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Abstract

We present an integrated dynamical cross-talk model of the epithelial innate immune reponse (IIR) incorporating RIG-I and
TLR3 as the two major pattern recognition receptors (PRR) converging on the RelA and IRF3 transcriptional effectors. bioPN
simulations reproduce biologically relevant gene-and protein abundance measurements in response to time course, gene
silencing and dose-response perturbations both at the population and single cell level. Our computational predictions
suggest that RelA and IRF3 are under auto- and cross-regulation. We predict, and confirm experimentally, that RIG-I mRNA
expression is controlled by IRF7. We also predict the existence of a TLR3-dependent, IRF3-independent transcription factor
(or factors) that control(s) expression of MAVS, IRF3 and members of the IKK family. Our model confirms the observed
dsRNA dose-dependence of oscillatory patterns in single cells, with periods of 1–3 hr. Model fitting to time series, matched
by knockdown data suggests that the NF-kB module operates in a different regime (with different coefficient values) than in
the TNFa-stimulation experiments. In future studies, this model will serve as a foundation for identification of virus-encoded
IIR antagonists and examination of stochastic effects of viral replication. Our model generates simulated time series, which
reproduce the noisy oscillatory patterns of activity (with 1–3 hour period) observed in individual cells. Our work supports
the hypothesis that the IIR is a phenomenon that emerged by evolution despite highly variable responses at an individual
cell level.
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Introduction

The focus of this paper is to understand the dynamics of

interaction between two major signaling pathways in the innate

immune response (IIR) controlled by the nuclear factor-kB (NF-

kB) and interferon response factor (IRF)-3 transcription factors

that mediate inflammation and antiviral responses, respectively.

The IIR is a signaling mechanism designed to limit the spread of

infecting pathogen at mucosal surfaces before the adaptive

immune response is activated [1]. The presence of ‘‘foreign’’

pathogen-associated molecular patterns, such as dsRNA and

lipopolysaccharide, is recognized by a family of pattern recogni-

tion receptors (PRRs) that subsequently trigger signal transduction

cascades. These cascades include the NF-kB and IRF transcription

factors (TFs) [2,3]. The link to adaptive immune protection is

conferred by the expression of cytokine and protective interferons

downstream of the NF-kB and IRF pathways. Interestingly, the

intracellular IIR is not mediated by second messengers, but instead

by signaling complexes produced by intracellular adapter mole-

cules. These enzymes perform the functions of ubiquitylation,

serine/threonine phosphorylation, and cysteinyl oxidation cas-

cades that release and activate cytoplasmic TF complexes to enter

the nucleus. Despite the finding that this pathway is activated in a

robust manner, it is under very tight negative-feedback control

[4,5]. The properties of negative feedback of this system have been

modeled using deterministic ordinary differential equations to

understand the roles of negative feedback of inducible IkB-a, -b
and -e isoforms in regulating the temporal control of NF-kB [6],

and our studies have modeled the roles of the NF-kB -TNFAIP3

feedback loop [7,8]. Not much is known about how the activation

of these two major signaling arms of the IIR is controlled. Recent

work by our group and others has shown that adapter molecules

regulating the IRF3 signaling pathway are inter-connected with

those of NF-kB at multiple stages, with the final shared component

being the IkB kinase-c (IKKc) subunit [9,10]. More recently,

single-cell imaging experiments have provided informative ap-

proaches to understanding the sources of cellular heterogeneity

[11,12]. Despite these and other experimental and modeling
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attempts, little has been known about how the NF-kB and IRF3

pathways interact with each other.

In addition to its tight control by intracellular negative cross-talk

pathways, a full understanding of the IIR must incorporate cell-

type dependent differences. For example, the patterns of IIR

induced genes, their magnitude of induction and qualitative

changes are different between epithelial cells and other cells of the

innate pathway. These differences are due, in part, to the result of

cell-type dependent expression and localization of key regulatory

molecules. For example, in contrast to the cell-surface localization

of TLR3 on monocyte/macrophages, TLR3 expression is

endosomal in epithelial cells [13]. Moreover, cell-type differences

have been observed in the IRF3 pathway modulating IKKc/

NEMO alternative splice product [10]. For these reasons, we will

focus on the epithelium, the primary sentinel cell of respiratory

RNA virus interactions.

Cross-talk between the NF-kB and IRF3 signaling arms is

critical for determining the cellular outcome of viral infection.

Studies in NF-kB - deficient cells have shown that the initial

kinetics of the type I interferon (IFN) response depends on

concurrent NF-kB activation [14]. In the absence of NF-kB, the

rapid response of IFNb expression is blunted, reducing the

propagation of anti-viral signals in the mucosal surface. Moreover,

NF-kB controls expression of the downstream IFN auto-amplifi-

cation loop through STAT1, IRF-1, 5, and -7 transcription

factors. These findings indicate that the two NF-kB and IRF3

signaling arms are highly interconnected and that these intercon-

nections influence the kinetics of the IIR.

The specific purpose of this study is to apply an estimation-

validation modeling approach to investigate IIR network topology

and interaction rates are consistent with the observed responses of

both pathways of human A549 airway epithelial cells (hAECs) in

response to dsRNA stimulation, which is a synchronized model of

viral infection. dsRNA is a molecular pattern that activates both

TLR3 and RIG-I-MAVS signaling in airway epithelial cells and is

chosen as a model for viral infection for two reasons. First, it

mimics the viral intermediate-products sensed by the innate

immune-response mechanism without confounding effects of IIR

antagonism produced by the viral proteins, and second, the

dsRNA stimulation is synchronous for all cells in the population.

Our strategy for determining this topology is composed of two

elements: (i) measurements of the time series of major mRNA and

protein species in responses to various doses of dsRNA, and (ii)

knocking down expression of selected nodes of the pathway,

followed by analysis of the responses of the perturbed system. The

time courses of mRNA and protein expression of unperturbed and

perturbed systems are measured by quantitative real time PCR (Q-

RT- PCR) and stable isotope dilution-selective reaction monitor-

ing (SID-SRM) for fitting the model parameters. Quantitative

SID-SRM measurements are much more accurate than other

conventional blotting methods; this represents the first example to

our knowledge of using SRMs for modeling signaling systems. For

the siRNA silencing experiments, essential for validation of the

model, hAECs were transfected with siRNAs specifically targeting

the Pattern Recognition Receptors (PRR) (TLR3, TRIF and RIG-

I), the regulatory subunit of IkB kinase complex (IKKc), and

components of the NF-kB pathway (IKKa/b, RelA) and IRF3

pathway (TBKi, IRF3). Our model represents the observed

phenomena of dsRNA-inducible RelA and IRF3 activation,

negative NF-kB -IRF3 cross-talk, distinct phases of inducible

RIG-I degradation and resynthesis. The presence of negative

cross-talk is independently confirmed by evolutionary footprint

analysis, where we can identify candidate binding sites for NF-kB

on IRF genes and vice-versa. The experimentally refined model

also predicts the existence of an IRF3-independent mode of RIG-I

regulation. In validation experiments, we demonstrate that this

transcription factor is IRF7. Finally, we visualized NF-kB and

IRF3 translocation from cytoplasm to the nucleus in individual

cells using dynamic imaging. The essence of our approach is to use

mathematical modeling not only to reproduce the deterministic

cell-population data, but also the stochastic single-cell data and

reconcile one with the other. This approach has never been used

for systems of such complexity.

Methods

Experimental Treatments
Ethics Statement. Animal manipulations were performed in

the UTMB Animal Resource Center (ARC) under the direct

supervision of the UTMB Animal Care and Use Committee

(ACUC, assurance number A3314-01). The Animal Resource

Center is AAALAC (Association for the Assessment and Accred-

itation of Laboratory Animal Care International) accredited. The

ARC follows all standards for AAALAC and international IACUC

(Institutional Animal Care and Use Committee) compliance and is

staffed by full-time veterinarians and staff overseeing all program

aspects. MEF isolation has been approved by the UTMB IACUC

under animal protocol 0105020B.

Electroporation of dsRNA. Double-stranded RNA (dsRNA)

was synthesized using T7 RNA polymerase on a 400 bp luciferase

template in pCRII (InVitrogen) with flanking T7 RNA promoters

and purified according to manufacturer’s recommendations

(Ambion). 4 mg of dsRNA was electroporated into hAECs cells

at about 56105 dsRNA units per cell. To ensure experimental

reproducibility, in later experiments of dose-response, synthetic

dsRNA (polyinosinic–polycytidylic acid sodium salt [poly (I:C)],

Sigma [St. Louis, MO]) was substituted for enzymatically

synthesized dsRNA. The treated cells were harvested at 18 hr

following electroporation and the total RNA of the cells was

extracted for further measurements.

Knock-down experiments. Experiments were carried out

using target gene-specific siRNA and the control nonspecific

siRNA, which were reverse- transfected into hAECs cells at the

concentration of 100 nM siRNA using TransIT-siQUEST trans-

fection reagent (Mirus Bio Corp) as described previously [15].

Sources of the siRNAs were obtained from Thermo Scientific,

Dharmacon, Pittsburgh PA; siRNAs targets: RELA (acc. no.:

NM_021975, cat. no.: L-003533-00-0005), IRF3 (acc. no.:

NM_001571, cat.no.: L-006875-00-0005), RIG-I (acc. no.:

NM_014314, cat. no.: L-012511-00-0005), IKKc (acc. no.:

NM_003639, cat. no.: L-003767-00-0005), Control siRNA (cat.

no.: D-001810-10-05). In the present study, the transfection of

siRNA was performed 66 hr before dsRNA electroporation, i.e.,

72 hr before harvesting the cells.

IRF3/72/2 double knockout mouse embryonic fibroblasts

(MEFs [16];) were obtained as a gift from Slobodan Paessler

(UTMB). MEFs were established as explant cultures from 14 d old

embryonic cultures.

Quantitative real time PCR (Q-RT-PCR). The methods of

gene expression analyses using Q-RT-PCR were as described

previously [15]. Briefly, 1 mg of RNA was reverse-transcribed

using Super Script III in a 20 ml reaction mixture. One ml of

cDNA product was amplified in a 20 mL reaction mixture

containing 10 mL of SYBR Green Supermix (Bio-Rad) and

0.4 mM each of forward and reverse gene-specific primers. The

reaction mixtures were aliquoted into Bio-Rad 96-well clear PCR

plate and the plate was sealed by Bio-Rad Microseal B film before

putting into PCR machine. The plates were denatured for 90 s at

Dynamic Model of Innate Immune Response to dsRNA
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95uC and then subjected to 40 cycles of 15 s at 94uC, 60 s at 60uC,

and 1 min at 72uC in an iCycler (BioRad). PCR products were

subjected to melting curve analysis to assure that a single

amplification product was produced.

Quantification of relative changes in gene expression was

calculated using the DDCt method [17]. In brief, the DCt value

was calculated (normalized to GAPDH) for each sample: DCt [Ct

(target gene) 2 Ct (GAPDH)]. Next, the DDCt was calculated as:

(DCt (experimental sample) 2DCt (control sample)). Finally, the

fold differences between experimental sample and control sample

were calculated using the formula 22DDCt. The results were

represented as the normalized fold change compared with control

cells transfected with scrambled (non-target control) siRNA.

Quantification of absolute concentrations of the short and spliced

RNA transcripts was performed by estimating transcript number

relative to serial dilutions of cDNA standards in RT-PCR. mRNA

expression of RelA, IRF3, RIG-I, IKKc, TNFAIP3, IkBa, IL8,

and IL6, IFNb and RANTES were detected using gene specific

primers [10]. ISG56, ISG54, CIG5, and ISG60 mRNA were

measured using gene specific primers (Table 1).

NF-kB dependent gene expression at different dosages of

dsRNA was performed by the following procedure: hAECs cells

grown in10 cm dishes were trypsinized and electroporated at

dsRNA concentrations of 0, 0.1, 1, 5, 10, and 20 mg respectively.

The electroporated cells were harvested 18 hr later, and total

RNA was extracted for quantification of TNFAIP3, IkBa, IL8,

IL6, Grob and RANTES gene expression by Q-RT-PCR.

Cytoplasmic (CE) and nuclear extracts (NE). hAECs cells

were scraped and subjected to hypotonic buffer/detergent lysis

[18]. The supernatant (CE) was saved and the nuclear extract (NE)

was purified by centrifugation through a sucrose cushion followed

by extraction in Buffer C (50 mM HEPES, pH 7.9, 10% glycerol,

400 mM KCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT,

0.1 mM PMSF) with protease inhibitor cocktail (Sigma Aldrich,

St. Louis, MO). Protein content was estimated by Coomassie

Brilliant Blue staining using BSA as a standard (Bio-Rad,

Hercules, CA).

Stable isotope dilution (SID) - Selected Reaction

Monitoring (SRM) assays. Protein extracts were denatured,

reduced and alkylated with 30 mM of iodoacetamide for 2 hr at

37uC as previously described [19]. The samples were diluted 10-

fold with 100 mM ammonium bicarbonate, and digested with

2 mg of trypsin overnight at 37uC. The tryptic digests were dried

and resuspended in 5% formic acid-0.01% TFA prior to analysis.

Stable isotope standard (SIS) peptide stocks were diluted to a

concentration of 10 fmol/mL with 0.01% TFA. Before LC-SRM-

MS analysis, 30 mL of each tryptic digest was mixed with 10 mL of

each SIS peptide. These sample solutions were desalted with

Waters Sep-Pak C18 cartridge (Milford, MA) prior to SRM

analysis.

Selected Reaction Monitoring (SRM) assays were performed as

described [19–21]. For each high-responding signature peptide, 3–

5 y-ions were selected for measurement using optimized collision

energy (CE) for each signature peptide. LC-SRM-MS analysis was

performed with a TSQ Vantage triple quadrupole mass

spectrometer equipped with nanospray source (ThermoFinnigan,

San Jose, CA). The online desalting and chromatography were

performed using an Eksigent NanoLC-2D HPLC system (AB

SCIEX, Dublin, CA). An aliquot of 10 ml of each of tryptic digests

were injected on a C18 peptide trap (Agilent, Santa Clara, CA),

desalted with 0.1% formic acid at a flow rate of 2 mL/min for

45 min. Peptides were eluted and separated on a reverse-phase

nano-HPLC column (PicoFrit, 75 mm610 cm; tip ID 15 mm) at a

flow rate of 500 nL/min with a 20-min linear gradient from 2–

40% mobile phase B (0.1% formic acid-90% acetonitrile) in

mobile phase A (0.1% formic acid). The TSQ Vantage was

operated in high-resolution SRM mode with Q1 and Q3 set to 0.2

and 0.7-Da Full Width Half Maximum (FWHM). All acquisition

methods used the following parameters: 1800 V ion spray voltage,

a 275uC ion transferring tube temperature, a collision-activated

dissociation pressure at 1.5 mTorr, and the S-lens voltage used the

values in S-lens table generated during MS calibration. All SRM

data were processed using Xcalibur 2.1 using default values for

noise percentage and base-line subtraction window, and manually

inspected.

Dynamic live cell imaging of EGFP-RelA and Strawberry

IRF3 transfected hAECs. EGFP-RelA and Strawberry-IRF3

stable hAECs were split into a 6 well culture plate containing

collagen-coated 25 mm round cover slips. The cells were then

electroporated in situ with different dosages of poly IC. Dynamic

live-cell imaging was performed by confocal microscopy [11] using

a Nikon TiE inverted microscope fitted with a Prairie Technol-

ogies Inc. swept field confocal scanhead and an automated focus

stabilization system (Perfect Focus, Nikon). After electroporation,

the cover slips were immediately placed into a chamber where cells

were stably maintained at 37uC with humidified 5% CO2.

Samples were excited using 488-nm and 561-nm laser lines for

EGFP and mStrawberry respectively. Images were captured using

a high numerical aperture oil immersion lens (Nikon Super Fluor

406 1.3NA oil) and a high sensitivity EMCCD camera

(QuantEM, Photometrics). The time lapse images for each sample

were acquired at 6-min intervals using a multilocation time series

protocol controlled by Prairie View software..

Evolutionary TF Footprint Analysis
Evolutionary conservation of TFBS was performed as described

in Iwanaszko et al. [22]. Promoter sequences were obtained using

UCSC Genome Browser [23] and were analyzed using NucleoSeq

[24] and Consite [25], in search for IRF and NF-kB family TFBSs.

Motifs for the NF-kB family, as well as for IRF1 and IRF2 were

obtained from the Jaspar [26], while the motifs for IRF3 and IRF7

were obtained from Lin et al. [27].

Model Building and Analysis
Because our model building is iterative and tightly intertwined

with experimental results, it seems more appropriate to defer

details to the Results section. Here, we limit ourselves to essentials.

Briefly, the work on model building proceeded in the following

phases.

Phase 1: Determination of model network topology and

couplings

Phase 2: Estimation of parameters based on time series data

Table 1. Sequences of qRT-PCR primers for human IRF3
dependent genes.

Forward Primer Reverse Primer

ISG56 59-TCAGGTCAAGGATAGT-
CTGGAG-39

59-AGGTTGTGTATTCCCACACT-
GTA-39

ISG54 59-GGAGGGAGAAAACTC-
CTTGGA-39

59-GGCCAGTAGGTTGCACATT-
GT-39

CIG5 59-TGGGTGCTTACACCTG-
CTG-3

59-GAAGTGATAGTTGACGCTG-
GTT-39

ISG60 59-AAAAGCCCAACAACCC-
AGAAT-39

59-CGTATTGGTTATCAGGACTC-
AGC-39

doi:10.1371/journal.pone.0093396.t001
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Phase 3: Validation of the model based on the knockdown and

knockout data

Phase 4: Examination of extrinsic and intrinsic stochasticity and

dose-dependence.

Simulations. The model was simulated using the bioPN

software package, based on the Petri Nets formalism [28],

available at http://www.stat.rice.edu/,mathbio/bioPN/. Briefly,

bioPN may compute deterministic trajectories of chemical

reaction systems using systems of ordinary differential equations,

as well as stochastic trajectories in systems with finite number of

molecules, using the Gillespie algorithm and its refinements.

System of ordinary differential equations and pseudocode corre-

sponding to the bioPN code can be found in Table ST1 and ST3

in File S1.

Nuclear translocation and periodogram analysis. Quan-

tification of nuclear translocation of endogenous fluorescent

protein was performed on individual cells using CellTracker

software [29]. Periodogram analysis was used to identify periodic

behavior of nuclear translocation. This is a version of spectral

analysis, which allows estimating the relative weights of compo-

nents with different periodicities in the observed dynamics. The R-

function ‘‘prdgrm’’ used to compute periodograms was imple-

mented in bioPN ([28], available at http://www.stat.rice.edu/

,mathbio/bioPN/).

Results

To understand the interactions between the two arms of the IIR

signaling pathway, we probe the topology of couplings and

dynamic coordination using time series measurements of key

mRNA expression and protein abundance measurements, as well

as in response to siRNA knockdowns of major regulatory points of

the pathway. We use an estimation-validation approach to devise a

mathematical model of the epithelial IIR; this model exhibits a

cell-type dependent structure determined based on literature data

and parameter values determined based on its fit to time series

data and validated by knockdown data. To accomplish this end,

we first provide key experimental findings that inform the model

topology and parameters, followed by mathematical model

building and validation.

Experimental Findings on Model Topology and Kinetics
Kinetics of NF-kB and IRF3 dependent gene

expression. Previously, we demonstrated that RNA virus

infection activates both the TLR3 and RIG-I signaling pathways

in human hAECs as a model airway epithelial cell [13,15,30]. To

understand the kinetics of pathway activation, hAECs were

synchronously stimulated with intracellular dsRNA (4 mg) by

electroporation for a time series of 0, 0.5, 1, 2, 4, and 6 hr. Total

cellular RNA was extracted and subjected to Q-RT-PCR for

determination of relative changes in NF-kB and IRF3 dependent

genes (Fig. 1, black solid circles). Data were scaled in a way

explained further in the paper. These data indicated that dsRNA

strongly induced the expression of the TNFAIP3/A20 and

NFKBIA/IkBa genes; we noted that these selectively NF-kB

dependent genes were the most rapidly induced, whose expression

could be detected within 30 min of stimulation. In contrast, the

expression of type I IFN (IFNb) was more delayed, and was not

detectably changed until 2 hr after dsRNA stimulation. To be

discussed later, we also noted that RIG-I mRNA induction had a

similar kinetic response as that of IFNb. All of this together, these

data indicate that the NF-kB dependent genes are most rapidly

inducible in response to dsRNA.

Signal inducible RIG-I degradation and synthesis. The

SID-SRM assays are quantitative assays to determine the

abundance of target proteins in subcellular fractions [20]. A time

course of dsRNA-stimulated hAECs cells was fractionated into

cytoplasmic preparations and subjected to SID-SRM analysis for

RIG-I, MAVS, IKK1 and IKK2 (Fig. 2, top panels). Each of these

cytoplasmic proteins exhibited complex behavior, with RIG-I and

MAVS being markedly reduced to less than half their initial

abundances within 2 h after dsRNA exposure before they are

inducibly resynthesized to levels greater than that of control (Fig. 2,

top panel, black solid circles). IKK1 and IKK2 showed similar

depletions, although the magnitude was significantly less. Inter-

estingly, the parallel depletion of both RIG-I and MAVS are

consistent with their known regulation by the RNF E3 ubiquitin

ligase [31]. Although we cannot exclude a small component of

translational inhibition, the dramatic later phase accumulation of

RIG-I protein (Fig. 2), interpreted together with our earlier

mRNA analysis (Fig. 1) that RIG-I mRNA is dramatically

upregulated indicate that the expression of RIG-I protein is

strongly induced by dsRNA exposure. By comparison, it is well

established that NFKBIA/IkBa is a negative regulator of the NF-

kB/RelA pathway whose abundance is regulated by inducible

phosphorylation-ubiquitylation [32]. A similar pattern of inducible

degradation and resynthesis of IkBa is also observed. Jointly, these

data indicate that RIG-I is under coordinated control by signal-

induced transcription and proteolytic degradation.

Kinetics of NF-kB and IRF3 activation and nuclear

translocation. For the proteins known to undergo nuclear

translocation, the cytoplasmic and nuclear fractions were mea-

sured for RelA, NFKBIA/IkBa and IRF3 abundance (Fig. 2,

bottom panels). From this analysis, we noted that the cytoplasmic

fraction of cytoplasmic NF-kB/RelA is initially depleted from the

cytoplasm by 0.5 hr, where its nuclear abundance increases. We

note that the nuclear abundance of NF-kB/RelA does not reach

steady state until 2–4 hr after dsRNA transfection (Fig. 2, black

solid circles). By contrast, the cytoplasmic fraction of IRF3 is

somewhat faster and transiently depleted, detectable within 0.5 hr

and peaking after 1 hr of stimulation, followed by its cytoplasmic

reaccumulation to above pre-treatment levels at 6 hr (Fig. 2,

bottom right panel, black solid circles). These observations are

consistent with those of others that observed viral-induced IRF3

turnover and resynthesis in epithelial cells [33] and of our separate

studies quantifying IRF3 in SID-SRM experiments [20]. Cyto-

plasmic IRF3 depletion initially correlates with its transient

translocation into the nucleus from 30 min to 1 hr, and returning

to low levels thereafter (Fig. 2, black solid circles). Together, these

data indicate that the activation profiles of IRF3 and NF-kB are

distinct; with activation of IRF3 being transient and slightly

preceding that of NF-kB (see Fig. 2).

Cross-inhibition effect between IRF3 and NF-kB

pathways. Our data indicates that dsRNA activates temporally

distinct gene expression patterns and transcription factor translo-

cation in hAECs (Fig. 1 and 2). To identify downstream targets of

the IRF3 and NF-kB transcription factors, we explored the effect

of siRNA mediated silencing. For this purpose, hAECs cells were

transfected with duplex target (or scrambled) siRNAs specific to

the NF-kB pathway (IKKc and RelA) or to IRF3 pathway (RIG-I

and IRF3) prior to intracellular dsRNA stimulation. The extent of

siRNA knockdown of target genes was evaluated by Q-RT-PCR.

As seen in Fig. 3, mRNA levels of RelA, IRF3, RIGI and IKKc
were measured in control and dsRNA-transfected cells. Gene

knockdown experimental results are presented as dark gray bars

(without dsRNA) and light gray bars (4 mg dsRNA). Note that the

fold change in mRNA expression is depicted on a log-scale.
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Examination of these experiments showed that dsRNA trans-

fection induced RelA expression in control siRNA-transfected cells

by 2-fold (Fig. 3A, top left panel). We also were able to reduce

RelA mRNA expression to 20% of that produced by control

siRNA after RelA siRNA transfection in both unstimulated and

dsRNA transfected cells. We further noted that the basal and

dsRNA induced levels of RelA were increased by either IRF3 –

and RIG-I siRNA silencing, suggesting that RIG-I-IRF3 pathway

negatively regulates RelA expression (Fig. 3A, top left panel). In

this experiment, both basal and dsRNA induced IRF3 levels were

significantly reduced by siRNA to 35% of that in scrambled

siRNA control (Fig. 3, top right panel).

We have also observed that mRNA levels of IRF3 were

upregulated 3–4 fold in response to dsRNA transfection in control

siRNA-transfected cells (Fig. 3A, top right), consistent with its

apparent resynthesis (Fig. 1) and reproducing our recent study

[34]. Similarly, IRF3 expression was also induced by RelA

knockdown in control and dsRNA transfected cells (Fig. 3A, top

right panel). These data indicated to us that RelA also negatively

regulates IRF3 expression.

The dsRNA induction of TNFAIP3/A20, NFKBIA/IkBa, IL-8

and IL6 expression (IL6 and IL8 results not shown) were also

significantly reduced by RelA and IKKc silencing, indicating that

these genes are primarily RelA-dependent (Fig. 3B). We also noted

that RIG-I and IRF3 silencing did not inhibit, but rather increased

TNFAIP3/A20 and NFKBIA/IkBa expression (Fig. 3B). These

data indicated to us that RIG-I is primarily coupled to the IRF3

pathway and that the IRF3-RelA negative cross-regulation is

functionally significant.

To experimentally validate the coupling of RIG-I with IRF3

and not NF-aB in hAECs, we examined the effect of RIG-I

silencing on NF-kB- and IRF3-dependent gene expression.

Transfection of RIG-I siRNA significantly reduced basal and

dsRNA induced RIG-I expression (Fig. 3C). Although RIG-I

silencing produced a greater induction of TNFAIP3/A20 in

response to dsRNA, the expression of ISG56, a IRF3-dependent

gene, was significantly inhibited (Fig. 3C).

RIG-I mRNA expression was also induced by dsRNA

treatment, and was not affected by IRF3 knockdown (Fig. 3 and

4). The observation that IRF3 knockdown has no effect on RIG-I

expression is significant because previous studies from another

group has suggested that RIG-I expression is dependent on

downstream IRF3-IFN signaling [35].

Bioinformatics evidence for interaction between the IRF3

and NF-kB pathways. Using computational methods and

cross-species comparisons between human, chimpanzee, mouse

and cattle, we analyzed promoters (1 kb upstream of transcription

start sites) of genes for IRF3 and NF-kB TFs. Using a similar

method of TFBS analysis described in Iwanaszko et al. [22], we

identified TF binding sites (TFBSs) across an index promoter

region and then analyzed if these TFBSs were conserved among

species in homologous domains. Analysis of TFBSs in the IRF

gene family indicate that the IRF genes have a greater enrichment

of NF-kB binding sites than that of IRF TFBS, suggesting that NF-

Figure 1. Model Estimation. Time series of mRNA levels of TNFAIP3, IkBa, RIG-I and IFNb following stimulation by 4 mg dsRNA in hAECs cells for 0,
0.5, 1, 2, 4, and 6 hr. Gene expression estimated using Q-RT-PCR was as described previously [10]. Experimental measurements, black circles with
empirical 95% confidence intervals based on triplicate measurements; means of 100 simulated single-cell trajectories, blue lines; 95% confidence
bands based on simulations, red lines. Two types of simulations presented (A) under extrinsic noise, (B) under extrinsic and intrinsic noise. Horizontal
axis - time (hr); vertical axis - number of molecules. Absolute values of experimental measurements scaled to simulation data (see the text for details).
doi:10.1371/journal.pone.0093396.g001
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kB may modulate IRF family expression (Table ST4 in File S1).

We have found that the IRF3 binding motif is not widely

represented in our dataset, but the location of binding sites that

were found, may be crucial in the view of other TFBS. We have

also found binding motifs for the NF-kB family, mostly for the

transcriptionally active Rel A subunit, in the IRF7 gene (Table

ST4 in File S1). This evolutionary conservation matches the

experimental validation of IRF7 expression under NF-kB control

[36]. As for the activity of IRF7, we have found that IRF7 binding

sites are present in nearly all genes coding for transcription factors

in our dataset, with the exception of NFKB2 and a few IRF1

promoter variants. IRF7 binding sites are also present in genes

important in higher level control of the IRF and NF-kB arms,

including genes such as MAVS, RIG-I, IKK1 and IKK2. IRF7

binding sites have been found in both human and murine

promoters, but we note that the conservation of motifs differs

among analyzed genes. A detailed analysis has been submitted as a

separate publication. In summary, we confirmed an intricate

pattern of cross-activation between IRF and NF-kB family,

suggested by the knockdown experiments (Fig. 1).

IFNb expression is dependent on both NF-kB and IRF3

signaling in the IIR. The production of type I IFN is the

hallmark of the IIR whose function is to limit viral spread until the

activation of adaptive immunity [37]. IFNb activation occurs at

the level of gene expression through IRF3-dependent chromatin

remodeling event, known as an enhanceosome [38]. Although NF-

kB is a component of the enhanceosome, IFNb is primarily an

IRF3 dependent gene. Although IFNb expression was predictably

reduced by RIG-I and IRF3 silencing we found that IFNb
expression was also inhibited by ,50% by RelA silencing

compared with that in control, indicating that NF-kB/RelA is a

rate-limiting step for IFNb expression (Fig. 3B).

RIG-I expression response to significant perturbations in

IIR signaling. RIG-I expression is highly inducible in response

to dsRNA, with ,220-fold induction of mRNA expression.

However, its expression is not affected by IRF3 knockdown and

reduced only about 2-fold by RelA knockdown (Fig. 3A). All of

these data suggest that RIG-I expression is controlled by some

other transcription factors activated in response to virus exposure.

To more fully understand the mechanism of RIG-I induction, we

next examined dsRNA-induced RIG-I expression in IRF3 knoch-

down (Fig. 4A) and IRF3/72/2 double knock out (DKO) cells

(Fig. 4B). Although RIG-I expression was not affected by IRF3

knockdown, RIG-I expression was significantly inhibited in the

DKOs. Examination of the evolutionary footprint analysis of the

RIG-I promoter, significant enrichment of IRF7 binding sites is

seen (Table ST4 in File S1). Based on these results, we concluded

IRF7 is a primary regulator of RIG-I expression.

ds-RNA Dose-dependence of transcription and

translocation. We examined the effects of different dosages of

dsRNA on the transcription profiles of the NF-kB dependent gene

TNFAIP3/A20, NFKBIA/IkBa, IL8, IL6, Grob and RANTES at

18 hr after electroporation. Increasing concentrations of dsRNA

were introduced into cells, and relative changes in mRNA

estimated by Q-RT-PCR (Fig. 5). These data showed that dsRNA

could increases the transcription levels of all NF-kB dependent

genes over this dose range. For most genes, the highest

transcription levels were produced in response to 20 mg of dsRNA,

the maximal dosages of dsRNA used. However, the highest

transcription levels of IL8 and RANTES were reached at 10 mg of

dsRNA and their transcription levels at 20 mg of dsRNA sharply

decreased, perhaps due cell toxicity and the unstable nature of

their mRNA (not shown).

Time series of fluorescence protein tagged- RelA and

IRF3 distribution at a single-cell level under different

concentrations of dsRNA. EGFP-RelA and Strawberry-IRF3

stable hAECs were electroporated with different dosages of

synthetic dsRNA and dynamic live cell imaging of EGFP RelA

and Strawberry IRF3 was performed. We observed that dsRNA

could induce both GFP-RelA and Stawberry-IRF3 nuclear

translocation. From the imaging data, we could find that the

profiles of Poly IC induced GFP-RelA and Stawberry-IRF3

nuclear translocation vary with different dsRNA concentrations.

For example, at the level of 5 mg/ml Poly IC (Fig. 6), RelA showed

oscillatory nuclear translocation quite different from that in 50 mg

Poly IC (Fig. 7). Analogous observation is made concerning the

single-cell response of IRF3 (Figs. 8 and 9, respectively).

It should be noted that there is some difference in the time

course of RelA and IRF3 translocation in the time series in

Figure 2 (cell population data) under 4 ug Poly IC, which is less

clear in the 5 ug Poly IC single-cell data.

Mathematical Model Building and Analysis
Our estimation-validation approach for model building has four

distinct phases:

Phase 1: Determination of model network topology and
couplings:-

1. Review of literature findings in hAECs was been carried out to

propose the topology of the two arms of the IIR (Fig. 10). This

process was influenced by feedback from Phase 3 (knockdowns

and knockouts), which introduced corrections to the proposed

structure. The structure of the couplings was also corroborated

by a bioinformatic evolutionary footprint study of TF Binding

Sites.

Phase 2: Estimation of parameters based on time
series data:-

1. Time series (0, 0.5, 1, 2, 4, and 6 hr) of mRNAs of key signaling

molecules were measured in order to observe the profiles of

changes in NF-kB and IRF3 signaling pathways (Fig. 1).

2. Time series of cytoplasmic and nuclear proteins of key

signaling molecules were determined at same time points as

above using SID-SRM experiments (Fig. 2)

3. Parameters of the model were estimated based on fit to time

series data (Fig. 1,2).

Phase 3: Validation of the model based on the
knockdown and knockout data:-

1. Knockdowns of genes of interest were performed using small

interfering RNA (siRNA) of NF-kB, IRF3, RIG-I, and IKKc
and subsequently stimulated with or without dsRNA (Fig. 3).

Figure 2. Model Estimation. Time series of phosphorylated proteins, following stimulation by 4 mg dsRNA in hAECs, obtained using the Selected
Reaction Monitoring (SRM) assay: In the cytoplasm, RIG-I, MAVS, IKK1, IKK2, RelA, IkBa, and IRF3; and in the nucleus, RelA, IkBa, and IRF3. Experimental
measurements, black circles with empirical 95% confidence intervals based on triplicate measurements; means of 100 simulated single-cell
trajectories, blue lines; 95% confidence bands based on simulations, red lines. Two types of simulations presented (A) under extrinsic noise, (B) under
extrinsic and intrinsic noise. Horizontal axis: time (hr); vertical axis: number of molecules. Absolute values of experimental measurements scaled to
simulation data (see the text for details).
doi:10.1371/journal.pone.0093396.g002
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2. Model knockdown responses were determined and compared

with experimental data (Fig. 3).

3. Experiment using IRF3/IRF7-/- MEFs was performed to

address the IRF7-dependence of RIG-I regulation. Results of

Phase 3 contributed to refinement of the model structure in

Phase 1.

Phase 4: Examination of extrinsic and intrinsic
stochasticity and dose-dependence:-

1. The dsRNA dose-dependence curve of NF-kB and IRF3

dependent gene expression in hAECs were determined using

Q-RT-PCR (Fig. 4).

2. Time series of fluorescence protein-labeled RelA and IRF3

distribution in single-cells under a range of dsRNA concentra-

tion were also performed using dynamic confocal microscopy

(Fig. 6, 7, 8, 9).

3. Stochastic version of the model was run. Extrinsic stochasticity

is due to variability of dsRNA doses absorbed by single cells.

Intrinsic stochasticity is mostly due to random initiation and

termination of transcription, but a fully stochastic optimized

Gillespie algorithm has been run. Oscillations of the model

trajectories have been compared to single-cell data (Fig. 1,2,7).

4. Model dose-dependence was determined in both extrinsic

alone as well extrinsic and intrinsic stochasticity settings and

compared to data (Fig. 5).

It is subject of a debate in the systems biology community

whether attempts should be made to build a model based on a

‘‘rigorous’’ method such as Maximum Likelihood Estimation or

minimization of a performance index, or using an iterative

interactive method as described here. A discussion of literature

approaches is presented in the Discussion section.

Phase 1: Determination of network topology and
couplings based on literature data. RIG-I-MAVS and
TLR3 molecular pathways following viral infection: As

RNA virions enter the cells, they lose the envelope and become

internalized, which is followed by release of its genome. During the

process of transcription/replication, dsRNA is produced [39], and

represents the molecular pattern sensed by cytoplasmic RIG-I and

endosomal TLR3.

RIG-I-MAVS pathway: Viral by-products sensing: RIG-I/

DDX58 is a cytoplasmic RNA helicase that binds dsRNA [40,41];

RNA-bound RIG-I is rapidly ubiquitinated by E3 ligases

(TRIM25 and Riplet/RNF-13) [42]. Signaling complex assembly:

RIG-I binds to Mitochondrial anti-viral signaling protein (MAVS;

also known as IPS-1, VISA, and CARDIF) [43]; RIG-I-MAVS

recruits TNF- Receptor-Associated Factor 3 (TRAF3) [44]. IKK1

activation: RIG-I-MAVS-TRAF3 activates the complex TANK-

binding kinase 1 (TBK1), inhibitor of kB kinase e (IKKe) and

IKKc (called here IKK1) [9,45]. IRF3 activation: IKK1

phosphorylates IRF3 on COOH terminal serine residues; this

process induces dimerization and rapid translocation into the

nucleus [46,47].

TLR3 pathway: Viral by-products sensing: TLR3 is a

transmembrane signaling protein that recognizes and binds

dsRNA located in the endosomal and extracellular compartments

[39]. Signaling complex assembly: TLR3 binds to the adaptor

molecule TIR-domain-containing adapter-inducing interferon-b
(TRIF) [48]. TLR3-TRIF recruits the TNF- Receptor-associated

factor 6 (TRAF6) via a specific TRAF6-binding sequence [49].

IKK2 and TLR3dTF activation: TLR3-TRIF-TRAF6 activates

IKKc-IKKa-IKKb complex (called here IKK2) [49] and the

hypothetical TLR3-dependent transcription factor (TLR3dTF).

IkBa degradation, freeing NF-kB: IKK2 phosphorylates IkBa,

resulting in its ubiquitylation and proteolytic degradation, freeing

NF-kB to enter the nucleus [6,50].

‘‘Pool’’ of NF-kB: We hypothesize that not all NF-kB is

bound to IkBa. We consider ‘‘pool’’ (non- IkBa-binding fraction)

of NF-kB, part of which may be bound to IkBe or other inhibitors.

There is a continuous exchange between the ‘‘pool’’ NF-kB and

(IkBa-binding) NF-kB. When IKK2 is active, there is a stronger

migration from the ‘‘pool’’ NF-kB and NF-kB, which might be

interpreted as the part of NF-kB pool bound to IkBe being freed

and transferred to the nucleus along with the part bound to the

now-degraded IkBa).The existence of the NF-kB reservoir was

demonstrated by quantitative dynamic imaging, western immu-

noblotting, and SID-SRM assays [11,19].

Activation of genes by transcription factors: Active

transcription factors translocate into the nucleus and bind to the

cis-regulatory elements in the proximal promoters of target genes.

Through the mechanism of protein-protein interactions, tran-

scription factors recruit histone acetyl transferases (p300/CBP)

and transcriptional elongation factors (CDK9/Brd4) into an

activated state and subsequently induce expression of target genes

[15,51] (Fig. 10).

Negative feedback loop: TNFAIP3/A20 is an NF-kB-

dependent gene and a member of the OTU deubiquitinase

family. TNFAIP3 could terminate signal pathway activation by

Lys63 modifications and thereby inactivate the IKKs. TNFAIP3/

A20 removes lysine-63 (K63)-linked ubiquitin chains from

receptor interacting protein (RIP), an essential mediator of the

proximal TNF receptor 1 (TNFR1) signaling complex [52]. In the

model we use the fact that TNFAIP3/A20 binds IKKc and

inactivates (or leads to degradation) of IKK1 and IKK2 (see also

ref. [53]).

Figure 3. Model Validation. Gene knockdowns using siRNA specific to target genes in hAECs. The experiments were carried out using target gene-
specific siRNA and the control nonspecific siRNA, which were reverse-transfected into hAECs at the concentration of 100 nM. The data presented are
the corresponding mRNA levels at 6 hr after electroporation (fold change, in logarithmic scale). (A), knockdown of RelA, IRF3, RIG-I and IKKc. (B),
knockdown of TNFAIP3/A20, NFKBIA/IkBa, ISG56 and IFNb. The mRNA levels of the indicated genes (at top) were determined by RT-PCR. Results were
represented as normalized fold change of expression compared to control non dsRNA-induced cells transfected with scrambled (non-target control)
siRNA. Gray bars, experiment (dark, no dsRNA stimulation; light, 4 mg dsRNA); red lines, model simulation. 95% confidence intervals of experimental
data (based on 3 replicates) are distorted by the logarithmic scale. In linear scale, the relative error rate is approximately 10%. Please notice that in
IFNb and ISG56 charts, the model values at time 0 are equal to 0, which is impossible to depict on the log scale. (C), Effect of RIG-I knockdown on NF-
kB and IRF3 dependent gene expression. hAECs were transfected with siRNA to RIG-I or control siRNA (Con). Left panel, effect of RIG-I siRNA on RIG-I
expression. Note that dsRNA induced RIG-I expression is largely inhibited in hAECs transfected with RIG-I siRNA. Middle panel, effect of RIG-I
knockdown on NF-kB-dependent TNFAIP3/A20 gene expression. dsRNA induces TNFAIP3/A20 expression in RIG-I knockdown cells. Right panel, effect
of RIG-I knockdown on IRF3-dependent gene expression. RIG-I knockdown significantly blunts IRF3-dependent ISG56 expression. We conclude from
these data that RIG-I is primarily coupled to IRF3 signaling in hAECs. (D), Effect on RIG-I expression in murine MEF cells with both IRF3 and IRF7 genes
knocked down. RIG-I is down-regulated, which suggests IRF7 may play a key role in RIG-I up-regulation. Compare with RIG-I results in Panel A where
the IRF3 knock-down does not seem to down-regulate RIG-I expression.
doi:10.1371/journal.pone.0093396.g003
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NFKBIA/IkBa is an NF-kB-dependent gene that binds to free

NF-kB and forms an inactive complex with it, and sequesters NF-

kB in the cytoplasm [6,50].

Mathematical model of the RIG-I-MAVS and TLR3
molecular pathways: As stated above, the main sensors of

dsRNA are RIG-I and TLR3, and both pathways are capable of

activating both IRF3 and NF-kB depending on the variant of virus

studied, and/or the cell line used. Our experimental data indicate

that RIG-I activates the IRF3 pathway, but not the NF-kB

pathway (Fig. 3C). As a consequence, in our current model we

consider two interdependent pathways, one for IRF3 regulated by

RIG-I, and one for NF-kB, which we assume is regulated by

TLR3. It is assumed that NF-kB and IRF3 cross-inhibit their

respective transcriptions. Also, TNFAIP3 acts to deactivate IKK1

and IKK2.

Certain complexes have been named to simplify notation:

IKKc-TBK1-IKKe and IKKa-IKKb-IKKc are named IKK1

and IKK2, respectively, and each complex is treated as a single

kinase that has a gene and mRNA associated with it. The TLR3-

dependent transcription factor (TLR3dTF) is a hypothetical

transcription factor activated exclusively by the TLR3-TRIF-

TRAF6 pathway. To determine possible candidate factors for the

TLR3dTF, we focused on transcription factor AP-1 and SP1,

which have binding sites in genes being targets of the putative

TLR3dTF. To determine specificity of these TFBS, we have

performed an additional TFBS search using a dataset of 100

randomly generated 1 kb long DNA sequences. We compared the

results to those from our primary dataset, consisting of genes

coding for transcription factors of our interest and genes expressed

at higher levels in NF-kB and IRF pathways. Results show that

AP-1 seems to be non-specific for our primary dataset. The

average number of TFBS/per promoter sequence for AP-1 in our

dataset is equal to 8.2 (CI = [7.27; 9.13]), which is not significantly

lower than average in randomly generated sequences (9.29 TFBS/

sequence, CI = [8.74; 9.84]). On the other hand the count of SP1

binding sites significantly differs between primary data set and

randomly generated data. In our primary dataset the average

count of TFBS/per promoter sequence is equal to 7.4 (CI = [6.42;

8.38]), whereas average for random sequence is equal to 2.4

(CI = [2.13; 2.67]). The highest number of TFBS corresponding to

SP1 was found in REL and MAVS genes in human, and MAVS,

IKBKB and DDX58 in mouse. The only promoter variant in our

Figure 4. Model Validation. RIG-I synthesis is IRF7 dependent. (A) IRF3 siRNA knockdown of A549 cells. A549 cells were transfected with scrambled
control (Con) or IRF3-specific siRNAs and stimulated in the absence or presence of poly(I:C). mRNA measured by Q-RT-PCR and the results are
represented as the normalized fold change expression compared to control cells transfected with scrambled (non-target control) siRNA. Shown are
normalized mRNA expression for IRF3, RIG-I and ISG56 mRNA on a linear scale. Note that poly(I:C) induced ISG56 expression is reduced by 86%,
whereas RIG-I expression is reduced by ,10%. (B) Effect of IRF3/IRF7 deficiency on RIG-I expression. WT or IRF3/IRF7-/- MEFs were transfected with
poly(I:C) and expression of RIG-I determined by Q-RT-PCR. Shown is a time course of wild type or IRF3/7-/- double knockout cells in response to
dsRNA. Note that RIG-I expression is completely blocked in IRF3/7-/- cells. Together these data indicate that RIG-I expression is largely independent of
IRF3, but requires IRF7.
doi:10.1371/journal.pone.0093396.g004
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dataset, where SP1 TFBS are absent, is one variant of human

IRF3 gene promoter. In case of AP-1 there are no genes in our

data without binding sites for this transcription factor, with only

two promoters containing less than 4TFBS: human NFKBIA and

cattle IRF1. These findings are consistent with results from ChIP-

Seq data presented in Yang et al. [54], where SP1 enriched

chromatin was contained in more rapidly induced genes. Based on

the above, our principal TLR3dTF candidate is SP1.

Based on our experimental observations and evolutionary

footprint analysis, we include in our model IRF7 as being

activated by RelA in presence of dsRNA, is the primary IRF

family member inducing transcription of RIG-I in hAECs. For

simplicity, we consider IRF7 to be expressed in its activated form.

Figure 5. Observed and simulated dsRNA dose-dependence curves in hAECs. Experimental measurements, black circles with empirical 95%
confidence intervals based on triplicate measurements; means of 100 simulated single-cell trajectories, blue lines; 95% confidence bands based on
simulations, red lines. Two types of simulations presented (A) under extrinsic noise, (B) under extrinsic and intrinsic noise. Horizontal axis: dsRNA dose
(mg); vertical axis: number of molecules.
doi:10.1371/journal.pone.0093396.g005
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In this situation where dsRNA has strongly activated IKKc/

TBK1, this assumption is defensible.

The model is composed of 83 chemical species and 150

reactions. We present in (Fig. 10) a simplified schematic where

mRNAs and inactive forms of the proteins are omitted for clarity.

Table 2 includes a summary of principal numerical constants.

Pseudocode including all coupled chemical reactions and all

constants, the equivalent system of differential equation and a

detailed wiring diagram are found in Table ST1 and Figure SF1 in

File S1 accordingly.

Phase 2: Parameter estimation based on time series
following dsRNA stimulation. Estimating the number of
dsRNA molecules per cell: Concentration of dsRNA molecules

per cell equals 4 mg/ml. The diameter of hAECs cells was

estimated to be 20 mm based on volumetric measurements in

Kalita et al. 2010 [11], which resulted in median volume of about

4200 mm3 = 4.261029 ml. Therefore, if electroporation opened

sufficiently many pores in the cell and as a result the concentration

of dsRNA in the cell is equal to that in the surrounding medium,

this results in 561027 mg per cell. Further, the molecular weight of

a base pair (bp) is equal to about 650 Daltons (Da), and assuming

average length of 300 bp per dsRNA molecule, we obtain circa

200 kDa = 3.24610213 mg per molecule. This results in approx-

imately 0.56105 dsRNA molecules per cell. This has to be treated

as an upper bound. A more likely figure equals perhaps 1–26104

dsRNA molecules per cell. As already mentioned, we assumed

26104 dsRNA molecules per cell.

Simulations: The model was simulated using the bioPN

software package [28]. Initial conditions are set to zero number of

molecules for all species, with the exception of the number of free

(not bound to transcription factor) genes, which is set to 2 copies.

The simulation is started at time t = 2500 hr to assure the system

reaches steady state values. At time t = 0 hr, electroporation is

simulated by inserting, on the average, 26104 molecules of dsRNA

per cell (see the estimation in the next paragraph), which

corresponds to the experimental values of 4 mg/ml. To reproduce

variability of electroporation, number of molecules, for individual

cells, is sampled from a lognormal distribution with coefficient of

variation equal to 3. The system is allowed to evolve for 6 hr.

Fitting model parameters to data: Base constant rates

(BCR) used to fit the model to experimental results are found in

Table 2. The values are selected to obtain physiologically

reasonable numbers of mRNAs and proteins. All the chemical

reactions of the model are of first or second order. For the second

order reactions each BCR needs to be divided by the average

number of proteins. As the parameter space is high-dimensional

(150 reaction constants parameters), we decided to avoid

performing a global optimization procedure as potentially several

completely different combinations of parameter values would fit

the experimental results. Instead, we started by assigning the

corresponding BCR to all the reactions, and applied coefficients to

individual reactions in stages in order to achieve an acceptable fit

(see further on). The complete set of equations and specific

constant rates used are found in the Appendix. In addition, it

proved difficult to accurately estimate the absolute counts of

Figure 6. Single cell nucleus/cytoplasm ratios under 5 mg of dsRNA stimulation (RelA, green channel fluorescence). EGFP-RelA stable
hAECs were electroporated with different dosages of synthetic dsRNA analog Poly IC and dynamic live cell imaging was performed. Time presented in
hr. Green trend lines are third-order polynomials, fitted using least-squares minimization. Upper row: Raw time series. Middle row: Detrended time
series. Bottom row: Fourier periodograms. Columns 1–4: Observed single cells. Column 5: Two simulated cells.
doi:10.1371/journal.pone.0093396.g006
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molecules in the experimental data. However, we have confidence

in the relative molecule counts within time series of each molecular

species. Therefore, we fit absolute values simulated by the model

to the empirical data scaled in such way that the weighted L1 score

(average relative absolute difference between simulated and

empirical data over all time series) be minimized. The score is

computed from the following expression
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where index i runs over all 14 time series (see Fig. 1), index j runs

over all 6 measurement times (0, 0.5, 1, 2, 4 and 6 hr), and eij and

sij are the empirical and simulated mRNA and protein expres-

sions, respectively. The value of this index for the fits we obtained

is equal to 0.171, or average deviation of 17%, which seems to be

satisfactory.

Comparison of observations with model simulations:
Figure 1 shows both simulated and experimental results for

mRNAs of IFNb, TNFAIP3, RIG-I, and IkBa. Overall, the fit to

scaled empirical data is good. Figure 2 shows both simulated and

experimental results for the following phosphorylated proteins:

cytoplasmic MAVS, IKK2, IKK1, and RIG-I, total (cytoplasmic

and nuclear) NF-kB, IkBa, and IRF3; nuclear NF-kB, and total

IkBa and IRF3. In all cases the fits seem satisfactory.

Phase 3: Validation of the model. The model with

parameters estimated (from Phase 2) was programmed to

reproduce the results of knockdown experiments.

Gene knockdown results: The results are shown in Fig. 3

using a semi-logarithmic scale to reflect the expected high

variability of measurements. Table ST5 in File S1, details the

results of significance testing (Welch test) of the effects of

knockdowns. As explained in the legend, the minus sign at the

p-value denotes reduced expression. Knockdown simulations have

been performed by increasing the corresponding mRNA degra-

dation rate by a factor that achieves the same level of down-

regulation as shown in the experimental knockdown results for the

dsRNA stimulated case (corresponding light-gray bar in Fig. 3). As

an example, the top-left panel of Fig. 3 represents the effect of the

different knock-downs on RelA. In all cases, dark-gray bars

correspond to time 0, while light-gray bars correspond to time 6 hr

after stimulation by dsRNA. The first dark-gray bar (Control), has

height equal to 1, and heights of the remaining bars are relative to

it. Control is a scrambled siRNA which should have no specific

effect on RelA expression. The remaining pairs of bars represent

the experimental effects, on RelA, of knocking-down RelA, IRF3,

RIG-I, and IKKc. The red horizontal lines depict the simulation

prediction of the model. RelA is one of the four genes whose

mRNA was knocked-down; therefore, in the second pair of bars,

we observe the effect that knocking-down RelA has on itself.

Effect of siRNA on the mRNA expression of RelA (p,0.001)

and IRF3 (p = 0.001) closely agree with the cross inhibition

mathematical model.

Figure 7. Single cell nucleus/cytoplasm ratios under 50 mg of dsRNA stimulation (RelA, green channel). EGFP RelA stable hAECs were
electroporated with different dosages of synthetic dsRNA analog Poly IC and dynamic live cell imaging was performed. Time is in hr. Green trend lines
are third-order polynomials, fitted using least-squares minimization. Upper row: Raw time series. Middle row: Detrended time series. Bottom row:
Fourier periodograms. Columns 1–5: Observed single cells.
doi:10.1371/journal.pone.0093396.g007
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Effect of RelA siRNA knockdowns in NF-kB dependent genes

TNFAIP3/a20 (p = 0.002) and NFKBIA/IkBa (p = 0.001): all

cases are qualitatively matched under the RelA siRNA knock-

down. However, the effect shown by experiments by IRF3 siRNA

(p,0.001 and p = 0.003) is not achieved.

Effect of knock-downs in IRF3 dependent genes: only ISG56

has been modeled, and the result shows a qualitative match. Effect

on RIG-I expression in murine MEF cells with both IRF3 and

IRF7 genes knocked down is depicted in Fig. 3D. RIG-I is down-

regulated, which suggests IRF7 may play a key role in RIG-I up-

regulation. Compare with RIG-I results in Fig. 3A where it is

shown that IRF3 knock-down does not play a role in down-

regulating RIG-I (p = 0.390).

Effect of knock-downs on IFNb produces a satisfactory

qualitative match. The experimental result shows that RIG-I has

a higher impact than IRF3. This may be related to lower

specificity of IRF3 siRNA, which cannot completely knock-down

its corresponding gene.

Phase 4: Stochasticity and dose-dependence. Dose-
dependence and extrinsic and intrinsic stochasticity: The

deterministic simulations we carry out, in principle model the

behavior of a single cell that absorbs a given number of dsRNA

molecules. Moreover the states of all the genes modeled are

continuous time functions assuming values between 0 and 2.

There are two types of stochasticity which modify this simplistic

model. The first of these is the intrinsic stochasticity, which arises

from the fact that the state of a gene understood as the number of

active gene copies is a random variable switching among three

values, 0, 1 and 2. In contrast, extrinsic stochasticity, identifiable to a

large extent with the stochastic distribution of the dsRNA

molecules per cell, may play a major role. Therefore, we model

the cell population response as an average of 100 trajectories,

representing cells with dsRNA molecule numbers distributed

lognormally around the mean value of 26104 molecules of dsRNA

with coefficient of variation equal to 3. In Figs. 1 and 2, we depict

30 simulated trajectories as gray lines, their mean as a blue line,

and the mean 61.96 standard errors (95% CI) as a pair of red

lines, compared to measurements denoted by solid black circles.

Standard errors were computed based on 100 simulations.

Single-cell trajectories: Fig. 6 presents the time series of

EGFP-RelA nuclear/cytoplasmic (N/C) ratio in response to 5 mg

dsRNA. In some cells, periodic translocations are apparent. A

periodogram analysis was performed to decompose the spectral

profiles. This analysis mainly indicates noise-distorted periods of

approximately 1 or 3 hr. This is in agreement with periodicities

exhibited by time series modeling (column 5 in Fig. 6). Fig. 7

presents the time series of N/C ratio at 50 mg of dsRNA. The

usual pattern in this case does not involve visually apparent

oscillations, but a single translocation, followed by either

saturation or partial reversal. However, unexpectedly, the period-

ogram analysis indicates a superimposed 1–3 hr faint periodicity

signal also in this case. Figures 8 and 9 present analogous results

for hAEC Strawberry -IRF3 stable cells. Interpretation is also

analogous.

Figure 8. Single cell nucleus/cytoplasm ratios under 5 mg of dsRNA stimulation (IRF3, red channel fluorescence). Strawberry -IRF3
hAECs were electroporated with different dosages of synthetic dsRNA analog Poly IC and dynamic live cell imaging was performed. Time presented in
hr. Green trend lines are third-order polynomials, fitted using least-squares minimization. Upper row: Raw time series. Middle row: Detrended time
series. Bottom row: Fourier periodograms. Columns 1–4: Observed single cells. Column 5: Two simulated cells.
doi:10.1371/journal.pone.0093396.g008
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In addition, in the Figure SF2 in File S1, we present results of

single-cell imaging of non dsRNA-induced cells. No translocation

has been observed in these or other replicate experiments.

Discussion

In this study, we have developed a data-driven model for the

integrated epithelial IIR. The airway epithelium includes the first

sentinel cells that respond to respiratory viral infection. Our study

of the system has employed theoretical development, validated by

experimental evidence, to indicate the following features: 1. That

NF-kB/RelA and IRF3 pathways cross-inhibit each other; 2. That

RIG-I is preferentially coupling to IRF3 signaling; 3. That RIG-I

expression is primarily driven by IRF7, in an NF-kB-dependent/

IRF3-independent mechanism; and finally 4. Single cell responses

are subject to noisy oscillatory behavior. Each of these findings is

discussed below.

Probing the integrated IIR pathway
The integrated epithelial IIR system considered, both experi-

mental and modeled, can be probed in three ways: The first one is

by observation of the dynamics of the response of key mRNAs and

proteins to a stepwise impulse (adding dsRNA at time t = 0),

second by observation of the effects of knockdowns of transcription

of key genes on the levels of transcription of other genes, and the

third one by exploring the dsRNA dose-dependence of system

response. As detailed in the Results, the scaled time series

observations were used to estimate parameters of the model.

Concerning the knockdown experiments, modeling displays

agreement with experiment, validating the model and reinforcing

its internal consistency. The exact magnitude of departures

depends among other on efficiencies of the knockdowns and

unknown interactions which were not taken into account in the

model. We consider the agreement achieved very good. Finally,

the dose dependence simulations (Fig. 5) result in a dependence

interpolating the experimental data.

Cross talk of RIG-I and TLR3 pathways
The IIR represents a coordinated intracellular response to the

presence of invading molecular pathogens. In response to

pathogen-encoded molecular patterns, the cell must mount a

rapid innate response through a temporally coordinated activation

of its major effector arms. How the integrated IIR responds has

not been systematically determined. In this paper, we develop and

validate a comprehensive model of crosstalk between the RIG-I

and TLR3 pathways, both PRRs that play a major role in

mediating the early innate immune response to invading viruses.

The TLR3 pathway, a pathway that primarily activates the NF-kB

transcription factor, has been previously modeled, whereas the

RIG-I pathway, a pathway that primarily activates the IRF3

transcription factor, has not yet been modeled. To our knowledge,

the crosstalk between these two pathways has not been a subject of

systematic analysis.

One of the difficulties in setting up an experimental model of

viral infection is that reproducibility may be problematic. For

example, active virions do not infect cells synchronously, so that

Figure 9. Single cell nucleus/cytoplasm ratios under 50 mg of dsRNA stimulation (IRF3, red channel). Strawberry -IRF3 hAECs were
electroporated with different dosages of synthetic dsRNA analog Poly IC and dynamic live cell imaging was performed. Time is in hr. Green trend lines
are third-order polynomials, fitted using least-squares minimization. Upper row: Raw time series. Middle row: Detrended time series. Bottom row:
Fourier periodograms. Columns 1–5: Observed single cells.
doi:10.1371/journal.pone.0093396.g009
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the time of infection is not strictly determined, and also they

encode nonstructural proteins that actively disrupt the IIR.

Therefore, although modeling the active-virion infections seems

more realistic, for practical purposes of understanding pathway

kinetics and regulation, we contend that it should be replaced by a

more reproducible process. One approach, which we use in this

work, is to introduce the pathogen-encoded molecular pattern (in

this case, dsRNA) through artificial openings in cell wall made by

electric current (e.g., electroporation). Use of this surrogate for

modeling a viral infection leads to a reproducible and uniform

response, enabling us to understand the kinetics of IIR response in

a population that has been stimulated in a synchronous manner.

We recognized that our studies are limited because the cellular

response is most likely higher than that evoked by active virions. At

the dose that is used (4 mg) the response of some molecular

pathways may be different than in ‘‘natural’’ conditions. These

circumstances have to be considered when analyzing the results of

our experiments.

The topology of the IIR has been extensively investigated using

focused biochemical experimentation (reviewed in [1]). These

studies have shown that the two major signaling effectors, NF-kB

and IRF3, are coupled to upstream PRRs through shared

intracellular adapters. For example, the activated mitochondrial

RIG-I-MAVS PRR signals downstream to NF-kB and IRF3

through both TRAF3 and IKKc [10]. Both these adapters are

necessary for activating IKKa/IKKb (IKK2 in our model), the

rate- limiting kinase controlling NF-kB release and IKKi/TBK1

(IKK1 in our model) the rate-limiting kinase controlling IRF3

translocation. Surprisingly, we observe that the translocation of

these two molecules is not synchronous, with IRF3 being

translocated more rapidly and transiently than NF-kB (Fig. 2).

These findings suggest that additional modulators, perhaps via yet

uncharacterized negative feedback loops controlling IRF3 trans-

location are operative.

Previous work using high density microarrays has shown that

the genomic response to the NF-kB signaling arm is mediated by

temporally controlled waves of target gene expression [55].

Although the time periods of gene expression observed in this

study do not permit us to completely examine the temporal

patterns of gene expression induced by the IIR, our data does

indicate the existence of delayed response genes. For example, in

contrast to the rapid induction of IkBa and TNFAIP3, the

Figure 10. Model Couplings. Simplified schematic of the IRF3-NF-kB model. Only dsRNA, proteins (in the cytoplasm) and genes (in the nucleus)
are shown. Solid green lines on the top denote direct chemical binding. Green dotted lines denote activation. Vertical thick colored arrows denote
translocation of activated transcription factors into the nucleus. Red dotted lines denote inhibition. Horizontal solid black arrows in the nucleus
denote gene transcription, with plus or minus signs denoting activation or repression, respectively. Transcripts and inactive forms of the proteins are
omitted for simplicity.
doi:10.1371/journal.pone.0093396.g010
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induction of IFNb and RIG-I mRNA are clearly delayed (Fig. 1A).

Previous work in the biochemistry of the rapidly responsive IkBa
and TNFAIP3 genes has shown that these genes are maintained in

an open chromatin configuration and are regulated by a process

involving transcriptional elongation [15,51]. In this mechanism

RNA Pol II is bound to the unstimulated promoter. In response to

RelA-induced CDK9 recruitment, Pol II is phosphorylated

whereupon it acquires processive activity resulting in fully spliced

mRNA expression. Consequently these genes are rapidly induced

in response to the nuclear presence of activated NF-kB.

By contrast, IFNb expression is delayed relative to that of the

NF-kB-dependent genes. IFNb encodes a cytokine that functions

in a paracrine manner to induce an anti-viral state in adjacent cells

[56]. One mechanism for delayed expression may be the

requirement for the assembly of a transcription factor complex

(an ‘‘enhanceosome’’) on its promoter prior to its expression. In

the resting state, the IFNb promoter is repressed by the presence of

inactive nucleosomes. In response to binding of inducible AP-1 (c-

Jun/ATF-2), NF-kB, IRFs, and chromatin remodeling factors,

repressive nucleosomes are re-positioned, an event that allows de-

repression of the gene [57]. The time required for additional

chromatin remodeling may be an explanation for the delayed

IFNb response.

Another delayed response gene is RIG-I, a cytoplasmic protein

whose only known function is as a dsRNA PRR. The application

of quantitative SRM assays allows us to make interesting

observations on the time dependent changes RIG-I protein

abundance. Early in the course of response to dsRNA, RIG-I

proteins decrease, suggesting that the protein is being actively

consumed. This finding is consistent with other biochemical

observations that RIG-I undergoes inducible K63-mediated

ubiquitylation in response to dsRNA binding [42], a modification

that enables its initial association with MAVS; later, K48-linked

ubiquitylations mediated by the RNF125 family are responsible to

coupling RIG-I and MAVS to the ubiquitin-proteasome degra-

dation pathway [31]. Although more work is required to clarify the

relative contributions of stimulus-inducible subcellular compart-

mentalization, translational regulation and proteasomal degrada-

tion, we speculate that RNF125 may mediate the dramatic,

parallel reduction in RIG-I and MAVS abundance. Later in the

evolution of the dsRNA response, the RIG-I gene is strongly

induced, at which point the cytoplasmic levels of RIG-I are

replenished. The mechanisms for inducible RIG-I gene expression

are not well understood. Previous work has suggested that RIG-I is

downstream of the IRF-IFN signaling pathway [58]. However,

two of our findings are not consistent with this mechanism. First,

RIG-I is induced simultaneously with IFNb (Fig. 1), a finding that

suggests the paracrine effect of IFNb would be instantaneous and

not biologically plausible. Second, siRNA knockdown experiments

Table 2. Base constant rates used (BCR) to fit the model to experiments.

Description Parameter Value

BCR of protein translation prot_transl_r 561022 1/s

BCR of unregulated protein translation prot_unreg_transl_r 561021 1/s

BCR of protein degradation prot_degr_r 1025 1/s

BCR of unregulated protein degradation prot_unreg_degr_r 1024 1/s

BCR of phosphorylated (or active) protein degradation prot_phosph_degr_r 361024 1/s

BCR of protein binding prot_bind_r 1027 1/(#mol s)

BCR of phosphorylation (or activation) of protein prot_activ_r 10281/(#mol s)

BCR of protein transition prot_transition_r 1024 1/s

BCR of protein dissociation prot_diss_r 1026 1/s

BCR of protein nuclear import prot_import_r 1023 1/s

BCR of protein nuclear export prot_export_r 1023 1/s

BCR of binding to dsRNA dsRNA_recogn_r 1029 1/(#mol s)

BCR of dsRNA induced degradation dsRNA_degr_r 1029 1/(#mol s)

BCR of gene activation gene_act_r 1027 1/(#mol s)

BCR of gene inactivation gene_inact_r 1022 1/s

BCR of mRNA transcription (activated gene) mRNA_transc_r 561022 1/s

BCR of basal mRNA transcription mRNA_basal_transc_r 1023 1/s

BCR of mRNA degradation mRNA_degr_r 1024 1/s

BCR increment factor of mRNA degradation due to siRNA siRNA_incr_degr_r 10

Average number of proteins prot_avg 105 #mol

Cytoplasmic to nucleus ratio cyto_to_nuc_ratio 5

doi:10.1371/journal.pone.0093396.t002

Table 3. Modeled effects of theTNFAIP3 knockdown at 6 hr
after stimulation.

Normal TNFAIP3 KD

TNFAIP3 mRNA 700 15

IKK1a 20000 70000

IKK2a 20000 50000

RelAn 60000 80000

IRF3an 10000 10000

doi:10.1371/journal.pone.0093396.t003
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show that RIG-I is largely independent of IRF3 (Fig. 3). Our

predictions therefore are that RIG-I is controlled by a TLR3-

dependent transcription factor that is IRF3-independent. To this

end, we have discovered that RIG-I induction in IRF72/2 cells is

almost completely blocked (Figure 4B). IRF7 expression is IFNb
independent and NF-kB dependent [36,59]. More work will be

required to understand how this NF-kB-IRF7-RIG-I pathway is

controlled by dsRNA stimulation.

It is also possible that the observed early depletion of RIG-I,

MAVS, IKK1 and IKK2 is caused by the inhibitory effect of

dsRNA-dependent protein kinase PKR on mRNA translation.

Activated PKR catalyzes the phosphorylation of the subunit of

eukaryotic initiation factor 2 (eIF-2a) leading to inhibition of

protein synthesis [60–62]. However, because these proteins have

relatively long half-lives, inhibition of protein synthesis alone is

unlikely to be an explanation for our observed findings.

An unanticipated finding from our expression analysis is that

NF-kB/RelA and IRF3 are both inducible by dsRNA transfection.

These proteins are typically considered to be inert and regulated

by post-translational modifications that affect their nuclear and

cytoplasmic partitioning. Moreover, our siRNA studies show that

NF-kB/RelA and IRF3 gene expression are negatively cross-

regulated. The NF-kB and IRF3 signaling pathways are known to

be cross-coupled through multiple positive and negative interac-

tions, whose precise temporal interaction is critical for determining

the cellular outcome of viral infection. For example, studies in NF-

kB -deficient cells have shown that the initial kinetics of the IFNb
response depends on concurrent NF-kB activation [14]. This work

has shown that in the absence of NF-kB, the rapid response of

IFNb expression is blunted, reducing the propagation of anti-viral

signals in the mucosal surface. This previous result is consistent

with the reduced IFNb expression we observed here in response to

RelA siRNA (Fig. 3). Moreover, NF-kB controls expression of

STAT1, IRF-1, -5 and -7, transcription factors mediating the

downstream IFN auto-amplification loop. Our experiments extend

this finding to suggest a weak mutual negative feedback between

the two arms of the system, where IRF3 knockdown increases

RelA expression and vice-versa. This cross-regulatory effect extends

to IRF3 and NF-kB -dependent genes as well. Our initial

promoter analysis suggests that IRF binding site in present on

the RelA promoter, and NF-kB binding site is present on the IRF

promoter. Whether these binding sites are functionally important

will require further study.

Approaches to structure and parameter estimation
As mentioned in the Results section above, it is the subject of a

debate whether attempts should be made to build a model based

on a ‘‘rigorous’’ method such as Maximum Likelihood Estimation

or minimization of a performance index, or using an iterative

interactive method illustrated here. Girolami [63] argues that it is

very difficult to obtain values of the chemical reaction constants

which are the parameters of the mathematical model. This

uncertainty should be taken into account when the model is used

to prevent unproven conclusions about the biological system, or in

making overly ‘‘optimistic’’ predictions without understanding the

uncertainty of the model. As argued by the same author [63]

‘‘Bayesian inferential methodology provides a coherent framework

with which to characterize and propagate uncertainty in such

mechanistic models’’. In the paper involving Girolami’s group [64]

a similar methodology is applied to ranking of alternative

hypothetical topologies of a cell signaling pathway. Similarly as

in our experiments, their approach uses measurements of a limited

number of biochemical species combined with multiple perturba-

tions. In a more recent work by Chkrebtii et al. [65], a fully

Bayesian inferential framework was developed to quantify

uncertainty in models defined by general systems of analytically

intractable differential equations. The approach was successfully

applied to various ordinary and partial differential equation

models and to an example characterizing parameter and state

uncertainty in a biochemical signaling pathway which incorpo-

rates a nonlinear delay-feedback mechanism. These examples are

however several times smaller than the system we are considering.

A different philosophy is advocated by Gutenkunst et al. [66],

who demonstrated that collective fitting could yield well-

constrained predictions, even when it left individual parameters

poorly constrained (‘‘sloppy’’), with spectrum of sensitivities having

eigenvalues distributed over many decades. Mathematical analysis

of sloppiness using Vandermonde matrices as in Waterfall et al.

[67] and the comparisons in Gutenkunst [66] indicate that models

with ‘‘sloppy’’ parameters constitute the rule, not the exception. As

they state ‘‘prevalence of sloppiness … suggests that modelers

should focus on predictions rather than on parameters’’. Indirect-

ly, this supports inevitability of iterative interactive approach to

identification and estimation in large systems (so-called ‘‘tweak-

ing’’), which leads to models that may be falsified in the future but

provides a welcome reference. In our case, we also took into

account modularity of the process, with the dynamics of the NF-

kB module being much better known than that of the IRF3

module. We also used evolutionary footprint analysis to evaluate

candidate crosstalk agents such as SP1 and AP-1.

Parameter estimates and the effect of TNFAIP3
knockdown

As it can be noted by inspection of Table ST2 in File S1, the

reaction constants in the NF-kB module that fit the time-series

data seem quite different from those characterizing dynamics of

this module based on its reaction to TNFa stimulation [68].

Without getting into detail, as a rule, the estimates of reaction

constants in the present work are lower than those in the in the

work cited above. One of the reasons for this is likely that the

transients observed under dsRNA stimulation are slower than their

counterparts under TNFa stimulation. For example, under

standard 10 mg/ml TNFa dose, translocation of RelA into the

nucleus occurs within 30 min [68] whereas in our system nuclear

RelA reaches peak value after around 1 hour.

In this context it seems interesting to use the model to provide

predictions of the effects of knocking down TNFAIP3, which

should be propagated down both arms of the system. TNFAIP3 is

a negative regulator, so knocking it down is equivalent to not

inactivating IKK1 and IKK2. Indeed, as listed in Table 3, a

simulated knockdown which reduces expression of the TNFAIP3

gene to about 5% of its normal value at 6 hr following dsRNA

stimulation, results in increased expression of IKK1a and IKK2a

proteins at 6 hr. However, the results further downstream are

different for each arm; while nuclear RelA concentration is

increased, there is no significant change in IRF3.

This latter finding is related to the fact that to reconcile the

model with time series data, we postulate IRF3ii (ii, inert inactive)

as a buffer that very slowly transforms into IRF3i (i; inactive). In

other words, we are assuming that the recently produced IRF3

(IRF3ii form) needs an unknown number of steps before becoming

the mature form (IRF3i form) susceptible to activation. There

might exist an analogy between IRF3ii and the pool- NF-kB

discovered by Brasier and co-workers [11,19]. Data also shows

IRF3 present in the nucleus at time of stimulation. As it cannot be

the active form of IRF3 (otherwise it would activate targets such as

IFN and ISG56), we hypothesize that IRF3i can translocate in and

out of the nucleus (this allows to fit the time series data). Finally, as
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IRF3ii to IRF3i transformation is a very slow process, once IRF3i

is activated, the amount of IRF3i is depleted very rapidly.

TNFAIP3 has a late effect on IKK1a and IKK2a, so even if

TNFAIP3 is knocked-down and as a consequence IKK2a stays

active, there remains almost no IRF3i to be activated. As a

consequence, no effect is noted in the IRF3 arm. The effects

described may be specific to the dsRNA stimulation of the system.

Also, in our system, the influence of the TNFAIP3 knockdown

does not extend to the expression of RelA or IRF3 target genes.

Because of massive stimulation by dsRNA, these genes (such as

IkBa and other; not shown) operate at saturation levels. Another

reason may be that the IFNbg_NF-kBn_IRF3 an enhanceosome

(see the pseudocode in File S1) has half-life of about 10 days, i.e. it

very rarely breaks down over the simulation experiment period.

Experimental evidence supporting the influence of TNFAIP3

knockdown on IRF3 activity has been sought. One of the lead

studies that shows TNFAIP3 interferes with IRF3 by binding/

inhibiting TBK1/IKKe (our IKK2) is Saitoh et al. 2005 [69]. The

effect seems to be not very strong considering it was necessary to

overexpress TNFAIP3 to show it, and the siRNA knockdown only

increased IRF3 activity by 1.5–2-fold.

Single cell modeling and observations: Influence of
extrinsic and intrinsic stochasticity

It has been recognized that variability in dynamic responses of

individual biological cells to external stimuli can be caused by a

variety of mechanisms two of which are the extrinsic and intrinsic

noise. In our system, intrinsic stochasticity seems to be mostly

caused by the fact that transcription activation and deactivation is

a stochastic process. Extrinsic stochasticity is at least in part

accounted for by individual variation of dsRNA dose per cells,

which in turn depends on random diffusion of these molecules in

the intracellular medium and on the variability of electroporation

effects. We consider both effects in our model-based simulations.

Inspection of the modeled mRNA and protein levels (grey lines) in

Figs. 2A and 3A demonstrates that extrinsic stochasticity accounts

for wide variability of the individual cell trajectories around the

mean, whereas comparison with Figs. 2B and 3B demonstrates

that intrinsic noise contributes qualitatively different phenomena

such as oscillations.

How do model predictions compare with single-cell data? Let us

consider the nucleus to cytoplasm (N/C) ratio of RelA in Figs. 6

and 7. In low concentrations of dsRNA (5 mg), some cells appear

to display 2–3 hr periodicities (cf. the periodograms in Figs. 6 and

7), qualitatively similar to corresponding trajectories (grey lines) in

the lower part of the RelA total nuclear graph in Fig. 2B. The

range of dynamic effects is wide. In high concentration 50 mg of

dsRNA, the pattern involves usually a single major translocation

from cytoplasm to nucleus followed by eventual saturation (Fig. 7),

qualitatively similar to corresponding trajectories (grey lines) in the

upper part of the RelA total nuclear graph in Fig. 2B. However,

inspection of periodograms in Fig. 7 proves existence of a faint 2–

3 hour periodicity.

Together our studies have illustrated sources of cross-talk in the

epithelial IIR. In addition to discovering sources of negative cross-

regulation, our studies have predicted and experimentally

confirmed the existence of and IRF3-independent, IRF7 depen-

dent linkage between NF-kB and RIG-I expression.

Supporting Information

File S1 File S1 includes 5 Supplemental Tables and 2

Supplemental Figures. Supplemental Tables are: ST1. System of

Ordinary Differential Equations defining the model. ST2.

Reaction constants. These reaction constants are the same as in

Table ST1 (they are numbered identically). Their dimensions are :

1/(# molecules s) for second-order and 1/s for first-order

reactions. ST3. Pseudocode. ST4. TFBS analysis. Table presents

counts of TFBS corresponding to IRF family and NF-kB family

transcription factors found in promoters of presented genes in four

species: cattle (bosTau), mouse (mm), chimpanzee (panTro) and

human (hg). Yellow rows correspond to promoter sequences with

at least one IRF3 binding site, bright orange rows correspond to

sequences containing motifs for all 3 members of IRF family, red

cells correspond to sequences with more than 2 binding sites for

IRF3. For genes: IRF7, MAVS, IKK1, IKBKB and DDX58 only

human and murine promoters were analyzed. ST5. Effect of

siRNA knockdown on dsRNA-induced NF-kB/IRF3 gene

expressions in A549 cells. Statistical significance of the difference

recorded in the knockdown experiment, carried out using the 2-

sample, 2-sided t-test (Welch test), corresponding to the bar charts

in Figure 3. (A) Comparison of the mRNA-specific siRNA

knockdown versus control (nonspecific siRNA), in dsRNA-

nonstimulated and dsRNA-stimulated experiment (at 6 hr). (B)

Comparison of dsRNAinduced versus dsRNA-noniduced under

siRNA knockdown (at 6 hr). Rows: Different knockdowns.

Columns: Genes expressed. Supplemental Figures are SF1. Wiring

diagram corresponding to the pseudocode and differential

equation system. SF2. Snapshots of RelA-specific and IRF3-

specific labeling in A549 cells at different times in non dsRNA-

induced experiment.
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