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ABSTRACT: This contribution focuses on effective numerical techniques used in a nonparametric method for identification of structural 

mass modifications. The approach utilizes the Virtual Distortion Method (VDM), which allows experimentally measured data to be directly 

used in the modeling process. As a result, experimentally obtained characteristics of the involved structure are used directly, so that no 

parametric modeling and time-consuming fine-tuning of the parameters are necessary. On the other hand, there are significant computational 

costs related to the need of direct processing of the measured time series, which require effective numerical techniques. Mass identification is 

formulated as an optimization problem of minimizing the mean square distance between the measured and the computed structural responses, 

where the optimization variables are mass-related parameters. Given the testing excitation (which can be unknown but should be 

reproducible) and the measured response of the original undamaged structure, the corresponding response of the structural mass 

modifications is computed by using certain mass-equivalent pseudo loads, which are convolved with experimentally obtained local impulse 

responses of the unaffected structure. The methodology is validated numerically and experimentally using a 4-meter-long, 70-element truss. 
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1. Introduction 

This paper presents and discusses numerical techniques 

used in a time-domain version of a nonparametric approach 

to identification of added masses in truss structures. The 

general approach has been developed in IPPT PAN [1–3], 

and it is based on the essentially nonparametric 

methodology of the virtual distortion method (VDM) [4]. 

The monitored structure is characterized in a purely 

experimental way, by means of its impulse response 

functions. As a result, no parametric numerical modeling is 

required, which obviates the need for model updating and 

fine-tuning that is typical for other model-based methods.  

A 3D truss structure with 26 nodes and 70 elements was 

used in the experimental verification, see fig. 1. The 

structure was 4 m long, and the elements were circular steel 

tubes with the radius of 22 mm, the thickness of 1 mm and 

the lengths of 500 mm or 707 mm; the total weight was 

approximately 32 kg. The right-hand side nodes were free 

to move in the longitudinal direction only, whereas the two 

opposite left-hand side nodes were fixed. Only nodal mass 

modifications were considered. They were implemented by 

fixing concentrated masses at one or two of the nodes 

marked M1, M2 and M3 in fig. 1; the location of the 

modifications was assumed to be known. Two modification 

scenarios were investigated: 

1) modification of a single nodal mass in M1, M2, or M3; 

2) simultaneous modification of two nodal masses in the 

nodes M1 and M3. 

 

2. Nonparametric modeling and identification 

In agreement with the general approach of the VDM, 

modifications of structural mass are modeled with pseudo 

loads p(t), which are response-coupled and act in the 

unmodified structure to imitate the inertial effects of the  

 
Rys. 1. Truss structure 

 

modifications. For a given modification ΔM and excitation 

f(t), the response of the modified structure is computed in 

two steps [1]: 

1) The pseudo-loads p(t) that model the mass 

modifications are found by solving the following linear 

integral equation of the Volterra type: 

                     
 

 
           (1) 

2) The response is then computed by  

                        
 

 
  (2) 

Computations in both steps require, besides   , solely 

the characteristics of the unmodified structure. These are: 

1) the responses        and       to the same considered 

excitation f(t); 

2) the matrices of the impulse responses       and     . 

All these characteristics can be measured experimentally 

prior to modeling of the modifications, so that there is no 

need to build and update a parametric numerical model of 

neither the unmodified nor the modified structure. The 

pseudo-loads vanish in the DOFs that are unrelated to the 

mass modification   . As a result, the measured responses 

and the impulse responses can be restricted to the DOFs 

that are related to the mass modifications, which makes the 

experimental measurements more feasible 
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Identification is formulated as an optimization problem 

of minimizing (with respect to   ) the least square 

discrepancy between the actually measured response of the 

modified structure to f(t) and the response modeled by (2). 

 

3. Numerical techniques 

Theoretically, given the discretized versions of the 

direct (1) and the inverse problems, identification of mass 

modifications is straightforward: it amounts to an iterative 

minimization of the objective function. In each iteration, a 

sensitivity analysis can be also performed [1], which 

requires an additional adjoint linear system to be solved. If 

a second-order optimization method is used, then also all 

derivatives of the pseudo load pi(t) have to be computed by 

solving a linear system of the size of (1) separately for each 

optimization variable. In all cases, the system matrix is 

denoted by A (obtained in discretization of (1)) or A
T
. 

However, all responses are stored and processed in time 

domain, which can result in large dimensions of A. It is a 

dense 3n x 3n block matrix with T x T blocks, where T is 

the number of the time steps and n is the number of the 

nodes related to mass modifications; the total dimensions 

are thus 3nT x 3nT, see fig. 2. In case of a longer time 

interval or a non-localized modification, the matrix can 

become huge and unmanageable by standard numerical 

techniques. Moreover, as can be expected from the Toeplitz 

structure of its blocks [5], the matrix is significantly ill-

conditioned, and a regularization technique has to be used 

in order to obtain meaningful solutions. It is proposed to 

use the fast iterative algorithm of conjugate gradient least 

squares (CGLS) [6] to solve the involved systems, since 

1) the CGLS method has good regularizing properties. 

The number of iterations plays the role of the 

regularization parameter: the more iterations, the more 

exact but less regularized (that is more influenced by 

the measurement error) is the solution;  

2) the method uses the system matrix A only in the form 

of the matrix-vector products Ax and A
T
y, so that no 

matrix decomposition and no direct access to its 

elements are necessary, only two black-box procedures 

implementing the respective multiplications.  

Moreover, the block Toeplits structure of the system matrix 

A can be also exploited:  

1) Each block of A is a T x T lower triangular Toeplitz 

block, hence it can be stored in computer memory in a 

reduced form using only T elements instead of T
 2
. 

2) In the CGLS method, the system matrix A is present 

only implicitly in the form of matrix-vector products. 

For each of the T x T Toeplitz blocks, the product can 

be computed in frequency domain using the FFT in 

time O(T log T) instead of O(T
 2
). 

 

4. Conclusions 

This contribution focuses on numerical techniques used 

in a nonparametric approach to identification of 

modifications of structural mass. The approach is based on 

the VDM and requires neither parametric numerical model 

of the monitored structure nor any topological information, 

besides the locations of the potential modifications. A 70-

element 3D truss structure was used in the experimental 

validation. Modifications of one and two nodal masses were 

identified using a single impact test excitation and a single  

 
Fig. 2. Structure of the system matrix A 

 

 
Fig. 3. Measured and computed responses 

 

test sensor. The average relative errors of identification of 

single modifications were less than 5%. The errors were 

larger in the cases of two modifications, which was a result 

of the ill-conditioning of the problem.  

A significant computational cost of the proposed time-

domain approach is addressed by selected effective 

numerical techniques, which exploit the block-Toeplitz 

structure of the discretized system. These techniques 

include the iterative regularization with the CGLS method, 

exact FFT-based matrix-vector multiplications, reduced-

memory representation, etc. 
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