𝑡) = [

𝑟𝑖𝑙(𝑡)

𝑟𝑖𝑟(𝑡)
], 𝑠
𝑖
=

[
1 1

𝑒𝑖𝑙 −𝑒𝑖𝑟
], 𝑥
𝑖
(𝑡) = [

𝑥𝑖𝑙(𝑡)

𝑥𝑖𝑟(𝑡)
], e
𝑖𝑘
= [

2 𝑒𝑖𝑙−𝑒𝑖𝑟

𝑒𝑖𝑙−𝑒𝑖𝑟 𝑒
2

𝑖𝑙
+𝑒
2

𝑖𝑟

].

In this study, the random roughness of the road
surface 𝑟(𝑥) is simulated by a zero-mean, real-value, station-
ary Gaussian process as described in the following [17, 25]:

𝑟 (𝑥) =

𝑁𝑇

∑

𝑘=1

𝛼
𝑘
cos (2𝜋𝑛

𝑘
𝑥 + 𝜑
𝑘
) , (3)

where 𝛼
𝑘
is the amplitude of the cosinewave, 𝑛

𝑘
is the spatial

frequency (in cycle/m), 𝜑
𝑘
is a random phase angle with

uniform probability distribution in the interval [0, 2𝜋], 𝑥 is
the position measured from the left end of the bridge,
and 𝑁

𝑇
is the total number of the cosine waves which are

used to construct the roughness. Parameter 𝛼
𝑘
is computed

by

𝛼
2

𝑘
= 4𝐺
𝑑
(𝑛
𝑘
) Δ𝑛, (4)

where 𝐺
𝑑
(𝑛
𝑘
) is the power spectral density function

of the road surface and related to the ground flatness
coefficient 𝐺

𝑑
(𝑛
0
) in the form as [26]

𝐺
𝑑
(𝑛
𝑘
) = 𝐺
𝑑
(𝑛
0
) (

𝑛
𝑘

𝑛
0

)

−2

,

𝑛
𝑘
= 𝑛
𝑙
+ 𝑘Δ𝑛,

Δ𝑛 =

𝑛
𝑢
− 𝑛
𝑙

𝑁
𝑇

,

(5)

where 𝐺
𝑑
(𝑛
0
) depends on the classification of road sur-

face condition. 𝑛
𝑙
and 𝑛

𝑢
, are respectively, lower and upper

cut-off spatial frequencies, and the power spectral density
function 𝐺

𝑑
(𝑛
𝑘
) is defined within the interval of [𝑛

𝑙
, 𝑛
𝑢
].

For the vehicle velocity between 70 km/h and 120 km/h on
expressway, the power spectral density is most meaningful in
the frequency interval of [0.0221m−1, 1.4142m−1].

2.2. Equation of Motion for a Bridge under Moving Vehicles.
The bridge is idealized as a beam, which suffers the traffic
excitations. Denoted by 𝑝

𝑖𝑙
(𝑡) and 𝑝

𝑖𝑟
(𝑡), respectively, are the

interaction forces of the 𝑖thmoving vehicle at its left and right
wheel, and through the dynamic balance analysis, they can be
expressed using the additional elongation of the spring and
the gravity of the vehicle,

𝑝
𝑖𝑙 (
𝑡) = 𝑘𝑖

Δ
𝑖𝑙 (
𝑡) + 𝑐𝑖

Δ̇
𝑖𝑙 (
𝑡) +

𝑚
𝑖
𝑔𝑒
𝑖𝑟

𝑒
𝑖𝑙
+ 𝑒
1𝑟

,

𝑝
𝑖𝑟 (
𝑡) = 𝑘𝑖

Δ
𝑖𝑟 (
𝑡) + 𝑐𝑖

Δ̇
𝑖𝑟 (
𝑡) +

𝑚
𝑖
𝑔𝑒
𝑖𝑙

𝑒
𝑖𝑙
+ 𝑒
𝑖𝑟

.

(6)

The equation of motion for the bridge can be formulated
as follows:

Mü𝑏 (𝑡) + Cu̇𝑏 (𝑡) + Ku𝑏 (𝑡) =
𝑛𝑚

∑

𝑖=1

b
𝑖 (
𝑡) p𝑖 (𝑡) , (7)

where M, C, and K are, respectively, the mass, stiffness,
and damping matrices of the bridge, u𝑏 represents the dis-
placement vector, and p

𝑖
(𝑡) = [𝑝𝑖𝑙

(𝑡) 𝑝
𝑖𝑟
(𝑡)]

T, b
𝑖
(𝑡) =
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[𝑏𝑖𝑙
(𝑡) 𝑏
𝑖𝑟
(𝑡)], 𝑏

𝑖𝑙
(𝑡), 𝑏
𝑖𝑟
(𝑡), are respectively, the time-varying

load distribution vector in global coordinates with regard to
the left and right wheels.Thus, 𝑏

𝑖𝑙
(𝑡), 𝑏
𝑖𝑟
(𝑡) can be formulated

using the shape function of the beam element in finite
element (FE) analysis, and their elements are zeroed when
the correspondingwheel is off the bridge during the sampling
time.

2.3. Dynamic Response of the Coupled Vehicle-Bridge System.
In the equation of motion for the moving vehicle and bridge
((2) and (7)), it can be seen that the system is coupled: the
vibration of the bridge influenced the vibration of themoving
vehicle (2), and the vehicle in return interactively influenced
the vibration of the bridge (7).The equation of motion for the
coupled system can be expressed as follows:

[

[

[

[

M
mV
1

d
mV
𝑛𝑚

]

]

]

]

[

[

[

[

[

ü𝑏 (𝑡)
�̈�
V
1
(𝑡)

...
�̈�
V
𝑛𝑚
(𝑡)

]

]

]

]

]

+

[

[

[

[

[

[

K + ΔK (𝑡) −𝑏
1 (
𝑡) 𝑆

T
1
𝑘
1
⋅ ⋅ ⋅ −𝑏

𝑛𝑚
(𝑡) 𝑆

T
𝑛𝑚
𝑘
𝑑

−𝑆
1
𝑏
T
1
(𝑡) 𝑘1

𝑘
1
e
1𝑘

... d
−𝑆
𝑛𝑚
𝑏
T
𝑛𝑚
(𝑡) 𝑘𝑛𝑚

𝑘
𝑛𝑚
e
𝑛𝑚𝑘

]

]

]

]

]

]

×

[

[

[

[

[

u𝑏 (𝑡)
𝑌
V
1
(𝑡)

...
𝑌
V
𝑛𝑚
(𝑡)

]

]

]

]

]

+

[

[

[

[

[

[

C + ΔC (𝑡) −𝑏
1 (
𝑡) 𝑆

T
1
𝑐
1
⋅ ⋅ ⋅ −𝑏

𝑛𝑚
(𝑡) 𝑆

T
𝑛𝑚
𝑐
𝑑

−𝑆
1
𝑏
T
1
(𝑡) 𝑐1

𝑐
1
e
1𝑘

... d
−𝑆
𝑛𝑚
𝑏
T
𝑛𝑚
(𝑡) 𝑐𝑛𝑚
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𝑛𝑚
e
𝑛𝑚𝑘
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]
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]

]

×

[

[
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[

[

u̇𝑏 (𝑡)
�̇�
V
1
(𝑡)

...
�̇�
V
𝑛𝑚
(𝑡)

]

]

]

]

]

=

[

[

[

[

[

[

[

∑

𝑖

𝑏
𝑖
(𝑚
𝑖
𝑒
𝑖
𝑔 − 𝑘
𝑖
𝑟
𝑖
+ 𝑐
𝑖
̇𝑟
𝑖
)

𝑘
1
𝑆
1
𝑟
1
+ 𝑐
1
𝑆
1
̇𝑟
1

...
𝑘
𝑛𝑚
𝑆
𝑛𝑚
𝑟
𝑛𝑚
+ 𝑐
𝑛𝑚
𝑆
𝑛𝑚
̇𝑟
𝑛𝑚

]

]

]

]

]

]

]

,

(8)

where ΔK(𝑡) = ∑
𝑖
𝑘
𝑖
𝑏
𝑖
(𝑡)𝑏

T
𝑖
(𝑡), ΔC(𝑡) = ∑

𝑖
𝑐
𝑖
𝑏
𝑖
(𝑡)𝑏

T
𝑖
(𝑡), 𝑒
𝑖
=

[𝑒𝑖𝑙
/(𝑒
𝑖𝑙
+ 𝑒
𝑖𝑟
) 𝑒
𝑖𝑟
/(𝑒
𝑖𝑙
+ 𝑒
𝑖𝑟
)]

T.
Equation (8) shows that the system is time variant with

the vehicle’s motion, and this indicated that the vibration of
the bridge caused by the traffic was nonstationary. Therefore,
the performance of damage identification in this case may

have similar limitations to those pertaining to methods sub-
jected to a stationary assumption, for example, modal based
methods in the frequency domain. In contrast, time-domain
analysis for identification is more accurate and appropriate.
Then, the key procedure is the estimation of the system
response to damage. However, if the response is computed in
the traditional way by using the system motion equation, it
will need to reassemble the varying system parameter matrix
at each sampling time-step, which will be time-consuming,
especially for bridges with complex structures. Aiming at
solving this problem, the following section presents a fast
reanalysis, VDM-based method.

3. Fast Reanalysis of the Damaged System

3.1. Dynamic Response of theDamaged Structure underKnown
Excitation. Denoted by 𝜇

𝑖
the damage extent of the 𝑖th finite

element, which is quantified by the ratio between its original
stiffness matrix K

𝑖
and the damaged stiffness matrix K̃

𝑖
,

K̃
𝑖
= 𝜇
𝑖
K
𝑖
. (9)

Then, the stiffness matrix of the damaged bridge can be
expressed by

̃K = ∑
𝑖

𝜇
𝑖
K
𝑖
. (10)

Substitute (10) into the equation of motion of the dam-
aged beam to obtain

Mü𝑏 (𝑡) + Cu̇𝑏 (𝑡) + ∑
𝑖

𝜇
𝑖
K
𝑖
u𝑏 (𝑡) =

𝑛𝑚

∑

𝑖=1

b
𝑖 (
𝑡) p𝑖 (𝑡) . (11)

Compared with the intact structure, remove themodified
part of the stiffness matrix on the right-hand side of (11); then
the equation is transformed into the equation ofmotion of the
distorted structure (in the terminology of VDM); that is, the
intact structure was subjected to the same external excitation
and to a certain response coupled pseudoload p0(𝑡),

Mü𝑏 (𝑡) + Cu̇𝑏 (𝑡) + Ku𝑏 (𝑡) =
𝑛𝑚

∑

𝑖=1

b
𝑖 (
𝑡) p𝑖 (𝑡) + p

0
(𝑡) , (12)

where the pseudo-load p0(𝑡) is related to the extent of the
damage by

p0 (𝑡) = ∑
𝑖

(1 − 𝜇
𝑖
)K
𝑖
u (𝑡) . (13)

In VDM, virtual distortion is more often adopted to
simulate stiffness-degrading damage, which is related to the
pseudo-load as follows:

p0
𝑒,𝑖
(𝑡) = K

𝑒,𝑖
∑

𝑗

𝜅
0

𝑖𝑗
(𝑡) 𝜑𝑖𝑗

, (14)

where p0
𝑒,𝑖

is the local pseudo-load applied on the 𝑖th element
expressed in the local DOFs, K

𝑒,𝑖
is the stiffness matrix of
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the 𝑖th element in its local coordinate, 𝜅0
𝑖𝑗
(𝑡)𝜑
𝑖𝑗
is the 𝑗th

virtual distortion of the 𝑖th element, 𝜑
𝑖𝑗
is the 𝑗th nonzero

eigenvector to the 𝑗th nonzero positive eigenvalue 𝜆
𝑖𝑗
of the

stiffnessmatrix K
𝑒,𝑖
= ∑
𝑗
𝜆
𝑖𝑗
𝜑
𝑖𝑗
𝜑
T
𝑖𝑗
, and 𝜑

𝑖𝑗
represents the 𝑗th

local unit distortion, 𝜅0
𝑖𝑗
(𝑡) = (1 − 𝜇

𝑖
)𝜑

T
𝑖𝑗
u
𝑒,𝑖
(𝑡) is the time-

varying combination coefficient of the corresponding 𝑗th
local unit distortion 𝜑

𝑖𝑗
. u
𝑒,𝑖
(𝑡) is the nodal displacement of

the 𝑖th element in its local coordinate system, which shows
that 𝜅0

𝑖𝑗
(𝑡) is coupled with the system vibration.

Denoted by p
𝑒,𝑖

is the local nodal load applied on the 𝑖th
element; then it can be similarly expressed by

p
𝑒,𝑖 (
𝑡) = K

𝑒,𝑖
∑

𝑗

𝜅
𝑖𝑗 (
𝑡) 𝜑ij, (15)

where 𝜅
𝑖𝑗
(𝑡)𝜑
𝑖𝑗
is the 𝑗th actual distortion of the 𝑖th dam-

aged element and the combination coefficient 𝜅
𝑖𝑗
(𝑡) =

𝜑
T
𝑖𝑗
u
𝑒,𝑖
(𝑡) has the relation to the coefficient 𝜅0

𝑖𝑗
(𝑡) as follows

[23]:

𝜅
0

𝑖𝑗
(𝑡) = (1 − 𝜇𝑖

) 𝜅
𝑖𝑗 (
𝑡) . (16)

Based on (12), by virtual distortions, the response of the
damaged bridge under moving vehicles can be expressed by

𝑦
𝛼 (
𝑡) = ∑

𝑖

∫

𝑡

0

𝐷
𝑚

𝛼𝑖
(𝑡, 𝜏) 𝑝𝑖 (

𝜏) 𝑑𝜏

+∑

𝑖,𝑗

∫

𝑡

0

𝐷
𝜅

𝛼𝑖𝑗
(𝑡 − 𝜏) 𝜅

0

𝑖𝑗
(𝜏) 𝑑𝜏.

(17)

Here, it assumed zero value initial conditions
and 𝑦

𝛼
(𝑡) was the response of the 𝛼th measurement, which

is modelled as the sum of the linear responses of the intact
structure to a known excitation 𝑝

𝑖
(𝑡) and to certain virtual

distortions. 𝐷𝑚
𝛼𝑖
(𝑡, 𝜏) denoted the impulse response of the

intact structure at time 𝑡 to unit impulsive excitation applied
at time 𝜏 at the respective locations of the excitation 𝑝

𝑖
(𝑡).

It is worth noticing that the excitation location is changing
with the vehicles. 𝐷𝜅

𝛼𝑖𝑗
(𝑡) denotes the impulse response (in

the scope of the VDM, it is called the dynamic influence
matrix) to an impulse unit distortion 𝜑

𝑖𝑗
of the 𝑖th element

which is equivalent to a local impulsive load K
𝑒,𝑖
𝜑
𝑖𝑗
.

Similarly to (17), the distortion response 𝜅
𝑖𝑗
(𝑡) of the

damaged structure can be formulated as

𝜅
𝑖𝑗 (
𝑡) = ∑

𝑘

∫

𝑡

0

𝐷
𝜅𝑚

𝑖𝑗𝑘
(𝑡, 𝜏) 𝑝𝑘 (

𝜏) 𝑑𝜏

+∑

𝑘,𝑙

∫

𝑡

0

𝐷
𝜅𝜅

𝑖𝑗𝑘𝑙
(𝑡 − 𝜏) 𝜅

0

𝑘𝑙
(𝜏) 𝑑𝜏,

(18)

where 𝐷𝜅𝑚
𝑖𝑗𝑘
(𝑡, 𝜏) is the 𝑗th distortion of the 𝑖th damaged

element at time 𝑡 to unit impulsive excitation applied at
time 𝜏 at the respective location of the excitation 𝑝

𝑘
(𝑡),

and 𝐷𝜅𝜅
𝑖𝑗𝑘𝑙
(𝑡) is the 𝑗th distortion of the 𝑖th damaged element

to an impulse unit distortion 𝜑
𝑘𝑙
of the 𝑘th damaged ele-

ment.

Substitute (16) into (18) to obtain

(1 − 𝜇
𝑖
)∑

𝑘

∫

𝑡

0

𝐷
𝜅𝑚

𝑖𝑗𝑘
(𝑡, 𝜏) 𝑝𝑘 (

𝜏) 𝑑𝜏

= 𝜅
0

𝑖𝑗
(𝑡) − (1 − 𝜇𝑖

)∑

𝑘,𝑙

∫

𝑡

0

𝐷
𝜅𝜅

𝑖𝑗𝑘𝑙
(𝑡 − 𝜏) 𝜅

0

𝑘𝑙
(𝜏) 𝑑𝜏.

(19)

If combined, all the damaged elements 𝑖 and the
distortions 𝑗 form a system of Volterra integral equations of
the second kind,which is alwayswell posed and thus uniquely
solvable (Kress 1989 [27]). Then, the response 𝑦

𝛼
(𝑡) can be

computed by (17) with the obtained virtual distortions.

3.2. Response of theDamaged Structure underMovingVehicles.
In practice, the interaction between the moving vehicle and
the bridge, (see (6)), is time varying and coupled with the
system vibration, which is usually hard tomeasure in advance
for monitoring and identification of the extent of damage
in a bridge. While the vehicle parameters, such as mass,
stiffness, and damping, can be obtained more easily through
traffic count statistics on the bridge, in this case, the gain
of the moving excitation, besides the virtual distortion, is
the key procedure, by which the response of the damaged
structure in (17) is computed. Equation (6) shows that
the interaction was related to the vibration of the moving
vehicle; that is, 𝑢V

𝑖
(𝑡), 𝜃

V
𝑖
(𝑡), and the vertical response of the

bridge 𝑥
𝑖
(𝑡) at the contact location of the vehicle wheels, as

well as their corresponding vibration velocity: the solutions
are discussed in the following paragraphs.

For the response 𝑥
𝑖
(𝑡), it can be formulated in a manner

similar to

𝑥
𝑖 (
𝑡) = ∑

𝛽

∫

𝑡

0

𝐷
𝑚𝑚

𝑖𝛽
(𝑡, 𝜏) 𝑝𝛽 (

𝜏) 𝑑𝜏

+∑

𝑗,𝑘

∫

𝑡

0

𝐷
𝑚𝜅

𝑖𝑗𝑘
(𝑡 − 𝜏) 𝜅

0

𝑗𝑘
(𝜏) 𝑑𝜏,

(20)

where 𝛽 = 2𝑙 + 𝑙
𝑤
− 2 is the number of the contact

point of the 𝑙
𝑤
th wheel (𝑙

𝑤
= 1, 2) of the 𝑙th moving

vehicle. 𝐷𝑚𝑚
𝑖𝛽
(𝑡, 𝜏) is the impulse response at the location

of contact point 𝛽 to unit moving impulsive excitation
applied at time 𝜏 at the location of 𝑝

𝛽
(𝜏) and to an impulse

unit distortion 𝜑jk of the 𝑗th damaged element. It is worth
noticing that position of 𝑥

𝑖
(𝑡) changes with vehicle move.

Matrix D𝑚𝑚
𝑖𝛽

consisting of 𝐷𝑚𝑚
𝑖𝛽
(𝑡, 𝜏) is thus called moving

dynamic influence matrix. 𝐷𝑚𝜅
𝑖𝑗𝑘
(𝑡) is the impulse response

corresponding to an impulse unit distortion 𝜑
𝑗𝑘

of the 𝑗th
damaged element.

Similarly to (20), the velocity response of the
bridge �̇�

𝑖
(𝑡) can be expressed as follows:

�̇�
𝑖 (
𝑡) = ∑

𝛽

∫

𝑡

0

�̇�
𝑚𝑚

𝑖𝛽
(𝑡, 𝜏) 𝑝𝛽 (

𝜏) 𝑑𝜏

+∑

𝑗,𝑘

∫

𝑡

0

�̇�
𝑚𝜅

𝑖𝑗𝑘
(𝑡 − 𝜏) 𝜅

0

𝑗𝑘
(𝜏) 𝑑𝜏,

(21)
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where �̇�𝑚𝑚
𝑖𝛽
(𝑡, 𝜏) and �̇�𝑚𝜅

𝑖𝑗𝑘
(𝑡) are the respective velocity

impulse responses.
Using the equation of motion of the moving vehicle (2),

the dynamic response of the moving vehicle can be expressed
by the convolution integral between the impulse response and
the excitation (the right-hand side of (2))

YV
𝑖
(𝑡) = ∫

𝑡

0

HV
𝑖
(𝑡 − 𝜏) s𝑖 (𝑘𝑖 (x𝑖 (𝜏) + r𝑖 (𝜏))

+𝑐
𝑖
(ẋ
𝑖 (
𝜏) + ̇r𝑖 (𝜏))) 𝑑𝜏,

(22)

where HV
𝑖
(𝑡) = [

h𝑢𝑢,𝑖(𝑡) h𝑢𝜃,𝑖(𝑡)
h𝜃𝑢,𝑖(𝑡) h𝜃𝜃,𝑖(𝑡) ] consists of the impulse

response with respect to each DOF of the vehicle. For
example, h

𝑢𝜃,𝑖
(𝑡) is the impulse response along the vertical

direction to unit impulsive excitation along the rotational
direction: the velocity of the vehicle vibration YV

𝑖
(𝑡) is formu-

lated as

̇YV
𝑖
(𝑡) = ∫

𝑡

0

̇HV
𝑖
(𝑡 − 𝜏) s𝑖

× (𝑘
𝑖
(x
𝑖 (
𝜏) + r𝑖 (𝜏)) + 𝑐𝑖 (ẋ𝑖 (𝜏) + ̇r𝑖 (𝜏))) 𝑑𝜏,

(23)

where matrix ḢV
𝑖
(𝑡) consists of the corresponding velocity

impulse response.
Then, given damage extents and the moving vehi-

cle parameters, the moving excitation 𝑝
𝑖
(𝑡), and virtual

distortions 𝜅0
𝑖𝑗
(𝑡), can be computed by solving the combined

equations (6), (19), (20), (21), (22), and (23), where the
relevant impulse matrices of the intact bridge and of the
vehicles are required. Then, substitute excitation 𝑝

𝑖
(𝑡) and

virtual distortions 𝜅0
𝑖𝑗
(𝑡) into (17); the responses of the dam-

aged structure can be rapidly computed.

3.3. Discretization. In applications, the responses are usually
measured or obtained by numerical simulation and are thus
discrete. Collect the dynamic responses 𝑦

𝛼
(𝑡) for all the time

steps and arrange them in a certain sequence, and the discrete
matrix form of (17) becomes

𝑦 = D𝑚p +D𝜅𝜅0, (24)

where vectors y, p, 𝜅0, respectively, consist of the discrete
responses (of all the considered sensors), discrete excita-
tions, discrete virtual distortions (of all the damaged ele-
ments) for all time steps, and thus they are of respective
lengths 𝑛

𝑎
𝑛
𝑡
, 2𝑛
𝑚
𝑛
𝑡
, and 𝑛

𝑑
𝑛
𝑡
, where 𝑛

𝑡
denotes the mea-

sured time step, and 𝑛
𝑎
denotes the number of sensors,

and 𝑛
𝑑
denotes the considered number of virtual distortions.

Matrices D𝑚 and D𝜅 are block matrices and, respectively,
consist of the corresponding discrete integral operators in (17)
with lower-triangular 𝑛

𝑡
×𝑛
𝑡
blocks.Thereinto, the submatrix

of D𝜅 is Toeplitz matrix.

Similarly, the discrete response x, ẋ and the discrete
distortions 𝜅 depend on the discrete excitation p and dis-
crete virtual distortions 𝜅0 in the following way:

[

[

x
ẋ
𝜅

]

]

=
[

[

D𝑚𝑚 D𝑚𝜅
Ḋ𝑚𝑚 Ḋ𝑚𝜅
D𝜅𝑚 D𝜅𝜅

]

]

[

p
𝜅
0] , (25)

which is an aggregated discrete version of (20), (21), and (18).
The discrete version of vehicle vibration in (22) and (23)

is as follows:

YV
= HVS (k (x + r) + c (ẋ + ̇r)) ,

ẎV
= ḢVS (k (x + r) + c (ẋ + ̇r)) ,

(26)

where HV
= ∑
𝑛𝑚

𝑖=1
I
𝑖
⊗ HV
𝑖
, S = ∑

𝑛𝑚

𝑖=1
I
𝑖
⊗ S
𝑖
, S
𝑖
= S
𝑖
⊗

I
𝑛𝑡×𝑛𝑡

, k = ∑𝑛𝑚
𝑖=1
𝑘
𝑖
Î
𝑖
, c = ∑𝑛𝑚

𝑖=1
𝑐
𝑖
Î
𝑖
, Î
𝑖
= I
𝑖
⊗ I
2𝑛𝑡 ,2𝑛𝑡

, I
2𝑛𝑡 ,2𝑛𝑡

is
a unit matrix with dimension 2𝑛

𝑡
. I
𝑖
is a square matrix with

dimension 𝑛
𝑚
, of which only element I

𝑖
(𝑖, 𝑖) has value 1, and

all other elements have zero values.
Equation (27) shows the expression of discrete

excitation p:

p = kSTYV
+ cST ̇YV

− k (x + r) − c (ẋ + ̇r) +meg, (27)

where m = ∑
𝑛𝑚

𝑖=1
𝑚
𝑖
̂I
𝑖
, and g is the vector of Earth’s gravities

𝑔. e = [𝑒T
1
, . . . 𝑒

T
𝑛𝑚
]

T
⊗1
𝑛𝑡×1

, e
𝑖
= [𝑒𝑖𝑟

/(𝑒
𝑖𝑟
+ 𝑒
𝑖𝑙
) 𝑒
𝑖𝑙
/(𝑒
𝑖𝑟
+ 𝑒
𝑖𝑙
)]

T.
Further, the discrete version of (16) is as follows:

𝜅
0
= (I − 𝜇) 𝜅, (28)

where 𝜇 is a block diagonal matrix of respective dimensions
with diagonal blocks 𝜇

𝑖
I
2𝑛𝑡 ,2𝑛𝑡

.
Finally, the previous discrete equations (25), (26), and

(27) are combined and generate the following large linear
system:

[

[

I − [
[

0 HV
𝑐
SΘ
1

0
D𝑚𝑚all Θ2 −D

𝑚𝑚

all Θ1 D𝑚𝜅all (I − 𝜇)
D
𝜅𝑚
Θ
2
−D
𝜅𝑚
Θ
1

D
𝜅𝜅
(I − 𝜇)

]

]

]

]

×
[

[

Yall
xall
𝜅

]

]

=
[

[

0
D𝑚𝑚all
D
𝜅𝑚

]

]

meg + [
[

HV
𝑐
S

−D𝑚𝑚all
−D
𝜅𝑚

]

]

Θ
1
rall𝑑𝑦,

(29)

where HV
𝑐
= [(HV

)
T
(ḢV
)

T
]

T
, Θ
1
= [k c], YV

all =

[(YV
)
T
( ̇YV
)

T
]

T
, D𝑚𝑚all = [(D𝑚𝑚)T ( ̇D𝑚𝑚)T]

T
, D𝑚𝜅all =

[(D𝑚𝜅)T (Ḋ𝑚𝜅)T], Θ2 = [kST cST] , xall = [xT ẋT]
T
, rall =

[r𝑇 ̇rT]
T
.

The blockmatrices in (29) store all the necessary informa-
tion about the dynamics of the systems and are independent
of the damage. Thus, given the values of the moving vehicle
parameters 𝑚

𝑖
, V
𝑖
, 𝑐
𝑖
and the extent of the damage 𝜇

𝑖
, the



Mathematical Problems in Engineering 7

system (29) can be quickly assembled and then solved to
obtain the moving excitations and virtual distortions, which
can then be used in (24) to compute the response of the
damaged structure to the moving vehicles.

However, in application there are different vehicles pass-
ing over any given bridge, and it was necessary to set
up the corresponding impulse frequency matrix of the
vehicle(s), HV

𝑐
in (29), repeatedly. Based on the reanalysis

concept of VDM, the problem can be improved. Denote �̃�
𝑖
,

𝐽
𝑖
, ̃𝑘
𝑖
, 𝑐
𝑖
as the initial vehicle system parameters of the 𝑖th

moving vehicle, and denote 𝜇𝑚
𝑖
, 𝜇𝐽
𝑖
, 𝜇𝑘
𝑖
, 𝜇𝑐
𝑖
, respectively, as the

ratios between the actual, and initial, values; that is,

𝑚
𝑖
= 𝜇
𝑚

𝑖
�̃�
𝑖
, 𝐽
𝑖
= 𝜇
𝐽

𝑖
𝐽
𝑖
,

𝑘
𝑖
= 𝜇
𝑘

𝑖
̃
𝑘
𝑖
, 𝑐
𝑖
= 𝜇
𝑐

𝑖
𝑐
𝑖
.

(30)

Substitute (30) into (2), and shift the modified counter-
part compared to the initial vehicle value to obtain

m̃V
𝑖
�̈�
V
𝑖
(𝑡) + 𝑐𝑖

e
𝑖𝑘
�̇�
V
𝑖
(𝑡) +

̃
𝑘
𝑖
e
𝑖𝑘
𝑌
V
𝑖
(𝑡)

= 𝜇
𝑘

𝑖
̃
𝑘
𝑖
𝑆
𝑖
(𝑥
𝑖 (
𝑡) + 𝑟𝑖 (

𝑡)) + 𝜇
𝑐

𝑖
𝑐
𝑖
𝑆
𝑖
(�̇�
𝑖 (
𝑡) + ̇𝑟
𝑖 (
𝑡))

+ (I − 𝜇𝑚,𝐽
𝑖
) m̃V
𝑖
�̈�
V
𝑖
(𝑡) + (1 − 𝜇

𝑐

𝑖
) 𝑐
𝑖
e
𝑘𝑖
�̇�
V
𝑖
(𝑡)

+ (1 − 𝜇
𝑘

𝑖
)
̃
𝑘
𝑖
e
𝑘𝑖
𝑌
V
𝑖
(𝑡) ,

(31)

where 𝜇𝑚,𝐽
𝑖
= diag [𝜇𝑚

𝑖
𝜇
𝐽

𝑖
].

Then, through the use of the impulse response matrix of
the initial vehicle system ̃HV, the vibration of the vehicle can
be reformulated as follows:

YV
=
̃HVS (𝜇𝑘̃k (x + r) + 𝜇𝑐c̃ (ẋ + ̇r))

+ H̃V
(I − 𝜇𝑚,𝐽) m̃

𝑚,𝐽
ŸV

+
̃HVS
𝑒
((I − 𝜇𝑘) ̃kYV

+ (I − 𝜇𝑐) c̃ ̇YV
) ,

(32)

where matrices ̃k, c̃, m̃ have a similar form to
matrices k, c, m, as did 𝜇𝑘, 𝜇𝑐, and 𝜇𝑚. m̃

𝑚,𝐽
= ∑
𝑛𝑚

𝑖=1
I
𝑖
⊗mV
𝑖
,

mV
𝑖
= m̃V
𝑖
⊗ I
𝑛𝑡 ,𝑛𝑡

, S
𝑒
= ∑
𝑛𝑚

𝑖=1
I
𝑖
⊗ S
𝑒𝑖
, S
𝑒𝑖
= e
𝑖𝑘
⊗ 𝐼
𝑛𝑡𝑛𝑡

,
𝜇
𝑚,𝐽
= ∑
𝑛𝑚

𝑖=1
I
𝑖
⊗ 𝜇
𝑚,𝐽

𝑖
.

Meanwhile, if ̃HV, in (32), is replaced by ̇
̃H

V
, it yields the

expression for ̇YV and using the reformulated expression for
the vehicle vibration YV and ̇YV, (29) becomes

[

[

[

I − [[
[

H̃V
allI2S𝑒𝑚 (I − 𝜇

𝑘𝑐𝑚
) H̃V

𝑐
SΘ
1
𝜇
𝑘𝑐

0

D𝑚𝑚all Θ2𝜇
𝑘𝑐𝑚

−D𝑚𝑚all Θ1𝜇
𝑘𝑐 D𝑚𝜅all (I − 𝜇)

D
𝜅𝑚
Θ
2
𝜇
𝑘𝑐𝑚

−D
𝜅𝑚
Θ
1
𝜇
𝑘𝑐 D

𝜅𝜅
(I − 𝜇)

]

]

]

]

]

]

×
[

[

YV
all

xall
𝜅

]

]

=
[

[

0

D𝑚𝑚all
D
𝜅𝑚

]

]

𝜇
𝑚m̃eg + [

[

H̃V
𝑐
S

−D𝑚𝑚all
−D
𝜅𝑚

]

]

Θ
1
𝜇
𝑘𝑐rall,

(33)

where ̃H𝑚𝑚all = diag [̃HV ̇
̃H

V
], S
𝑒𝑚

=

diag[S
𝑒
̃kS
𝑒
c̃m̃
𝑚,𝐽
], 𝜇𝑘𝑐𝑚 = diag [𝜇𝑘 𝜇𝑐 𝜇𝑚,𝐽], 𝜇𝑘𝑐 =

diag [𝜇𝑘 𝜇𝑐], I2 = one(2) ⊗ I
2𝑛𝑚𝑛𝑡

.

Equation (33), like (29), is a large linear system with
full rank, and its solution is well conditioned. There, the
block matrices, such as the related influence matrix or initial
system matrices, are generated by the FE model, which
is noiseless and only needs to compute once for each set
of moving vehicle and damage parameters. Therefore, it
provides a fast reanalysis approach to the estimation of the
dynamic responses and the moving excitation, which makes
the optimisation of the structural damage identification and
vehicle parameters feasible.

4. Identification of Moving
Vehicles and Damages

The analysis in Section 2.3 shows that the coupled vehicle-
bridge system is time variant, and the response is nonsta-
tionary. Time-domain analysis is the proper identification of
unknown structural systems and moving vehicles.

4.1. Objective Function and theOptimizationVariables. Equa-
tion (24) shows that the dynamic response of the damaged
bridge was a function of the moving excitation and virtual
distortions, which were in a one-to-one correspondence to
the moving vehicle parameters and structural damage. Thus,
here the inverse problemof identification of unknown vehicle
and damage extent was stated as an optimisation problem
involving the minimisation of the normalised mean-square
distance between the measured structural response y𝑀 and
the computed response y. The optimisation variables are
the modifying factors of vehicle parameters 𝜇𝑚

𝑖
, 𝜇𝐽
𝑖
, 𝜇𝑘
𝑖
, 𝜇𝑐
𝑖
,

and damage extent 𝜇
𝑖
which takes advantage of two aspects:

on one hand, the magnitudes of the adopted optimisation
variables were much less than the magnitudes between the
vehicle parameters and bridge damage extents, for the latter
can seriously impair the accuracy of many optimisation pro-
cedures: the damage extents 𝜇

𝑖
belong to the interval [0, 1],

but the vehicle parameters might be as large as tens of tonnes,
and so forth. Moreover, this makes the direct adoption of
(33) to obtain the moving excitation and dynamic response
of the damaged bridge to given optimisation variables with
the prerequisite of the initial system matrices which only are
computed once.

Therefore, the initial vehicle parameters were firstly
computed using the measured responses of the damaged
structure while assuming that the bridge was intact and
was under the action of moving excitations which equal the
weight forces of the vehicles with initial mass �̃�

𝑖
, for which

the corresponding responses equal the measured responses,
therefore giving rise to the following expression:

y𝑀 = D𝑚m̃g, (34)

where y𝑀 and g are known, and matrix D𝑚 can be
constructed using the intact bridge system, matrix
vector m̃ consisting of �̃�

𝑖
is the unknown to be solved.

For the number of the required sensors is bigger than the
number of vehicles, (34) is an overdetermined system and
the initial mass �̃�

𝑖
can be computed via the least-square

method.
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Then, the rest of the initial parameters for the vehicles
are determined by their empirical relationships to the vehi-
cles’ masses. Given the initial parameters, the optimisation
variables can be represented by the following dimensionless
variables 𝜇⋆

𝑖
(𝑖 = 1, . . . , 4𝑛

𝑚
+ 𝑛
𝑒
), 𝑛
𝑒
is the number of the

potential damaged elements. Denote 𝑖 = 4(𝑗 − 1) + 𝑗
𝑚
, there

is

𝜇
⋆

𝑖
=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝜇
𝑚

𝑗
if 𝑗 ≤ 𝑛

𝑚
, 𝑗
𝑚
= 1

𝜇
𝐽

𝑗
if 𝑗 ≤ 𝑛

𝑚
, 𝑗
𝑚
= 2

𝜇
𝑘

𝑗
if 𝑗 ≤ 𝑛

𝑚
, 𝑗
𝑚
= 3

𝜇
𝑐

𝑗
if 𝑗 ≤ 𝑛

𝑚
, 𝑗
𝑚
= 4

𝜇
𝑖−4𝑛𝑚

if 𝑗 > 𝑛
𝑚
.

(35)

All the optimization variables 𝜇⋆
𝑖
are of the same magni-

tude and have the natural initial value of 1 for the optimiza-
tion. The objective function is thus built as

minimize 𝑓 (𝜇
⋆

1
, . . . , 𝜇

⋆

4𝑛𝑚+𝑛𝑒
) =

1

2






y𝑀 − y



2





y𝑀


2

subject to 𝜇
⋆

𝑖
≥ 0, 𝑖 = 1, . . . , 4𝑛

𝑚
+ 𝑛
𝑒
,

(36)

where y is the computed response of the structure to the
given optimization variables by (35), (33), (27), and (28).

4.2. Sensitivity Analysis. For the optimization of the objective
function (36), it can be performed quickly using the gradient-
based algorithms provided that the gradient can be computed
at a reasonable cost. The formulation based on (24), (27),
(28), and (33) allows the discrete adjoint method to be used,
which is quicker by one order of magnitude compared with
the standard differentiation method [28].

Denote D = [D𝑚𝑚 D𝜅], Λ = [PT
(𝜅
0
)

T
]

T
; then the first

derivative of (36) with respect to the variable 𝜇⋆
𝑖
is stated as

𝑓
𝑖
= −

(y𝑀 − y)
T





y𝑀


2
DΛ
𝑖
. (37)

Here and below, the subscript 𝑖 in each variable stands for
its first derivative to the variable 𝜇⋆

𝑖
.

In order to obtain the expression of Λ
𝑖
, (27) is firstly

reformulated as follows:

p = Γ
1
z
1
+ w, (38)

where Γ
1

= [kST cST −k −c] , z1 =

[(YV
)
T
(
̇YV
)

T xT ẋT]
T
,w = −kr − c ̇r +meg.

Then

p
𝑖
= Γ
1
z
1𝑖
+ Γ
1𝑖
z
1
+ w
𝑖
. (39)

Equation (28) is differentiated to obtain

(𝜅
0
)
𝑖
= Γ
2
𝜅
𝑖
+ Γ
2𝑖
𝜅, (40)

where Γ
2
= I − 𝜇.

The combination of (39) and (40) generates the following
expression:

Λ
𝑖
= Γz
𝑖
+ Ω
𝑖
, (41)

where z = [(Y
V

all)
T

xTall 𝜅
T
]

T
, Γ = diag [Γ1 Γ2], Ω𝑖 =

[Γ
1𝑖
z
1
][(Γ
1𝑖
z
1
+ w
𝑖
)
T
(Γ
2𝑖
𝜅)

T
]

T
.

Vector z represents the parameters in (33) required to be
solved. By reformulating (33) as the form Az = b, the first
derivative z

𝑖
satisfies the following relationship:

Az
𝑖
= b
𝑖
− A
𝑖
z. (42)

Substitute (41) into (37); there is

𝑓
𝑖
= −

(y𝑀 − y)
T





y𝑀


2
DΓz
𝑖
−

(y𝑀 − y)
T





y𝑀


2
DΩ
𝑖

(43)

which includes the first derivatives z
𝑖
. The discrete adjoint

method adds the scalar product of the adjoint vector 𝜆 with
(42) to (43), to obtain

𝑓
𝑖
= 𝜆

T
(b
𝑖
− A
𝑖
z) −

(y𝑀 − y)
T





y𝑀


2
DΩ
𝑖

+ (𝜆
TA −

(y𝑀 − y)
T





y𝑀


2
DΓ) z

𝑖
.

(44)

In this way, the gradient of the objective function can be
expressed as

𝑓
𝑖
= 𝜆

T
(b
𝑖
− A
𝑖
z) −

(y𝑀 − y)
𝑇





y𝑀


2
DΩ
𝑖
, (45)

where the adjoint vector 𝜆 is computed only at the cost of a
single solution of the adjoint equation

AT
𝜆 = Γ

TDT (y
𝑀
− y)





y𝑀


2
. (46)

4.3. Remarks. If a small number of time steps are used,
then the system matrix in (33) can be computed and used
directly. However, for offline identification, in the case of
a dense time discretization or a longer sampling time, the
system can become prohibitively large and computationally
hardlymanageable. To reduce the numerical costs, the system
matrix, which is a block matrix composed of lower triangular
matrices, can be rearranged into a lower triangular block
form; then the system can be solved by a specialized linear
solver, like block forward substitution [29]. Due to the fact
that all the data in the system (33) are computed based on the
ideal FEMmodel and are away from any measurement noise
pollution, the unknown vectors can be computed stepwise
precisely.

If the bridge is undamaged, the virtual distortions in (24)
vanish; that is, the value of damage extent equals one in
related Equations, and the proposedmethod can be also used
for identification of moving vehicles only.
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5. Numerical Example

A multispan frame was used to illustrate and verify the
proposed methods for simultaneous identification of moving
vehicles and damage. Measurement error and model error
were taken into account to test the robustness of the method.

5.1. Structural and Moving Vehicles. The frame, shown in
Figure 3, is made of steel with Young’s modulus 2.15 × 1011 Pa,
and a density of 7.8 × 103 kg/m3. It has a uniform mass
distribution of 15.3 × 103 kg/m3. The beam is 200m long with
a simplified rectangular cross-section of 𝑏 × ℎ = 0.89m ×
2.21m, so that the inertial moment of the area is 0.8m4; each
of the two side spans is 50m. Each pier is 20m high with
inertial moment of 0.16m4.

The road surface condition is considered to be good, and
the roughness coefficient 𝐺

𝑑
(𝑛
0
) is 16 × 10−6m3. According

to the vehicle velocity, 𝑛
𝑙
= 0.0221m−1, 𝑛

𝑢
= 1.4142m−1;

then the length of the shortest effective pavement is 1/𝑛
𝑙
=

45.25m, so the effective pavement can be the whole length
of the bridge. In this way, Δ𝑛 = 1/𝐿 = 0.01m−1, 𝑁

𝑇
=

fix((𝑛
𝑢
− 𝑛
𝑙
)/Δ𝑛) = 278. Figure 4 shows the simulated road

surface roughness via (3).
Two moving vehicles passed through the bridge from

opposite direction, with respective constant velocities V
1
=

34m/s, V
2
= −30m/s. A two-axle, two-DOF, vehicle model

was adopted. The vehicle masses were 𝑚
1
= 61.2 × 10

3 kg,
𝑚
2
= 53 × 10

3 kg. The other vehicle parameters such
as the rotary inertia, stiffness, and damping are provided
by multiplying the vehicle mass by a certain coefficient
according to the literature [30]. The rest of the parameters of
the two vehicles were defined, respectively, as 𝑘 = 396𝑚N/m,
𝑐 = 1.4𝑚N ⋅ s/m; the rotary inertia 𝐽 = 9𝑚 kg ⋅ m2. The
distance between the centre of mass and either of the two
axles was 3m. Denoted by 𝑥

1,0
= −3m, 𝑥

2,0
= 204m,
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Figure 5: Stiffness reduction levels of the elements.

respectively, were the initial centroidal points of each vehicle’s
mass.

Two sensors are employed: S1 at the location of 65.2m and
S2 at the location 145.2m as shown in Figure 3. The sensors
are placed at bottom surface of the beam.

5.2. Identification Cases. For the identification purpose, the
beam is divided into 20 elements, and each of the piers is
divided into two elements. Measurements are simulated with
an uncorrelated Gaussian noise. Besides the measurement
error, the influence of the model error is tested by using a
different finite element (FE) model of the structure; that is,
the theoretical FEmodel of the intact structure is modified as
the actual intact structure.

Two following identification cases are discussed.

Case 1. Measurement error is simulated at 5% RMS level.
No model error is assumed. Assume that two pier elements
(Nos. 21 and 23) are damaged with the damage extents 𝜇

21
=

0.4 and 𝜇
23
= 0.7.

Case 2. As in Case 1, but the model error is additionally
simulated. It considers the modification of the stiffness
of all the elements. More precisely, uncorrelated Gaussian
modifications with mean −2% and standard deviation 5% are
used; see Figure 5, for the stiffness modifications. Then, the
actual damage extents are slightly different from that listed in
case 1, which include themodel error besides the real damage.

In both of the two cases, it was assumed that the damage
location was limited to the four pier elements. Two moving
vehicles were identified simultaneously as being causally
linked to the extent of the damage. Four stiffnessmodification
coefficients were used in the optimisation, besides the eight
variables related to the masses, rotary moments, stiffness,
and damping of the two vehicles. In this way, the damage
extent and its location, as well as vehicle parameters, were
treated as unknowns and thus identified. Meanwhile, the
dynamic interaction of the coupled vehicle-bridge systemwas
established.

5.3.MovingVehicle and theDamage Identification. Responses
of the two sensors are used for vehicle and damage identi-
fication. In each case, the dynamic responses are calculated
using the discrete FE model and the Newmark integration
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Table 1: The first eight natural frequencies of the original and damaged bridge model (Hz).

𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7 𝜔8

Original model 5.023 5.707 14.432 17.279 20.6 35.324 53.397 59.437
Damaged model 4.552 5.526 13.958 17.054 20.56 35.036 52.782 58.606

Table 2: Identified parameters of moving vehicles in Case 1.

m1 (kg) J1 (kg⋅m2) k1 (N/m) c1 (N⋅s/m) m2 (kg) J2 (kg⋅m2) k2 (N/m) c2 (N⋅s/m)
Actual value 6.12 × 10

4
5.51 × 10

5
2.42 × 10

7
8.57 × 10

4
5.30 × 10

4
4.77 × 10

5
2.10 × 10

7
7.42 × 10

4

Trial value 7.00 × 10
4

4.20 × 10
5

3.50 × 10
7

7.00 × 10
4

6.33 × 10
4

3.80 × 10
5

3.16 × 10
7

6.33 × 10
4

Identified 𝜇 0.88 1.33 0.7 1.32 0.84 1.38 0.67 1.24
Identified value 6.18 × 10

4
5.58 × 10

5
2.44 × 10

7
9.25 × 10

4
5.35 × 10

4
5.23 × 10

5
2.12 × 10

7
7.84 × 10

4

Identified error (%) 0.97 1.39 0.59 8.01 0.86 9.62 0.79 5.59
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Figure 6: Simulated strain responses of the damaged and the intact
structure in Case 1 with measurement noise at 5% RMS level.

method with the parameters 𝛼 = 0.25 and 𝛽 = 0.5. The
first two damping ratios are 0.01 and 0.015. The integration
time step equals 0.01 s (100Hz sampling frequency). A total
of 100 time steps is used; hence, the measured time is 1 s. The
simulated responses with measurement noise in Case 1 are
show in Figure 6. Table 1 shows the natural frequencies of the
original and damaged bridge model.

The damage was limited to the two piers, that is, to
the four pier elements. Together with two known vehicles
(eight modification coefficients), there were twelve variables
to be optimised by minimising the objective function (36).
Responses from two sensors were used for this purpose. The
initial trial mass values were estimated using (34). Then, the
other initial vehicle parameters were provided based on their
masses.

The identification results for the two vehicle parameters
are listed, respectively, in Table 2 (Case 1) and Table 3 (Case
2).

The identified extents of the structural damages in the two
cases are listed, respectively, in Table 4 (Case 1) and Table 5
(Case 2).

The parameter identification results were assessed by
their relative accuracy, while the damage identification results
were more naturally assessed in terms of their absolute
accuracy. It showed that, even with all the simulated errors,
the parameters of the two vehicles and four potential damage
identifiers could be identified acceptably. Since only two
damages were actually assumed, the optimisation allowed
their number and location (limited to the four considered pier
elements) to be identified as well.

With the identified vehicles and structural damage, the
moving loads can be computed meanwhile by using (27).
Figure 7 shows the estimated results which have reasonable
accuracy. The relative error was 2.6% even under both 5%
RMS measurement noise and model error in Case 2.

6. Conclusion

This paper presented an effective method for the simultane-
ous identification of moving vehicles and structural damage
based on a virtual distortion method.The vehicle parameters
and the structural damage were treated as optimisation vari-
ables.Through the use of amoving dynamic influencematrix,
the response of the damaged system to given optimisation
variables could be computed quickly without the need of
a numerical simulation and the repeated assembly of the
time-variant system parameter matrix at each time-step.
This reduced the numerical cost significantly. The adjoint
method was adopted for the fast sensitivity analysis of the
objective function. A numerical example of a three-span
beam was presented to verify the proposed method, where
two vehicles (eight variables) and two damaged piers (four
damage instances) were identified using only two sensors.
Even with both the pollution of 5% RMS measurement error
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Table 3: Identified parameters of moving vehicles in Case 2.

m1 (kg) J1 (kg⋅m2) k1 (N/m) c1 (N⋅s/m) m2 (kg) J2 (kg⋅m2) k2 (N/m) c2 (N⋅s/m)
Actual value 6.12 × 10

4
5.51 × 10

5
2.42 × 10

7
8.57 × 10

4
5.30 × 10

4
4.77 × 10

5
2.10 × 10

7
7.42 × 10

4

Trial value 6.96 × 10
4

4.18 × 10
5

3.48 × 10
7

6.96 × 10
4

6.38 × 10
4

3.83 × 10
5

3.19 × 10
7

6.38 × 10
4

Identified 𝜇 0.89 1.3 0.7 1.35 0.85 1.37 0.67 1.26
Identified value 6.16 × 10

4
5.44 × 10

5
2.44 × 10

7
9.41 × 10

4
5.45 × 10

4
5.23 × 10

5
2.14 × 10

7
8.02 × 10

4

Identified error (%) 0.7 1.29 0.79 9.79 2.82 9.66 2.05 8.07
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Figure 7: Identified moving loads.

Table 4: Identified extents of the damages in Case 1.

𝜇
21

𝜇
22

𝜇
23

𝜇
24

Actual value 0.400 1.000 0.700 1.000
Identified value 0.454 0.930 0.709 0.965
Identified error (%) 13.50 7.00 1.29 3.5

Table 5: Identified extents of the damages in Case 2.

𝜇
21

𝜇
22

𝜇
23

𝜇
24

Actual value 0.398 1.004 0.666 0.977
Identified value 0.453 0.908 0.755 0.990
Identified error (%) 13.82 9.56 13.36 1.33

and a certain model error, the maximum identification error
was 13.82%. Moreover, the moving excitation effects were
estimated accurately.
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